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The conductance of a ferromagnetic particle depends on the relative orientation of the magnetization with
respect to the direction of current flow. This phenomenon is known as “anisotropic magnetoresistance.” Quan-
tum interference leads to an additional random dependence of the conductance on the magnetization direction.
These “mesoscopic anisotropic magnetoresistance fluctuations” are caused by the interplay of random impurity
scattering and spin-orbit scattering, which couples the electron motion to the exchange field in the ferromagnet.
We report a calculation of the dependence of the conductance autocorrelation function on the rotation angle of
the magnetization direction.
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One hallmark of phase-coherent transport is the phenom-
enon of “universal conductance fluctuations,” random, but
reproducible variations in a sample’s conductance as a func-
tion of the applied magnetic field or the Fermi energy.1–5 The
magnitude of the conductance fluctuations is of order unity,
in units of the conductance quantum e2 /h, and does not de-
pend on specific sample properties, such as the impurity con-
centration, the material, shape, or method of preparation.

Recently there has been both theoretical and experimental
interest in mesoscopic transport in itinerant ferromagnets.
The experimental interest stems from the ability to fabricate
ferromagnetic conductors small enough that transport
through the magnet is predominantly coherent.6,7 The theo-
retical interest is motivated by the rich variety of ways
through which random impurity scattering can affect the
properties of an itinerant ferromagnet. Theoretical predic-
tions exist for the effect of domain walls on weak localiza-
tion and conductance fluctuations8,9 as well as for the com-
bined effect of spin-orbit interaction and impurity scattering
on weak localization10 and magnetic anisotropy.11 Although
disordered ferromagnetic conductors display different phe-
nomena than their normal-metal counterparts, the theoretical
framework to describe them is rather similar. Indeed, the
methods of diagrammatic perturbation theory developed for
electron transport in disordered metals can be applied to fer-
romagnets by modifying the single particle Hamiltonian tak-
ing into account the exchange field and/or spin-orbit interac-
tions.

In this Report, we address the mesoscopic contribution to
a ferromagnet’s anisotropic magnetoresistance in diffusive
samples. Anisotropic magnetoresistance is the phenomenon
that a magnet’s resistance depends on the orientation of the
magnetization resulting from a combination of spin-orbit
coupling and orbital magnetic effects.12 For a single domain
magnet, the resistance is a smooth function of the magneti-
zation direction. The mesoscopic effect described here con-
sists of an additional and faster random dependence on the
magnetization direction that is different for each sample, but
reproducible for a given sample. Its origin is the coherent
multiple scattering off impurities in the ferromagnet. As a
function of magnetization direction, the mesoscopic correc-
tion will show a quick succession of minima and maxima,
superimposed on the smooth material-dependent anisotropic
magnetoresistance of the bulk material. Such features were

seen in the recent experiment of Ref. 7. This situation is not
very different from the case of standard universal conduc-
tance fluctuations in a normal metal, where the random
magnetic-field dependent fluctuations are superimposed on a
systematic magnetoconductance.

The mesoscopic anisotropic magnetoresistance we con-
sider here is related to but different from the anisotropic
magnetoresistance of a ferromagnetic point contact, which
has received attention recently. Ferromagnetic junctions of
only a few atoms wide were measured to have anomalously
large anisotropic magnetoresistance.13–16 Theoretically,
nanoscale ferromagnetic junctions were predicted to show
the ferromagnetic analog of conductance quantization.17 Al-
though the magnetoresistance in nanoscale junctions differs
from its bulk counterpart, the resistance is predicted to re-
main a monotonic and material dependent �but not sample
dependent� function of the magnetization direction if the
junction is regular.17 On the other hand, the effect we con-
sider is a nonmonotonic sample-dependent feature superim-
posed on the bulk anisotropic magnetoresistance. Although
the same phenomena may occur in nanoscale junctions be-
cause of backscattering from the electrodes, our theory is
aimed at disordered ferromagnets with a conductance much
larger than the conductance quantum.

There are two possible mechanisms through which the
magnetization direction can affect the interference correction
to the conductance. First, a change of the magnetization di-
rection causes a change of the internal magnetic field, which
directly affects the orbital motion of the electrons via a
change of Aharonov-Bohm phases. Second, a change of the
magnetization direction causes a change of the exchange
field, which affects the motion of the electrons via spin-orbit
scattering. The two effects scale differently with sample size
L or the phase coherence length L�, with the orbital effect
becoming the weaker one at smaller length scales; see Ref.
10 and the concluding paragraph below. The orbital effect
starts to dominate if the magnetic flux through an area lso
�min�L ,L�� is of the order of the flux quantum, where lso is
the spin-orbit length. For many magnetic materials, L� and
lso can be small and the orbital effect can be neglected.7,18 In
what follows, we assume that this condition holds and that
the second effect dominates the mesoscopic anisotropic mag-
netoresistance. For the same reason, we ignore any effect of
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an applied magnetic field used to change the magnetization
direction.

We consider an ensemble of ferromagnetic particles, each
with a different configuration of impurities and calculate the
conductance autocorrelation function

C��� = �G�m̂�G�m̂��� − �G�m̂��2, �1�

where � is the angle between the magnetization directions m̂
and m̂� and the brackets �¯� denote the ensemble average.
The vectors m̂ and m̂� are defined to have unit length. The
Hamiltonian for a ferromagnet with spin-orbit scattering is

H�� = � p2

2m
− ��	�� − EZ
��

z + V��, �2�

where � and � are spin indices, 
z is the Pauli matrix, the
magnetization direction m̂ is taken as the spin quantization
axis, and EZ=�BBex is the Zeeman energy corresponding to
the exchange field Bex. We perform the ensemble average at
a fixed chemical potential � and exchange field Bex, rather
than at a self-consistently determined � and Bex. Although
the omission of the self-consistency conditions is known to
affect averaged quantities, it is believed not to affect
fluctuations.19–21

The random potential V in Eq. �2� describes the effect of
elastic impurity scattering and spin-orbit scattering, respec-
tively. Its Fourier transform is

V�k,�k� = Vk−k� − iVk−k�
so �k� � k� · �m̂
z + ê1
x + ê2
y���,

�3�

where ê1 and ê2 are unit vectors perpendicular to each other
and to m̂ such that ê1� ê2=m̂. The random potentials V and
Vso are assumed to be uncorrelated and Gaussian white noise,
with rms strength v and vso, respectively,

�VqVq�� = v2	�q − q��, �Vq
soVq�

so � = vso
2 	�q − q�� . �4�

In the leading order Born approximation, the scattering time
�� for spin-independent impurity scattering of electrons with
spin � is given by

1

2�
↑�↑
= v2,

1

2�
↓�↓
= v2, �5�

where 
� is the density of states of electrons with spin �.
Similarly, for spin-conserving and spin-flip scattering off Vso,
one has the mean free times

1

2�
↑�↑�

=
2

9
vso

2 kF↑
4 ,

1

2�
↓�↓�

=
2

9
vso

2 kF↓
4 ,

1

2�
↓�↑�

=
1

2�
↑�↓�

=
2

9
vso

2 kF↑
2 kF↓

2 , �6�

respectively, where kF� is the Fermi wave vector for spin �
electrons. In a realistic ferromagnet, the kinetic energy and
the random potential will not have the simple form assumed
in our calculation, which implies that the relationships be-
tween the scattering times implied by Eqs. �5� and �6� need
not hold. Although we use the simple model described above

to set up our calculation and to define the scattering times,
these are then considered independent of the rest of the cal-
culation �except for the equality in the second line of Eq. �6�,
which follows from detailed balance	.

Throughout the calculation, we assume that ����, ��.
This implies that all Green’s functions appearing in interme-
diate phases of the calculation can be averaged over all di-
rections of the momentum. We also assume that phase coher-
ence is preserved over the entire sample. In a sample with
size L larger than the phase coherence length L�, our answer
would be modified as C�� ,L�
C�� ,L���L� /L�. In this case,
the angle over which the conductance typically fluctuates is
then determined by L� instead of L.

We now describe the details of our calculation. For the
retarded Green’s function GR, averaged over the random po-
tential and over all directions of the momentum, we find

�G�
R��,k,m̂��−1 = � − ���k� +

i

2��

+
i

2���

+
i

���

, �7�

where ���k�=�2k2 /2m−�−EZ
��
z is the energy of an elec-

tron with spin � and momentum �k. In order to calculate the
conductance autocorrelation function �1�, we need to con-
sider the Diffuson and Cooperon propagators of diagram-
matic perturbation theory. Again, in view of the inequality
����, ��, we only need Diffuson and Cooperon propagators
averaged over all momentum directions. Since the Cooperon
and Diffuson propagators are related by time reversal,

C��,q,�� = D��,q,� − �� , �8�

it will be sufficient to calculate the Diffuson only.
The Diffuson propagator is defined by the ladder dia-

grams shown in Fig. 1. The solid arrows in Fig. 1 denote the
impurity-averaged Green functions �7�. The two legs of the
ladder refer to the two magnetization directions m̂ and m̂�.
For both magnetization directions we use the convention that
the magnetization direction is the spin quantization axis. This
is the natural choice for ferromagnets: Since EZ��1 in a
typical ferromagnet, with this convention only ladder dia-
grams for which the spin indices of retarded and advanced
Green functions are pairwise equal at all times need to be
considered; contributions with different spin index for re-
tarded and advanced Green’s functions dephase within a
mean free time and do not contribute to the Diffuson propa-
gator. One should note, however, that this convention implies
that the directions of “spin up” and “spin down” in the upper
and lower legs of the ladder correspond to different physical
directions if m̂�m̂�.

Summing the ladder diagrams of Fig. 1, we then find that
the Diffuson obeys the 2�2 matrix equation

FIG. 1. Dyson equation for the Diffuson ladder. The dotted line
indicates a scattering event.
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�
�=↑,↓

K��D��,q,���� = 	��

1

2�
���

. �9�

Here K is a 2�2 matrix, with diagonal elements given by

K̂�� = ���D�q2 + i� +
2

���

+
1 − cos �

���

 , �10�

where D�=vF�
2 �� /3 is the diffusion constant. The off-

diagonal matrix elements contain a phase factor that depends
on the precise choice of coordinate axes perpendicular to m̂
and m̂�, cf. Eq. �3�. In all final expressions, the off-diagonal
elements of K only enter through their product, which is
independent of this choice,

K↑↓K↓↑ =
�↑�↓

�↑��↓�

�1 + cos ��2. �11�

Once the Diffuson is known, the Cooperon is calculated via
Eq. �8�. For the special case �=0, the result for C was pre-
viously obtained by Dugaev et al.10

We can now proceed to calculate the conductance corre-
lation function C���. We are interested in the conductance
correlations at zero temperature, which allows us to set �
=0 in our expressions for the Diffuson and Cooperon propa-
gators. We consider a coherent rectangular sample with sides
Lx, Ly, and Lz, with a current in the z direction. Following the
formalism of Refs. 2 and 5, we then find the conductance
autocorrelation function

C��� =
6e4

�4h2�
q

�
±
� 1

��Lzq/��2 + a±����2

+
1

��Lzq/��2 + a±�� − ���2
 , �12�

where

a±��� =
1

�↑�E↑
+

1

�↓�E↓
+

�↑�E↑ + �↓�E↓

2�↑��↓�E↑E↓
�1 − cos �� ±��1 + cos ��2

�↑��↓�E↑E↓
+ � 1

�↑�E↑
−

1

�↓�E↓
−

�↑�E↑ − �↓�E↓

2�↑��↓�E↑E↓
�1 − cos ��
2

�13�

and E�=D��� /Lz�2 is the Thouless energy for spin �. Note
that the parameter that governs the importance of spin-orbit
scattering is the product ���E� or ���E�, which is the ratio of
the spin-orbit time and the Thouless time, which is the time
to diffuse through the sample.

The expression for a±��� simplifies in two limiting cases.
If �=0, one has a+=2/�↑�E↑+2/�↓�E↓ and a−=0, showing
the presence of universal conductance fluctuations in a fer-
romagnet. The corresponding eigenvalues for the Cooperon
contribution are found by setting �=�, a+���=2/�↑�E↑
+2/�↑�E↑ and a−���=2/�↓�E↓+2/�↓�E↓. Another simple
limit is that of a half-metal, a ferromagnet with vanishing
density of states for the minority spins. For a half metal, the
only relevant time and energy scales are the scattering time
�↑� for spin-preserving spin-orbit scattering of majority
electrons and the majority electron Thouless energy E↑.
One then finds that only one root a± is relevant, a���
= �1−cos �� /�↑�E↑. The sum over wave vectors in Eq. �12�
can be performed analytically for a quasi-one-dimensional
sample. Setting nx=ny =0 in the summation, one finds

C��� = �
±

�F���a±���� + F���a±�� − ���	 , �14�

where F�x�=3e4�−2+x coth x+x2 sinh−2 x� /2x4h2. Note that
for �=0, Eq. �14� reproduces the known results var G
= �e2 /h�2�1/15� for strong spin-orbit scattering and var G
= �e2 /h�2�4/15� for weak spin-orbit scattering. For quasi-2D
and 3D samples C��� can be computed numerically. The de-

pendence on the spin-orbit scattering is qualitatively similar
for all these cases. Shown in Fig. 2 is C��� for a half metal
with Lx=Ly =Lz. The top dashed line in Fig. 2 is the variance
of the conductance in the absence of spin-orbit scattering.
Without spin-orbit scattering, there is no angle-dependent
mesoscopic correction to the conductance, so C��� is inde-
pendent of �. For �↑� �1/E↑, conductance fluctuations satu-
rate at half their value without spin-orbit scattering. Chang-
ing the magnetization by a small angle �c changes the
mesoscopic conductance correction enough to lose all con-
ductance correlations. Our calculation shows

FIG. 2. �Color online� The correlation function of the conduc-
tance at different directions of the magnetization, for various
strengths of the spin-orbit scattering. Results shown here are for a
half metal with cubic geometry.
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�c 
 ��↑�E↑�1/2 
 lso/L , �15�

where l is the mean free path and lso
 l��↑� /�↑�1/2 is the
spin-orbit length. In a realistic ferromagnet, the quantitative
form of C��� is different, although the qualitative picture,
including the estimate for the correlation angle �c is the same
as for the half metal �see Eq. �13�	.

Let us estimate the correlation angle �c for the spin-orbit
induced mesoscopic conductance fluctuations. For the highly
disordered ferromagnetic wires used in the experiments of
Refs. 6 and 7, the mean free path l is of the order of a few
nm. Taking the spin-orbit times �� and �� within an order of
magnitude of the elastic scattering time � �as is appropriate
for Co �see Ref. 18�	, we find �c
�1�10−8 m� /L. �Recall
that L has to be replaced by the phase coherence length L� if
L��L.� This would be sufficiently small to explain the few
conductance oscillations seen in the experiment of Ref. 7, for
which L�
30 nm and the conductance was measured as a

function of an external magnetic field that changed the mag-
netization direction.

It is instructive to compare the correlation angle �c for
spin-orbit induced conductance fluctuations considered here
to the correlation angle arising from the coupling of the elec-
tron’s charge to the internal magnetic field. The latter is

�0 /�, where � is the magnetic flux through the sample
and �0 is the flux quantum. Taking the internal magnetic
field to be 
2 T, as is appropriate for Co, one finds a corre-
lation angle 
�2�10−15 m2� /L2. Hence, with the parameters
taken above, the orbital effect will dominate for samples with
size L�2�10−7 m. This is in agreement with Ref. 7, where
it was shown that the orbital effect alone cannot account for
the observed conductance fluctuations.7
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