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Temperature-dependent dynamical behavior of nanoparticles as probed by ferromagnetic
resonance using Landau-Lifshitz-Gilbert dynamics in a classical spin model
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The dynamical response of nanoparticles as probed by ferromagnetic resonance (FMR) is studied within a
classical spin model using Landau-Lifshitz-Gilbert dynamics. The FMR signal is calculated numerically for
different temperatures. The dependence of both the shift of the resonance signal and the linewidth on tempera-
ture is obtained, yielding information about the microscopic parameters of the particles.
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I. INTRODUCTION

Magnetic colloidal nanoparticles are currently of great in-
terest both from a fundamental point of view and from ex-
pected technological perspectives.' Of particular interest
are the material parameters of these particles which may be
dramatically different from the bulk parameters. The reduced
symmetry of the surface atoms, for instance, is expected to
lead to a strong enhancement of the anisotropy energy. An-
other source of an enhancement of the anisotropy energy
leading to an enhanced coercivity of nanoparticles is ex-
change coupling to an antiferromagnetic substrate.* An ex-
perimental tool for measuring anisotropy energies is ferro-
magnetic resonance (FMR), which has been applied with
great success in the past, in particular to thin ferromagnetic
films.>

For these ferromagnetic films bulk and surface contribu-
tions can be separated since they contribute differently to the
elements of the susceptibility tensor which are measured in
FMR. For zero temperatures exact results are available for
the susceptibility within a model in which the ground-state
magnetization is treated as a single “macrospin.”® From these
results the different contributions to the anisotropy energy
can be obtained. An naive extension of these results to finite
temperatures consists of a replacement of the energy by a
mean-field-type free energy leading to temperature-
dependent anisotropy energies from which the microscopic
parameters can be obtained by extrapolating to zero tempera-
ture. Thus this approach again leads to a “macrospin” with a
reduced magnetization due to thermal fluctuations. Note that
more sophisticated results for the dynamics of ferromagnetic
systems have been obtained by Garanin’ for systems without
anisotropy.

For ferromagnetic nanoparticles the situation becomes
more complicated since thermal fluctuations not only lead to
a reduction of the magnetization of the nanoparticles but also
to random fluctuations of its direction around its easy axis
which affects physical quantities like the magnetic suscepti-
bility. Thus, depending on the size of the particle one has to
distinguish two different temperature effects: thermal fluc-
tuations of the moments of the atoms within the particle
resulting in a temperature-dependent reduced net magnetiza-
tion of the particle and thermal fluctuations of this net mag-
netization around its easy axis. The first of these effects de-
pends on the ratio 7/J where J denotes the exchange
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interaction between atoms within the particle and 7 the tem-
perature while the second one primarily depends on the size
of the particle. In the experiments reported in Ref. 8§ on
single-domain particles the ratio 7/J is such that the magne-
tization is practically saturated but the particles are so small
that the thermal fluctuations of the net magnetization are
important. In this situation the nanoparticle again can be de-
scribed by a “macrospin” coupled to a heat bath. This is the
situation we want to study in the present paper. We assume
that the dynamics of the particles is governed by the stochas-
tic Landau-Lifshitz-Gilbert (LLG) equation which takes the
temperature fluctuations fully into account.” It is the aim of
the present contribution to study their influence on the FMR
signal in detail.

The dynamics of independent magnetic moments with
LLG dynamics has been studied before. The paper closest to
ours in spirit is that of Ref. 10 in which the dynamical sus-
ceptibility was calculated numerically starting from the LLG
equations for various sets of system parameters. Unfortu-
nately, from these results a rather complete picture of the
dependence of the resonance field and the width of the reso-
nance line on temperature cannot be obtained since fields (or
external frequencies) are not varied systematically. Other ap-
proaches concentrate primarily on the derivation of
temperature-averaged quantities—i.e., the distribution func-
tion for the moments’—or they treat temperature effects on a
phenomenological basis.!""'> Thus, to the best of our knowl-
edge, a systematic study of the ferromagnetic resonance of
nanoparticles taking temperature fluctuations fully into ac-
count is not available.

In the experiments mentioned above the anisotropy axis
of the nanoparticles most likely are randomly distributed and
additionally there is a size distribution. To entangle the ef-
fects coming from this structural disorder from the tempera-
ture effects is rather difficult. Therefore in a first step to
understand temperature effects on linewidths and line shifts
of the FMR signal we consider for simplicity in the present
paper nanoparticles all having the same magnetic moment
and the same uniaxial anisotropy energy, leaving the more
complicated problem of temperature effects in a random as-
sembly of nanoparticles to a future publication.!* Note that
when thinking about applications a common uniaxial aniso-
tropy axis for all particles is essential. Experimentally this
challenging goal has not yet been reached.

The main result of the present paper is a detailed numeri-
cal calculation of the shift of the FMR resonance field as
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function of temperature taking thermal fluctuations fully into
account. It is shown that this shift decreases with increasing
temperature proportional to m(z) where m denotes the equi-
librium magnetization of the particles at resonance. The de-
crease with temperature is in qualitative agreement with
experiments.® Additionally we show that the FMR linewidth
strongly depends on temperature, making it difficult to deter-
mine the Gilbert damping parameter from FMR experiments.

II. MODEL
The Hamiltonian of a nanoparticle is given by
H=-puS B-uS- H() - DS, (1)

where S= pu,/ u, denotes a unit vector parallel to its magnetic
moment, B the external static magnetic field, H(z) the high
frequency field, and D the anisotropy energy. The static field
is applied parallel to the z direction while the high-frequency
(HF) field is given by

H(t) = H);cos(wt)e,, (2)

where e, denotes a unit vector perpendicular to the aniso-
tropy axis.

If the nanoparticles are well separated, their interaction
which is of dipole type is small and will be neglected in the

following.
The spin dynamics is governed by LLG equation
oS y
—=- S X {B.(t) + ofS X B,(?) ]}, 3
=T TS X B+ adSXBOL )

with the effective field B,(7)= —i % +{(t) which contains the

external fields and a thermal noise () which is Gaussian
distributed with zero mean and correlator:

(60)g;(1)) = 6,;6(0)2akp T/ y- (4)

v denotes the gyromagnetic ratio, o denotes a Gilbert damp-
ing parameter, i,j are Cartesian components, and the other
symbols have their usual meaning. The power absorbed in a
FMR experiment is given by

P=- 1 f S(1) - mdr, (5)
ot

A

where #, denotes the measuring time and the integral runs
over a time interval of length 7, in the stationary state.

In experiments very often the frequency w is kept fixed
while the strength of the applied static field is varied. For an
easier comparison with experiments we follow this line in
the present paper. The fixed frequency w is expressed in
terms of the resonance field B;=w/7y at D=0, T=0. Intro-
ducing then the reduced units b=B/B;, h=H,;/B;, and 7
=wt the LLG equation can be rewritten as

- _
ar

-GS X @ rdS X Gl 6

where the effective field is now given explicitly by
h,(7) = be. + h cos(7)e, + 2dS.e. + O(7), (7)

with
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FIG. 1. (Color online) Absorbed FMR power (arbitrary units)
vs reduced magnetic field b for different values of reduced
temperature ¢.

(0,(0)0,(7) = 5;8(7)q. (8)

Thus the physics only depends on the reduced anisotropy
energy d, d=D/uB;, and the reduced temperature ¢, g
=2akpgT/ u,B;.

The experiments reported in Ref. 8§ were done on
Fe, 7Pt 3 nanoparticles with a mean diameter of 2.3 nm. The
magnetic moment was estimated to 8.45X 1072 eV/Tesla
from which values for the reduced anisotropy energy d of
about d=0,....,0.2 can be obtained assuming reasonable
values for D.

III. RESULTS

The stochastic differential equation (3) is solved numeri-
cally using the Heun method which converges in a quadratic
mean to a solution of the LLG equation when interpreted in
the sense of Stratonovich.!®!# This ensures that the stationary
solution of the corresponding Fokker-Planck equation is
given by the Boltzmann distribution (for details see Ref. 7
and 10).

FMR resonance curves are calculated numerically for dif-
ferent temperatures starting from the ground state in a small
external static field »=0.01 (in reduced units); i.e., initially
all spins are pointing into the direction of the external field.
Note that experimentally this state can be reached after slow
cooling in an external field. The absorbed power is obtained
from Eq. (5) using the solution of Eq. (3). Note that an av-
erage over a large number of field cycles after a stationary
state is reached is necessary to reduce the thermal fluctua-
tions. For the damping parameter a«=0.2 used in this paper
stationarity is obtained after about 100 field cycles. For ob-
taining the complete resonance curve the external field is
increased in small steps of db=0.01 each time until a field is
reached which is well above the resonance field (b=2).

Figure 1 shows results for d=0.2 and for different values
of reduced temperature ¢q. The ¢g=0 curve agrees with the
exact solution available in this limit. At this temperature the
position of the maximum is at b, 7-o=1—-2d (in the re-
duced units used). With increasing temperature two features
are observed clearly: a shift of the maximum of the reso-
nance curve to higher fields mainly due to a strong decrease
of the power absorbed for small 4 and a decrease of the
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FIG. 2. (Color online) Position of the maximum of the reso-
nance curve vs reduced temperature for two values of the reduced
anisotropy.

maximum of the absorbed power. Additionally, we observe
in Fig. 1 an increase in the fluctuations which is due to the
fact that we use for all temperatures deliberately the same
amount of averaging over the thermal disorder: the FMR
signal for a given value of the applied static field is averaged
over 400 000 cycles of the HF field. Note that this time is
still very small compared to the measuring time in a typical
FMR experiment in which of the order of 10° as many field
cycles are considered.® However, a corresponding increase in
the simulation time is difficult since the CPU time needed for
one resonance curve is a couple of days on a power PC.

From the numerically obtained resonance curves we cal-
culate the position of its maximum, b,,,, as a function of
temperature. It is obtained by first fitting the resonance
curves to the sum of two Lorentzians from which a rather
accurate position of the maximum can be obtained. Two
Lorentzians are used for this fitting since this is the form of
the exact result known in the zero-temperature limit. Note
that for elevated temperatures a fit with a single Lorentzian
gives practically the same results. In Fig. 2 results are shown
for d=0.1 and d=0.2, respectively. With increasing tempera-
ture b,,,, goes to 1 in qualitative agreement with the results
found in Ref. 8 in which the temperature-dependent shift of
the resonance signal defined as 1-b,,,, is interpreted as the
temperature dependence of the magnetic anisotropy. Such an
interpretation which is suggested by the fact that this shift is
directly given by 2d at T=0 has been applied with success to
thin ferromagnetic films where the observed reduction of the
shift of the FMR signal with increasing temperature can be
understood as a reduction of the effective anisotropy energy
with temperature.’ For thin films the observed reduction fol-
lows very closely a mg law which is due to temperature fluc-
tuations within the film reducing its magnetization.!> Here,
m denotes the equilibrium magnetization of the film.

However, in the present case we found that for nanopar-
ticles this power law definitely does not fit the data. Instead
the temperature shift 1-b,,,, is fitted very well by a term
proportional to the square of the equilibrium magnetization
at the resonance field, 1 —b,,m=2dm(2), shown as solid lines in
Fig. 2. The magnetization m,, is calculated from

)

at the resonance field where H, denotes the Hamiltonian
given in Eq. (1) but without the high-frequency field.
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FIG. 3. (Color online) Width of the resonance curves vs
temperature.

The interpretation of this finding is that for nanoparticles
it is the direction of the magnetization which fluctuates ther-
mally and not the spin fluctuations within the particles.

Another quantity of interest is the width w of the reso-
nance curve. A measure of this width often used in experi-
ments is the difference between the zeros of the second de-
rivative of the resonance signal. We follow this convention in
the follwing. At 7=0 this width is given by 2« for small
damping constant «. With the value of « used in this paper
this width is a few percent larger than 2a.

At finite temperature the width of the resonance curve as
explained above is obtained by first fitting the numerical data
to the sum of two Lorentzians and then calculating the zeros
of the second derivatives of this function. w is shown in Fig.
3 for three values of the anisotropy energy, d=0, 0.1, and
0.2.

Despite extensive averaging there is still a strong scatter
in the data. The important point, however, is that the width is
increasing as a function of temperature by a factor of 2 to
almost 3. This means that an effective damping parameter
deduced from the measured width of the resonance curve is
strongly temperature dependent. For a precise determination
of the damping parameter used in the LLG equation an ex-
trapolation of the data to 7=0 is therefore necessary.

IV. SUMMARY

In this work we have studied in detail the shift of the
resonance curves and the increase of its width for nanopar-
ticles as a function of temperature. The particles all have the
same uniaxial anisotropy axis with a static applied field par-
allel to this axis and a FMR field perpendicular to it. This is
a special situation which, however, is of particular interest
when thinking of assemblies of nanoparticles as storage me-
dia. We have found a strong decrease of the anisotropy-
induced shift of the resonance line with increasing tempera-
tures and have shown that this shift can very well be fitted by
the square of the equilibrium magnetization at the resonance
field. Additionally we observed a strong increase of the line-
width with temperature. Both these findings should be help-
ful in determining the microscopic parameters D and « from
experiments.

At present, however, only assemblies of particles with
random anisotropy axis have been studied experimentally.
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Since the resonance field depends strongly on the easy axis
of the particle relative to the applied fields, the experimen-
tally observed FMR lines are superpositions of a large num-
ber of different lines, resulting in a large broadening of the
resulting FMR signal. In this case the width of the measured
resonance line at zero temperature is determined primarily by
the strength of the anisotropy energy and eventually its dis-
tribution and not so much by the damping parameter « en-
tering the LLG equation. Finite temperatures again lead to
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line shifts and an additional broadening of the resonance
line. A study of these effects is under way.'3
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