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Heat flow in nonlinear molecular junctions: Master equation analysis
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We investigate the heat conduction properties of molecular junctions comprising nonlinear interactions. We
find that these interactions can lead to phenomena such as negative differential thermal conductance and heat
rectification. Based on analytically solvable models we derive an expression for the heat current that clearly
reflects the interplay between internal molecular anharmonic interactions, the strength of molecular coupling to
the thermal reservoirs, and junction asymmetry. This expression indicates that negative differential thermal
conductance shows up when the molecule is strongly coupled to the thermal baths, even in the absence of
internal molecular nonlinearities. In contrast, diodelike behavior is expected for a highly anharmonic molecule
with an inherent structural asymmetry.
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I. INTRODUCTION

Understanding and controlling heat flow in nanoscale
structures is of interest both from the fundamental aspect1

and for device applications.2–5 The influential role of quan-
tum effects and geometrical constrictions in low dimensional
systems often results in fundamentally interesting behavior.6

Recent theoretical and experimental studies demonstrated
that the thermal transport properties of nanowires can be
very different from the corresponding bulk properties.7,8 In
the low temperature ballistic regime the phonon thermal con-
ductance of a one-dimensional �1D� quantum wire is quan-
tized, with g=�2kB

2T /3h as the universal quantum conduc-
tance unit,7 where kB and h are the Boltzmann and Planck
constants, respectively, and T is the temperature. Reflections
from the boundaries and disorder in the wire can be further
treated by considering a Landauer type expression for the
heat current ��=1�7,9,10

J =� d��T����nL��� − nR���� . �1�

This relationship describes energy transfer between two �left
�L�, right �R�� thermal reservoirs maintained at equilibrium
with the temperatures TL and TR, respectively, in terms of the
temperature independent transmission coefficient T��� for
phonons of frequency �. Here nK���= �e�K�−1�−1; �K

=1/kBTK �K=L ,R�, is the Bose-Einstein distribution charac-
terizing the reservoirs. This expression assumes the absence
of inelastic scattering processes, and the two opposite pho-
non flows of different temperatures are out of equilibrium
with each other. This leads to an anomalous transport of heat,
where �classically� the energy flux is proportional to the tem-
perature difference, �T=TL−TR, rather than to the tempera-
ture gradient �T as asserted by the Fourier law of conduc-
tivity

J = − KA � T . �2�

In this equation A is the cross section area normal to the
direction of heat propagation and K is the coefficient of ther-
mal conductivity.

Heat conductance experiments on short molecules or

highly ordered structures provide results consistent with the
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Landauer expression. A micron length individual carbon
nanotube conducts heat ballistically without showing signa-
tures of phonon-phonon scattering for temperatures up to
300 K.11,12 Intramolecular vibrational energy flow in bridged
azulene-anthracene compounds could be explained by as-
suming ballistic energy transport in the chain connecting
both chromophores.13 In contrast, calculations of heat flow
through proteins show substantial contribution of anhar-
monic interactions leading to the diffusion of energy, and to
an enhancement of the energy current in comparison to the
�artificial� purely harmonic situation.14

An outstanding problem in statistical physics is to find out
the necessary and sufficient conditions for attaining the nor-
mal �Fourier� law of heat conductivity �2� in low dimen-
sional systems. While classical dynamical systems were in-
tensively investigated in the last fifty years, usually by means
of computer simulations,15–19 there is also an ongoing effort
in deriving the Fourier law from quantum dynamics. In a
series of papers Michel et al. had recently investigated heat
conductance in modular quantum systems, e.g., spin chains,
within the level of Lindblad theory, and later by using pure
Schrödingerian dynamics, demonstrating normal heat con-
duction for a large class of systems’ parameters.20–23 Similar
results were presented in Ref. 24 using the Green-Kubo for-
mula for thermal conductivity.25 For quantum spin chains it
was numerically demonstrated that the Fourier law holds in
correlation with the onset of quantum chaos.26

These studies suggest that one of the crucial requirements
for showing normal transport in molecular chains is that the
molecular potential energy constitutes anharmonic interac-
tions.27 Nonlinear interactions are also a tool for controlling
heat flow in molecular junctions with potential technological
applications, e.g., a thermal diode28–30 and a thermal transis-
tor.31 We have recently demonstrated that when nonlinear
interactions govern heat conduction, the heat current is
asymmetric for forward and reversed temperature biases,
provided the junction has some structural asymmetry.30

In this paper we generalize the model developed in Ref.
30, and present a comprehensive analysis of the heat conduc-
tion properties of molecular junctions taking into account
nonlinear interactions in the system. Our treatment is done at
the level of the master equation for the vibrational states

occupation, assuming dephasing processes die out at the rel-

©2006 The American Physical Society-1

http://dx.doi.org/10.1103/PhysRevB.73.205415


DVIRA SEGAL PHYSICAL REVIEW B 73, 205415 �2006�
evant timescale for transport. We discuss the influence of the
following effects on heat flow through the junction: �i� inter-
particle potential, specifically the degree of molecular anhar-
monicity, �ii� molecule-thermal reservoirs contact interac-
tions, and �iii� junction asymmetry with respect to the L and
R ends. We derive an exact analytic expression for the heat
current that clearly reflects the role of each of these factors in
determining phonon dynamics. More specifically, we analyze
the necessary conditions for demonstrating negative differen-
tial thermal conductance �NDTC� and diodelike behavior.

The paper is organized as follows. Section II presents our
model system. Section III begins with a fully harmonic
model and shows that it satisfies the Landauer formula. We
then proceed and show that an asymmetric anharmonic mol-
ecule linearly coupled to thermal reservoirs, can rectify heat.
Section IV further presents strong coupling models that ex-
hibit NDTC. Section V provides concluding remarks.

II. MODEL

The model system consists of a molecular unit connecting
two thermal reservoirs left �L� and right �R� of inverse tem-
peratures �L=TL

−1 and �R=TR
−1, respectively. Henceforth we

take the Boltzmann constant as kB=1. The general Hamil-
tonian includes three contributions: the molecular part �M�,
the two reservoirs �B�, and the system-bath interaction �MB�

H = HM + HB + HMB. �3�

For simplicity we assume that heat transfer is dominated by
a specific single mode. The molecular term in the Hamil-
tonian is therefore given by

HM = �
n=0

N−1

En�n�	n�; En = n�0, �4�

where �0 is the frequency of the molecular oscillator ��

1�. We shall consider two situations: harmonic model, and
a two-level system �TLS� that simulates a highly anharmonic
vibrational mode. For a harmonic molecule N is taken up to
infinity. Strong anharmonicity is enforced by limiting n to
0,1. We emphasize that in our model molecular anharmonic-
ity is included only by truncating the spectrum of the single
molecular mode. We do not include other phonon-phonon
scattering processes, e.g., umklapp processes, that can lead to
normal conductivity as in the Peierls model.32

The molecular mode is coupled either linearly �weakly� or
nonlinearly �strongly� to the L and R thermal baths repre-
sented by sets of independent harmonic oscillators

HB = HL + HR; HK = �
j�K

� jaj
†aj; K = L,R . �5�

aj
†, aj are boson creation and annihilation operators associ-

ated with the phonon modes of the harmonic baths. The L
and R thermal baths are not coupled directly, only through
their interaction with the molecular mode. We use the fol-
lowing model for the molecule-reservoir interaction
205415
HMB = �
n=1

N−1

�B�n − 1�	n� + B†�n�	n − 1���n , �6�

where B are bath operators. This model assumes that transi-
tions between molecular levels occur due to the environment
excitations. Note that in general this interaction does not
need to be additive in the thermal baths, i.e., we may con-
sider situations in which B�BL+BR, see Sec. IV.

Under the assumption of weak system-bath interactions
and when going into the Markovian limit, the probabilities
Pn to occupy the n state of the molecular oscillator are found
to satisfy the master equation33

Ṗn = − �nkd + �n + 1�ku�Pn + �n + 1�kdPn+1 + nkuPn−1, �7�

where the occupations are normalized �nPn=1, and kd and ku
are the vibrational relaxation and excitation rates, respec-
tively. In second order perturbation theory the relaxation rate
is given by the Fermi golden rule, adjusted here to include
two independent thermal baths

kd =
2�

QLQR
�
l,r

�
l�,r�

e−�L�le−�R�r�	l�,r��B�l,r��2

�	��r� + �l� − �r − �l − �0� , �8�

where l,r �l� ,r�� are initial �final� states of the L and R res-
ervoirs, respectively, and QL, QR are the partition functions
of the thermal baths. We can write the delta function in its
Fourier representation and get

kd =
1

QLQR
�
l,r

�
l�,r�

e−�L�le−�R�r�
−





d�e−i��l�+�r�−�l−�r−�0��

�	l,r�B†�l�,r��	l�,r��B�l,r� . �9�

Next we use of the Heisenberg representation of the bath
operators B†���=eiHB�B†e−iHB� and the completeness relation
I= �k�	k� �k= l� ,r��, and obtain the standard expression for the
relaxation rate

kd = �
−





d�ei�0�	B†���B�0�� . �10�

Similar analysis leads to the excitation rate

ku = �
−





d�e−i�0�	B���B†�0�� . �11�

In both expressions the average is done over the baths ther-
mal distributions, irrespective of the fact that it may involve
two distributions of different temperatures. In Sec. IV we
demonstrate that Eq. �7� and the corresponding rates �10� and
�11� can be also utilized in the strong molecule-baths inter-
action limit.

A useful concept in the following discussion is the notion
of an effective molecular temperature. It can be defined
through the relative population of neighboring molecular

levels
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TM 
 −
�0

ln�Pn+1/Pn�
. �12�

At steady state this ratio does not depend on n, see Eq. �7�.
We show below that the molecular temperature is given in
terms of the reservoirs temperatures weighted by the
molecule-bath coupling strengths.

Given the reservoirs temperatures TL and TR, we can de-
fine two other related parameters: the temperature difference
�T=TL−TR and the average temperature Ta= �TL+TR� /2.
The temperature difference can be experimentally imposed
in various ways. Here we consider two situations: We may
fix the temperature at the left reservoir while varying the
temperature at the right side

�A� TL = Ts, TR = Ts − �T . �13�

For the same temperature difference we can also build a
symmetric situation where the temperatures of both reser-
voirs are equally shifted

�B� TL = Ts + �T/2, TR = Ts − �T/2. �14�

The main difference between these two situations is that the
average temperature is decreasing steadily with �T in the
first case, while it is constant �Ts� in �B�. We will show be-
low that these boundary conditions determine the effective
molecular temperature which implies on the conduction
properties of the system. Next we present the model Hamil-
tonians in the weak and strong molecule-bath interaction
limits for either purely harmonic or a TLS molecular mode,
and discuss the implications on the junction thermal conduc-
tance.

III. WEAK SYSTEM-BATH COUPLING

We begin by analyzing the heat conduction properties of a
molecule coupled linearly to two thermal reservoirs of dif-
ferent temperatures.30 The Hamiltonian is given by Eqs.
�3�–�6� with linear �harmonic� system-bath interactions

HMB = �
n=1

N−1

�B�n − 1�	n� + B†�n�	n − 1���n;

B = BL + BR, �15�

where the bath operators BK satisfy

BK = �
j�K

�̄ jxj;

xj = �2� j�−1/2�aj
† + aj�; K = L,R . �16�

We restrict ourselves to the weak system-bath coupling re-
gime, namely, we assume that the energy shift due to the
coupling is small in comparison to the bare molecular vibra-

tional energy, � j
�̄ j

2

� j
2 
�0.10 We can therefore apply the master

equation �7� on the present model. The rate constants �10�
and �11� are additive in the L and R reservoirs, since no
correlations persist between the thermal baths

kd = kL + kR, ku = kLe−�L�0 + kRe−�R�0, �17�
with

205415
kK = �K��0��1 + nK��0��; K = L,R . �18�

Here nK���= �e�K�−1�−1, �K���= �

2m�2 � j�K� j
2	��−� j�, and

� j = �̄ j
�2m�0,30 where m and �0 are the molecular oscillator

mass and frequency, respectively.
The heat conduction properties of this model are obtained

from the steady state solution of Eq. �7� with the rates speci-
fied by Eqs. �17� and �18�. The steady-state heat flux calcu-
lated, e.g., at the right contact, is given by the sum

J = �0�
n=1

N−1

n�kRPn − kRPn−1e−�R�0� , �19�

where positive sign indicates current going from left to right.
In this expression the first term denotes the energy flux going
out of the molecular mode into the R reservoir. The second
term provides the oppositely going current from the R reser-
voir into the system. The current could be equivalently cal-
culated at the L contact.

A. Harmonic molecule

For the harmonic model �N→
�, putting Ṗn=0 in Eq. �7�,
and searching a solution of the form Pn�yn we get a qua-
dratic equation for y whose physically acceptable solution is

y =
kLe−�L�0 + kRe−�R�0

kL + kR
, �20�

which leads to the normalized state population

Pn = yn�1 − y� . �21�

Using Eq. �18� we obtain the heat current �19�

J = �0
�L�R

�L + �R
�nL − nR� . �22�

The distribution functions nK �K=L ,R� are evaluated at the
molecular frequency �0 unless otherwise mentioned. In the
classical limit �0 /TK
1 �K=L ,R�, the current reduces to

J =
�L�R

�L + �R
�TL − TR� . �23�

This is a special case �with T���=�L�R��L+�R�−1	��−�0�
consistent with our resonance energy transfer assumption�34

of the Landauer expression, �1�. It is also consistent with the
standard expression for the heat current through a perfect
harmonic chain.35 Note that there is no need to introduce
here the concept of the molecular temperature TM.

We emphasize on three important features of this result.
�i� The heat current depends �classically� on the temperature
difference between the two reservoirs. �ii� The current is the
same when exchanging �L by �R, i.e., rectification cannot
take place. �iii� The system cannot show the NDTC behavior,
i.e., it is impossible to observe a decrease of the current with
increasing temperature difference. This is true considering
both models for the temperature drop—A and B, �13� and
�14�, irrespective of the system symmetry. We can verify it
by studying the �T derivative of the current �22�
-3
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�J

��T
�

�nL

��T
−

�nR

��T
=

�nL

��T
+

�nR

��− �T�
. �24�

Since the term

�nL

��T
=

�0e�L�0

TL
2�e�L�0 − 1�2

�TL

��T
�25�

is always positive �or zero�, and similarly the second right
hand side term, NDTC cannot show up in the fully harmonic
model, and the heat current increases monotonically with the
temperature difference.

B. Anharmonic molecule

We proceed to the case of a highly anharmonic molecule
coupled—possible asymmetrically—but linearly, to two ther-
mal reservoirs of different temperatures. We simulate strong
anharmonicity by modeling the molecular mode by a two
levels system �TLS�. The Hamiltonian for this model and the
resulting rates are the same as presented throughout Eqs.
�3�–�19�, except that we take n=0,1 only. Following Eqs.
�7�–�11� we obtain the steady state levels population

P1 =
ku

ku + kd
; P0 =

kd

ku + kd
. �26�

We substitute it into Eq. �19� with N=2 and get for the heat
current30

J = �0
�L�R�nL − nR�

�L�1 + 2nL� + �R�1 + 2nR�
. �27�

Next we calculate the molecular temperature TM in the weak
coupling-TLS case by substituting the population �26� into
Eq. �12� using Eqs. �17� and �18�. In the classical limit this
results in

TM =
�LTL + �RTR

�L + �R
. �28�

We can now study the implications of the different models
for the temperature bias, Eqs. �13� and �14�, on the conduc-
tance: In model A the molecular temperature decreases
monotonically with the temperature difference

TM
�A� = Ts − �T

�R

�L + �R
. �29�

In model B we find

TM
�B� = Ts +

�T

2

��L − �R�
�L + �R

, �30�

which implies that for a symmetric ��L=�R� system, the mo-
lecular temperature is constant, whereas in the asymmetric
situation it can either increase or decrease with �T, depend-
ing on the sign of �L−�R.

In terms of the molecular temperature �Eq. �28��, going
into the classical limit, the heat current �27� reduces into the

simple form

205415
J = �TL − TR�
�L�R

�L + �R

�0

2TM
. �31�

This relationship differs from the harmonic expression �23�
by its implicit dependence on the internal molecular tem-
perature. If we still try to fit this expression into the Land-
auer form �1�, we find that we have to define an effective
temperature dependent transmission coefficient T�� ,TL ,TR�
�1/TM	��−�0�.

In Fig. 1 we display the current �Eq. �27�� for a represen-
tative set of parameters. It increases monotonically with �T
and saturates at high temperature gaps. We can verify this
trend analytically as

�J

��T
= � �nL

��T
�1 + 2nR� −

�nR

��T
�1 + 2nL�


�
�0�L�R��L + �R�

��L�1 + 2nL� + �R�1 + 2nR��2 � 0, �32�

which indicates that NDTC can not take place. However, Eq.
�27� implies that the system can rectify heat current, i.e., the
current can be different �in absolute values� when exchang-
ing the reservoirs temperatures. Following, Ref. 30 defining
the asymmetry parameter � such that �L=��1−��; �R

=��1+�� with −1���1 we get

�J 
 J�TL = Th;TR = Tc� + J�TL = Tc;TR = Th�

=
�0���1 − �2��nL − nR�2

�1 + nL + nR�2 − �2�nL − nR�2 . �33�

Here Tc �Th� relates to the cold �hot� bath. Equation �33�
implies that for small �T=TL−TR ,�J grows as �T2, and that
the current is larger �in absolute value� when the cold bath is
coupled more strongly to the molecular system. We exem-
plify this behavior in the inset of Fig. 1.

FIG. 1. Conduction properties of a TLS system in the weak
coupling limit. �0=150 meV �full�, 100 meV �dashed�, 25 meV
�dotted�. Ts=400 K �model A�, �K=1.2 meV. Inset: Rectifying be-
havior of this model, �0=25 meV, �=0.75 and TL=400 K, TR

=TL−�T �full�; TR=400 K, TL=TR−�T �dashed�.
-4
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We found therefore that a system consisting of an anhar-
monic molecular mode coupled linearly �harmonically� and
asymmetrically to two thermal reservoirs of different tem-
peratures can rectify heat, though it cannot manifest the
NDTC effect. NDTC requires nonlinear interactions with the
thermal baths, which may result in an effective nonlinear
temperature dependent molecule-bath coupling term, see
Sec. IV. Therefore, there is no direct correspondence between
these two phenomena.

C. General expression for the heat current

We can generalize the harmonic �23� and anharmonic �31�
results and revise the current in the weak coupling limit �W�
as

JW = �0
�L�R

�L + �R

�TL − TR�
TM

fA,H, �34�

where

fA,H = �1/2, anharmonic TLS case,

TM/�0, harmonic case.
� �35�

For an intermediate anharmonicity we expect this function to
attain an intermediate value 1/2� fA,H�TM /�0. Note that
fA,H can be retrieved by going into the classical limit of the
function �exp��0 /TM�±1�−1. Here the TLS case takes the
plus sign, and the harmonic model acquires the minus. It can
be therefore interpreted as an effective molecular occupation
factor.

We can now clearly trace the influence of the different
factors on the heat conductance. The thermal current is given
by multiplying three terms. �i� A symmetric prefactor that
includes the influence of the system-baths coupling. �ii� The
factor �0 /TM which includes internal molecular properties:
frequency and effective temperature. �iii� The molecular oc-
cupation factor fA,H that varies between 1/2 for the strictly
anharmonic system and TM /�0 in the harmonic case. As we
show next the energy current has the same structure when
system-bath interactions are strong.

IV. STRONG SYSTEM-BATH COUPLING

We turn now to the situation where the molecular mode is
strongly coupled to the thermal reservoirs. As before, we
discuss two limits, the harmonic case, and the anharmonic
TLS situation. In both limits the model Hamiltonian includes
the following terms, as in Eqs. �3�–�6�,

H = �
n=0

N−1

En�n�	n� + �
n=1

N−1

�nVn−1,n�n − 1�	n�ei��n−�n−1� + c.c.

+ �
j�L,R

� jaj
†aj , �36�

where En=n�0, �n=�n
L+�n

R, and �n
K= i� j�K�n,j�aj

†−aj� �K
=L ,R�. In the Appendix we demonstrate that this model
Hamiltonian equivalently represents a displaced molecular
mode coupled nonlinearly to two thermal reservoirs. The co-
efficients � are the effective system-bath interaction pa-
n,j

205415
rameters that depend on the level index and the reservoir
mode. Strong coupling is imposed by assuming � j�n,j

2 � j
��0, for details see the Appendix. The Hamiltonian �36� is
similar to that defined in Eqs. �4�–�16�, except that the L and
R system-baths couplings appear as multiplicative rather than
additive factors in the interaction term, implying inseparable
transport at the two contacts.30 The dynamics is still readily
handled. For small V �the “nonadiabatic limit”� the Hamil-
tonian �36� leads again to the rate equation �7� with

kd = �V�2C��0�; ku = �V�2C�− �0� , �37�

where

C��0� = �
−





dtei�0tC̃�t� �38�

and

C̃�t� = 	ei��n�t�−�n−1�t��e−i��n�0�−�n−1�0���

= 	ei��n
L�t�−�n−1

L �t��e−i��n
L−�n−1

L ��L

� 	ei��n
R�t�−�n−1

R �t��e−i��n
R−�n−1

R ��R. �39�

This may be evaluated explicitly to produce

C̃�t� = C̃L�t�C̃R�t�; C̃K�t� = exp�− �K�t�� , �40�

with

�K�t� = �
j�K

��n,j − �n−1,j�2��1 + 2nK�� j�� − �1 + nK�� j��e−i�jt

− nK�� j�ei�jt� . �41�

Note that we have omitted the n dependence from the rates
above. This is supported by �i� taking all the interlevels cou-
plings to be equal, i.e., �Vn−1,n�=V and �ii� assuming that
��n,j −�n−1,j�2 is the same for all n, e.g., �n,j �n, see the Ap-
pendix.

Explicit expressions may be obtained using the short time
approximation �valid for � j�K��n,j −�n−1,j�2�1 and/or at
high temperature� whereupon ��t� is expanded in powers of
t keeping terms up to order t2. This leads to

C��0� =� 2�

�DL
2 + DR

2�
exp�− ��0 − EM

L − EM
R �2

2�DL
2 + DR

2� 
 , �42�

where

EM
K = �

j�K

��n,j − �n−1,j�2� j ,

DK
2 = �

j�K

��n,j − �n−1,j�2� j
2�2nK�� j� + 1� . �43�

EM
K can be considered as the reorganization energy associated

with the structural distortions of reservoirs modes around the
isolated molecular vibration. In the classical limit ��0 /TK

→0�, DK
2 =2TKEM

K .
Following Ref. 30 we calculate the steady state heat cur-
rent utilizing

-5
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J = �V�2�
n=1

N−1 �
−





d���CR���CL��0 − ��Pn

− CR�− ��CL�− �0 + ��Pn−1�n , �44�

where

C��0� = �
−





d�CL��0 − ��CR��� ,

CK��� =
1

�2EM
K TK

e−�� − EM
K �2/4TKEM

K
. �45�

Equation �44� views the process �n�→ �n−1� in which the
molecular mode looses energy �0 as a combination of pro-
cesses in which the system gives energy � �or gains it if �
�0� to the right bath and energy �0−� to the left one, with
probability nCL��0−��CR���. A similar analysis applies to
the process �n−1�→ �n�.

A. Harmonic molecule

The levels population of an harmonic molecule �N→
�
are calculated from the steady state solution of Eq. �7�, lead-
ing to Pn=yn�1−y�, y=ku /kd, with the rates conveyed by
Eqs. �37�–�43�. We compute the heat current �44� by first
making the summation over n

�
n=0




nPn =
C�− �0�

C��0� − C�− �0�
,

�
n=0




nPn−1 =
C��0�

C��0� − C�− �0�
, �46�

then performing the integrals over frequency

J =
2���V�2EM

L EM
R �TL − TR�

�EM
L TL + EM

R TR�3/2

� e−��0 − �EM
L + EM

R ��2/4�EM
L TL+EM

R TR� � fH, �47�

with

fH = �e�0�EM
L +EM

R �/�EM
L TL+EM

R TR� − 1�−1. �48�

Before we discuss the heat conduction properties of this
model we examine the anharmonic system.

B. Anharmonic molecule

The anharmonic model is described by the Hamiltonian
�36� with n=0,1. The steady state current is therefore ob-
tained by reducing Eq. �44� to

J = �V�2�
−





d���CR���CL��0 − ��P1

− CR�− ��CL�− �0 + ��P0� . �49�

Here P =C�� � / �C�� �+C�−� �� and P =1− P are estab-
0 0 0 0 1 0
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lished from the steady state solution of Eq. �7� with the rates
given by Eq. �37�. By following the same steps as for the
harmonic system, the heat current �49� is obtained as30

J =
2���V�2EM

L EM
R �TL − TR�

�EM
L TL + EM

R TR�3/2

� e−��0 − �EM
L + EM

R ��2/4�EM
L TL+EM

R TR� � fA, �50�

with the occupation factor

fA = �e�0�EM
L +EM

R �/�EM
L TL+EM

R TR� + 1�−1. �51�

C. General expression for the heat current

Next the harmonic �47� and anharmonic results �50� are
reduced to a common form. We begin by evaluating the in-
ternal molecular temperature �12�. In the present strong cou-
pling case, for both harmonic and anharmonic molecular
modes, it is given by �see Eq. �37��

e−�0/TM 
 Pn+1/Pn =
C�− �0�
C��0�

. �52�

Using Eq. �42� we obtain the explicit expression

TM =
DL

2 + DR
2

2�EM
L + EM

R �
——→
�0/TK→0 �EM

L TL + EM
R TR�

�EM
L + EM

R �
. �53�

The effective temperature in the strong coupling limit is
therefore given by the algebraic average of the L and R tem-
peratures weighted by the coupling strengths, here conveyed
by the reservoirs reorganization energies.

In terms of this quantity we write a general expression for
the current in the strong �S� coupling limit as

JS = �V�2� 4�

TM�EM
L + EM

R �
e−��0 − EM

L − EM
R �2/4TM�EM

L +EM
R �

�
EM

L EM
R

EM
L + EM

R

TL − TR

TM
� fA,H, �54�

where

fA,H 
 �e�0�EM
L +EM

R �/�EM
L TL+EM

R TR� ± 1�−1 = �e�0/TM ± 1�−1. �55�

The plus sign relates to the anharmonic case, the minus
stands for the harmonic situation.

We analyze next the conduction properties of this model.
Diodelike behavior is expected when EM

L �EM
R , since then

the resulting molecular temperature TM is not the same when
exchanging TL with TR. Note that in the present strong �non-
linear� coupling limit the molecule does not need to be
strictly anharmonic for demonstrating this behavior, in con-
trast to the weak coupling situation.

NDTC can also take place in the system, depending on
the system asymmetry and the specific model for the applied
temperature gradient. When the temperature bias is applied
symmetrically at the L and R sides �model B, Eq. �14��,
NDTC occurs for an asymmetric EM

L �EM
R system. In model

A the molecular temperature depends on �T even for a sym-

metric junction, providing NDTC.
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Figure 2 depicts an example of NDTC behavior in the
system. The left reservoir is held at a constant temperature,
while the temperature of the R reservoir is decreasing. We
find that up to �T=TL−TR�100 K the current increases
with the temperature bias, while above it, i.e., for lower TR,
the current goes down, and even diminishes �dotted line�.
Figure 3 shows that NDTC takes place in the strong interac-
tion limit, for EM

K ��0 �dotted�. For weaker system-bath in-
teractions the NDTC effect becomes less significant
�dashed�, while it completely disappears when EM

K ��0
�full�.

We can also investigate the effect of asymmetrical con-
tacts. We define the asymmetry parameter � such as EM

L

=EM�1−��, EM
R =EM�1+��, 0���1. Figure 4 presents the

heat current when ��0. �a� For small � the current is almost
the same for both forward and reversed operation modes. �b�
At intermediate � values we find that for TL=100 K, TR
=300 K there is a maximal heat flow �dashed�, while for the

FIG. 2. Conduction properties of the TLS system in the strong
coupling limit TR=TL−�T �model A�, EM

K =300 meV �K=L ,R�, V
=1 meV, �0=10 meV, TL=500 K �full�, TL=400 K �dashed�, TL

=300 K �dotted�.

FIG. 3. Controlling NDTC by modifying system-baths interac-
tion strengths for a TLS model in the strong coupling limit. TR

=TL−�T �model A�, TL=300 K, V=1 meV, �0=10 meV, EM
K =10

K K
�full�, EM =100 �dashed�, EM =150 �dotted�.
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reversed operation �TR=100 K, TL=300 K� heat current is
blocked �full�. �c� For a highly asymmetric system heat flows
predominantly in one direction.

We can further formulate a general expression for the cur-
rent that holds in both strong and weak interaction regimes
and for either harmonic or anharmonic systems. For conve-
nience, we copy here the weak �W� linear coupling result
�34�

JW = �0
�L�R

�L + �R

�TL − TR�
TM

fA,H. �56�

Comparing it to Eq. �54� guides us to the compact expression

J = C
fA,H

TM
�T . �57�

Here C includes the contact contribution, which is different
in the weak and strong coupling regimes. It may depend on
the molecule-baths microscopic couplings, molecular vibra-
tional frequency and the reservoirs temperatures. It is not
influenced by the degree of molecular harmonicity which
affects only the occupation factor fA,H. The temperature TM
provides the effective temperature of the molecular system
that is irrelevant in the fully harmonic case. We can therefore
clearly distinguish in this expression between the role of the
system harmonicity and the effect of molecule-bath interac-
tions.

V. CONCLUSIONS

Using a simple theoretical model we have investigated the
effect of nonlinear interactions on heat flow through molecu-
lar junctions. Our general expressions for the heat current
�34� and �54� clearly manifest the interplay between the sys-
tem anharmonicity, system-bath coupling and junction asym-

FIG. 4. Rectification in the strong coupling limit for a TLS
system. EM =300 meV, V=1 meV, �0=10 meV, TL=300 K, TR

=TL−�T �full�; TR=300 K, TL=TR−�T �dashed�.
metry. We have found that nonlinear interactions can lead to
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phenomena such as negative differential thermal conduc-
tance and heat rectification. NDTC takes place when the mo-
lecular mode is strongly coupled to the thermal environment.
In contrast, diodelike behavior originates from the combina-
tion of substantial molecular anharmonicities with a struc-
tural asymmetry. These effects might be observed in
mesoscopic-scale magnetic systems.36 Figure 5 presents an
overview of the different regimes studied, and the nonlinear
effects observed in each case.

We would also like to draw an analogy between the non-
linear behavior discussed in this paper and some nonlinear
effects discovered in molecular level electron carrying sys-
tems: The negative differential resistance observed in mo-
lecular films of C60 could be explained due to a voltage de-
pendent tunneling barrier.37 Rectification of electron current
was theoretically exhibited in one-dimensional asymmetric
electronic conductors with screened electron-electron
interactions.38

Control of heat flow through molecules by employing
nonlinear interactions might be useful for different applica-
tions. In molecular electronic local heating of nanoscale de-
vices might cause structural instabilities undermining the
junction integrity.39 Engineering good thermal contacts and
cooling of the the junction40 are necessary for a stable and
reliable operation mode. Control of vibrational energy trans-
fer in molecules affects chemical processes, e.g., reaction
pathways, bond breaking processes, and folding dynamics.41

Finally, we propose building technological devices based on
heat flow, in analogy with electron current devices.42
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APPENDIX: MICROSCOPIC MODEL FOR THE STRONG
COUPLING HAMILTONIAN

The strong coupling Hamiltonian �36� can be derived
from the following microscopic model:

FIG. 5. An overview of the parameter ranges providing negative
differential thermal conductance �NDTC� and diodelike behavior.
The x axis �weak and strong coupling� relates to the system-bath
interaction model. In order to obtain rectification the system should
be asymmetric with respect to the L and R ends.
205415
H = �
n=0

N−1

n�0�n�	n� + �
j�L,R

� j
2

2
�xj − �

n=0

N−1
n�n,j

� j
2 �n�	n��2

+ �
n=1

N−1

�nVn,n−1�n�	n − 1� + �nVn−1,n�n − 1�	n� + �
j�L,R

pj
2

2
,

�A1�

which describes a forced oscillator of frequency �0 strongly
interacting with the L and R thermal baths. The nonlinear
contributions are concealed in the second element of �A1�
providing high order terms such as �xjx

2, with x as the mo-
lecular coordinate. Here xj and pj are the displacement and
momentum of the reservoirs harmonic modes with frequency
� j, �n,j is the system-bath coupling parameter and Vn,n−1 is
the effective interlevel matrix element. We can expand the
quadratic term in Eq. �A1� and obtain

H = �
n=0

N−1

n��0 − �
j�L,R

xj�n,j��n�	n� + �
n=1

N−1

�nVn,n−1�n�	n − 1�

+ �nVn−1,n�n − 1�	n� + �
j�L,R

� jaj
†aj

+ �
n=0

N−1

�
j�L,R

n2�n,j
2

2� j
2 �n�	n� . �A2�

Here xj = �aj
†+aj� /�2� j and pj = i�� j /2�aj

†−aj�. Strong cou-
pling is imposed by assuming the energy shift due to the
system-bath coupling is large, i.e., � j�n2�n,j

2 /2� j
2���0. Use

of the small polaron transformation,43 H̃=UHU−1, leads to

H̃ = �
n=0

N−1

n�0�n�	n� + �
n=0

N−1

�
j�L,R

n2�n,j
2

2� j
2 �n�	n� + Hshift

+ �
n=1

N−1

�nVn−1,n�n − 1�	n�ei��n−�n−1� + c.c.

+ �
j�L,R

� jaj
†aj , �A3�

where

U = �n=0
N−1Un, Un = exp�− i�n�n�	n�� , �A4�

and where

�n = �n
L + �n

R, �n
K = i �

j�K

�n,j�aj
† − aj� �K = L,R� ,

�n,j = �2� j
3�−1/2n�n,j . �A5�

The term

Hshift = −
1

2 �
n=0

N−1

�
j

n2�n,j
2

� j
2 �n�	n� �A6�

exactly cancels the �n2 term in Eq. �A3�, and we finally
recover the strong coupling Hamiltonian �36�.
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