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We study the integer and fractional quantum Hall effect on a honeycomb lattice at half-filling �graphene� in
the presence of disorder and electron-electron interactions. We show that the interactions between the delocal-
ized chiral edge states �generated by the magnetic field� and Anderson-localized surface states �created by the
presence of zig-zag edges� lead to edge reconstruction. As a consequence, the point contact tunneling on a
graphene edge has a nonuniversal tunneling exponent, and the Hall conductivity is not perfectly quantized in
units of e2 /h. We argue that the magnetotransport properties of graphene depend strongly on the strength of
electron-electron interactions, the amount of disorder, and the details of the edges.
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I. INTRODUCTION

Recent progress in development of gate and magnetic
field controlled, two-dimensional �2D�, graphitic devices1,2

has not only opened doors for carbon microelectronics, but
also renewed the interest in the study of strongly interacting,
low dimensional, electronic systems. Graphene is a 2D car-
bon material with a honeycomb lattice and one electron per
� orbital �half-filled band�, whose elementary excitations are
Dirac electrons that reside at the corners of the Brillouin
zone. These excitations have linear dispersion relation,
�±�k�= ±vF�k�, with a characteristic Dirac-Fermi velocity vF.
All electronic properties of graphene are determined by the
physics of Dirac fermions which are quite anomalous when
compared to the ones found in ordinary electrons: the ab-
sence of dynamical screening,3 a non-Fermi liquid quasipar-
ticle lifetime,4 and anomalous scattering by impurities.5

Moreover, in the presence of strong disorder, graphite
samples �which are obtained from stacking of graphene lay-
ers� become ferromagnetic6,7 indicating the important inter-
play between disorder and electron-electron interactions in
these materials. We have recently shown that because of the
low dimensionality, disorder, particle-hole asymmetry, and
strong Coulomb interactions, graphene presents the phenom-
enon of self-doping in which extended defects, such as dis-
locations, disclinations, edges, and microcracks, shift the
chemical potential away from the Dirac point to produce
electron or hole pockets.8 The presence of localized disorder,
such as vacancies and adatoms, leads also to nontrivial
physical effects that must be understood in order to interpret
the data correctly.

In this paper we investigate transport properties of
graphene under high magnetic fields in the Hall geometry
shown in Fig. 1. When a high magnetic field, B, is applied to
a 2D material, the electronic bulk develops Landau levels
which in the case of Dirac fermions have energy �n

= ±vFlB
−1�n, where n is a positive integer, lB=��0 /B is the

cyclotron radius, and �0=ch /e is flux quanta. Thus the bulk
of the system is gapped by the cyclotron energy scale, ��c
=�2vF� / lB �which is much larger than the Zeeman energy,

g�BB, where g�2 and �B the Bohr magneton9�.
In the integer quantum Hall effect �IQHE�, the bulk states

are gapped and localized due to the disorder, and the elec-
tronic conduction in a Hall bar occurs through its edges.10 In
the case of graphene, due to the Dirac fermion nature of its
carriers, the Hall conductivity is given by8,11

�IQHE = �2N + 1�
2e2

h
, �1�

where N is an integer, and e is the electron charge. Besides
supporting bulk states a graphene Hall bar, such as the one
shown in Fig. 1, also supports surface states.12,13 The result
�1� is only valid if the surface states do not contribute to the
conduction.

In this paper we study the integer and fractional quantum
Hall effect �FQHE� in graphene taking into account the edge
and surface states of a graphene Hall bar. We show that even
in the presence of disorder, when the surface states become
localized, they have a direct effect in the magnetotransport.
We show that the quantization of the conductivity, as given
in Eq. �1�, is not exact by the presence of surface states and
becomes dependent on the details of the sample such as the
amount of disorder. Our prediction for the FQHE can be
verified experimentally in graphitic devices.1,2

The paper is organized as follows: in Sec. II we present
the Hamiltonian for the problem and show how surface and

FIG. 1. �Color online� Perspective view of the Hall geometry
used in our calculations with periodic boundary conditions in one
direction and zig-zag edges in the other. The magnetic field B is
applied perpendicular to the graphene plane.
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edge Hall modes originate in a graphene Hall bar; in Sec. III
we discuss the theory for the edge modes; Sec. IV contains
the theory for the surface states in the presence of disorder
and electron-electron interactions; in Sec. V we discuss the
Coulomb interaction between edge and surface states and the
phase diagram of a graphene Hall edge in the presence of
disorder and electron-electron interactions; Sec. VI contains
our conclusions. We have also included one appendix with
the details of the calculations.

II. THE MODEL

The kinetic energy of electrons in graphene is described
by the Hamiltonian �from now on, we use units such that �
=1=kB�:

Hkinetic = − t �
�;�i,j�

ci,�
† cj,� + t� �

�;��i,j��
ci,�

† cj,� + H.c., �2�

where ci,� �ci,�
† � annihilates �creates� electrons at the site Ri

with spin � ��= ↑ , ↓ �, t and t� are the nearest-neighbor and
next-nearest-neighbor hopping energies, respectively. At
long-wavelengths the electronic dispersion is given by

�±�k� � 3t� ± vF�k� +
9t�a2�k�2

4
, �3�

where

vF =
3ta

2
. �4�

In the presence of a magnetic field B the electronic hopping
between sites Ri and R j is modified via the Peierls substitu-
tion, that is, we rewrite the hopping as tij exp	i	ij
 with 	ij

=2��Ri

RjA�r� ·dr /�0, where A�r� is the vector potential �A
=�
B�.

The spectra of the problem for a graphene Hall bar in the
presence of a magnetic field can be calculated exactly by
solving an eigenvalue equation.14 In Fig. 2 we show the
spectra and wave functions for a graphene Hall bar that is
periodic along the direction parallel to the edges and 300
lattice spacing wide, such as the one shown in Fig. 1, de-
scribed in the tight-binding limit with t�=0.2t in the presence
of a magnetic field such that the magnetic flux per hexagon,
�, is �=10−3�0.

One can clearly see two types of states: bulk states that
become edge states because of the finite size of the Hall bar
and a surface state localized at the edge of the sample. In the
presence of t� �that breaks particle-hole symmetry� the sur-
face mode is dispersive with a characteristic velocity:

vS � t�a , �5�

while edge states have a velocity:

vE � ta , �6�

where a��3
1.42 Å is the unit vectors length.

III. EDGE STATES

In order to study the edge states it is conceptually simple
to consider a large graphene droplet instead of a Hall bar.15

When a large magnetic field B=Bz is applied perpendicular
to the graphene, a persistent current J flows along the edge
of the droplet, being confined by an electric field E created
by the termination of the graphene droplet �see Fig. 3�. The
value of the current is given by

J = �xyz 
 E , �7�

where

FIG. 2. �Color online� Elec-
tronic spectra �top� and wave
functions �bottom� of a graphene
Hall bar as a function of the mo-
mentum k parallel to the edge. For
each bullet in the top panels �go-
ing from left to right�, we plot in
the bottom panel the wave func-
tion squared as a function of the
distance x to the edge. Note that
the two top panels represent the
same set of bands. �a� and �b�:
Surface states. �c� and �d�: Bulk
Landau levels. Energy given in
units of t and distance in units of
the lattice spacing a.

CASTRO NETO, GUINEA, AND PERES PHYSICAL REVIEW B 73, 205408 �2006�

205408-2



�xy = �
2e2

h
�8�

is the Hall conductivity. Here, �=2��B
2� is the filling fraction

of the droplet, and � is the 2D electronic density �away from
half-filling�. Notice, therefore, that the electrons will drift
along the edge with velocity v=Ec /B and, hence, the 2D
electronic density along the edge, e�x , t�=�n�x� where n�x�
is the displacement of the edge� obeys the equation

�te�x,t� − v�xe�x,t� = 0, �9�

which describes a chiral motion classically, e�x , t�=e�x
−vt��.

The classical problem can be quantized in terms of the
Fourier components of the density:

k =
1
�L
� dxeikxe�x� , �10�

where L is the circumference of the edge, by canonical com-
mutation:

k,−k�� =
�

2�
k�k,k�. �11�

The Hamiltonian of the edge waves is then simply

H =
2�v
�

�
k�0

k−k. �12�

The edge fermion operator can be constructed from the
density operators via a bosonic field, ��x�, such that

e�x� =
1

2�
�x��x� . �13�

The electron operator, �e�x�, is given by the Mandelstam
construction:

�e�x� � ei/���x�, �14�

that preserves the commutation relations between the elec-
tron and the density operators:

e�x�,�e
†�y�� = ��x − y��e

†�x� . �15�

This result indicates that the operator carries charge e, as
required. Furthermore, it is easy to show that

�e�x��e�y� = �− 1�1/��e�y��e�x� , �16�

and, thus, by the Pauli principle we must require that

� =
1

m
, �17�

where m is an odd integer. The constraint �17�, when applied
to Eq. �8�, gives the quantization of Hall conductivity. Thus
it is clear that this construction can only describe Laughlin’s
main sequence. For more complicated QHE sequences one
has to use multiple edge states.8 In this work we focus on the
case given in Eq. �17�.

It is also easy to show that

���x���0�� = − � ln�x� + const, �18�

and, hence,

��e
†�x��e�0�� � e1/�2���x���0�� �

1

xm , �19�

as expected. In terms of path integrals, the action for the 1D
chiral Luttinger liquid action reads

Sedge = �
x,t

m

4�
�t��x� − vE„�x��x�…2� , �20�

where ��x , t� is a bosonic chiral field along the edge at po-
sition x and time t.

This construction stresses the robustness of the Hall ef-
fect: the edge state being chiral in nature, cannot suffer any
backscattering. It is exactly the electron-electron backscatter-
ing interaction that creates density wave and superconduct-
ing states, and the impurity backscattering interaction that
leads to Anderson localization.16 Therefore the chiral edge
states are not influenced either by electron-electron interac-
tions or disorder. Finally we note that the exponent m is
determined entirely by the bulk of the system and has topo-
logical origin.15

In the next section we are going to show that forward
scattering interactions between chiral edge states and surface
states modify the chiral action �20� introducing instabilities
in the chiral states at finite momenta. If this is the case, it is
clear that the relation �17� or �19�� will not hold, spoiling
the perfect quantization of the Hall conductivity.

IV. SURFACE STATES AND DISORDER

The graphene surface state is also a 1D state that can be
described by a nonchiral Luttinger liquid action:16

Ssurf = �
x,t

1

2�K
�1

u
„�t��x�…2 − u„�x��x�…2� , �21�

where ��x , t� is a bosonic field at the edge,

u = vS1 − f2/�4�2vS
2��1/2 �22�

is the renormalized Luttinger liquid velocity �f is the
electron-electron forward scattering coupling constant�, and

K = 	1 − f/�2�vS��/1 + f/�2�vS��
1/2 �23�

is the Luttinger parameter that measures the decay of the
surface correlation functions.16 The surface density, s�x�, is
written as

FIG. 3. �Color online� Perspective view of edge currents, I, on a
graphene Hall bar.
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s�x� =
1

2�
�x��x� . �24�

Notice that unlike the edge mode, the surface mode is sensi-
tive to the electron-electron interactions and also disorder.

While the problem without disorder can be easily studied
theoretically17 �see below�, in most of this paper we focus on
the realistic case of a disordered edge, such as the one shown
in Fig. 4. Missing carbon atoms at the edge of a graphene
hall bar effectively “cuts” the electronic wave function and
leads to lateral confinement of the electrons. The lateral con-
finement of the electrons leads to the discretization of the
surface state energy levels, as one would have for a particle
moving in a 1D box. Hence these electronic puddles have a
characteristic excitation energy scale, or gap, of the order of

���� �
vS

�
�

t�a

�
, �25�

where � is the size of the 1D domain. This effect is clearly
seen in scanning tunneling microscopy �STM� studies of the
surface of graphite.18

The presence of disorder at the edge of the graphene Hall
bar leads to a backscattering of the surface electron states
which can be written as

SBS = �
x,t

�V�x�ei�2��x,t�+2kFx� + H.c.� , �26�

where V�x� is the scattering potential �notice that only the
2kF component of the disorder potential contributes at low
energies, and that the forward scattering part of the potential
is irrelevant�. In the presence of disorder V�x� is a random
variable with probability: PV�x���exp	−�dx�V�x��2 /V0

2
 so
that, after averaging over disorder, V�x�V*�y��disorder

=V0
2��x−y�. Hence V0 provides a measure of the amount of

disorder in the system. One possible way of dealing with Eq.
�26� is via a replica-trick.19 In this case, one has to add a new
term to the Luttinger liquid action �21�:

SBS = − V0
2�

x,t,t�
�
i,j

cos	�2�i�x,t� − � j�x,t���
 , �27�

where �i�x , t� indicates the field � in the ith replica. Notice
that this term is highly nonlocal because of the quenched
disorder. In the absence of edge modes, the full action �21�
plus �27� can be understood via a renormalization group
�RG� calculation assuming the disorder to be weak, that is,
we define a dimensionless disorder strength, D:

D �
2V0

2a2

�u2 , �28�

and obtain the RG equations19 in leading order in �:

��K−1 =
D

2
, ��D = �3 − 2K�D , �29�

where �=ln�W0 /W� is the RG scale �W is the running energy
cutoff of the bosons, W0� t� is the bare cutoff�. It is easy to
see that disorder is irrelevant if K�3/2, and it is relevant if
K�3/2, under the RG flow. Notice that from Eq. �23� we
have K�1 for repulsive interactions �f�0� and therefore the
above RG indicates that disorder always flows to strong cou-
pling, D��→��→�, and strong interactions, K��→��→0,
as expected. This result implies that the RG breaks down at
certain scale where D��*��1 and the surface states become
Anderson localized. The localization scale can be estimated
from Eq. �29� by introducing a localization length, �, so that:
�*=lnW0 / �u�−1��, and from Eq. �29� one finds

� � aD0
−1/�3−2K*�, �30�

where D0 is the bare amount of disorder in the system and
K*�K��*�. Notice that this result indicates that there is a
characteristic energy scale, Eloc, associated with the disorder

which is of the order of Eloc����vS /�� t�D0
1/�3−2K*�. Direct

comparison with Eq. �25� shows that � can be thought as the
typical size of the electronic puddles at the edge with a gap
in the energy spectrum given by Eloc.

This result indicates that the bosonic correlations at larger
distances decay exponentially with � �the time correlations
are also short ranged with a characteristic time scale �loc
�1/Eloc�� /vS�. In this case, it is reasonable to replace the
Luttinger liquid action �21� by

Ss � − �
x,t

u

2�K
� 1

�2�
2�x� + �x��x��2� , �31�

so that ���x , t���0,0���disorder���t�e−x/�, for x�� and t
��loc.

V. ELECTRON-ELECTRON INTERACTIONS AND EDGE
RECONSTRUCTION

Because the edge and the surface states are confined to a
small region in space they interact with each other via a

FIG. 4. �Color online� Schematic representation of a graphene
Hall bar with a disordered zig-zag edge and its electronic puddles
�see Ref. 18�. Squares represent missing carbon atoms, the circles’
radii represent the amplitude of the localized surface electronic
wave function and the formation of electronic puddles. The arrows
show the direction of the edge currents.
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Coulomb interaction. This interaction leads to a new term in
the problem:

Scoupling = −
�

�
�

x,t
�x��x� , �32�

where

� =
e2a

4��B
�33�

is the strength of the electron-electron coupling.

A. Clean surface states

Let us consider first the case of a clean surface state in-
teracting with a chiral edge state. The edge state is described
by the chiral Luttinger liquid Hamiltonian given by

H� = �
q�0

qvSaq
†aq, �34�

where aq �aq
†� annihilates �creates� a chiral boson with mo-

mentum q, while the surface state is described by the Hamil-
tonian:

HLL = �
q�0

qvE�bq
†bq + b−q

† b−q� + �
q�0

V̄�q��bq
†bq + b−q

† b−q� ,

�35�

where V̄�q� is the surface state forward scattering interaction.
Let us consider a generic surface-edge interaction potential,
V�q�, and the interaction Hamiltonian:

H�,LL = �
q�0

V�q�aq
†�bq

† + b−q� + aq�b−q
† + bq�� . �36�

The Hamiltonian HLL can by diagonalized via a Bogoliubov-
Valatin transformation,20 leading to new bosonic modes cq
and dq:

HLL = �
q�0

E�q��cq
†cq + dq

†dq� �37�

with E�q�=�q2vE
2 − V̄�q��2. Under the transformation the in-

teraction Hamiltonian becomes

H�,LL = �
q�0

Ṽ�q�aq
†�dq

† + cq� + aq�dq + cq
†�� , �38�

with Ṽ�q�=V�q�cosh��q�−sinh��q��, cosh�2�q�=qvF�q� /

E�q�, and sinh�2�q�= V̄�q� /E�q�. The Hamiltonian composed
by the sum of Eqs. �34�, �37�, and �38�, is the form of the
effective Hamiltonian described in Ref. 21, and can be di-
agonalized by a generalized Bogoliubov-Valatin transforma-
tion.21,23 Introducing a spinor field �†= �aq

† ,cq
† ,dq� the total

Hamiltonian reads

H = �
q�0

�†D� − �
q�0

E�q� , �39�

where D is the grand-dynamical matrix.22 The Hamiltonian
�39� has the form �apart from constant terms�

H = �
q�0

���q��q
†�q + ���q��q

†�q + ���q��q
†�q� , �40�

where, after diagonalization, the new quasiparticles operators
read

�†�T†�−1 = ��q
†,�q

†,�q� , �41�

where the matrix T has the form considered in Refs. 21 and
23.

The diagonalization of the Hamiltonian �39� amounts to
find the values of the angles �, �, and � such that the matrix
T†AT has nonzero diagonal elements only. All matrix ele-
ments of matrix A are given in the Appendix. As in Ref. 21,
the relation ���q�+���q�−���q�=qvS holds. We have
solved the eigenvalue problem for two different kinds of
electron-electron potentials: �i� a contact potential given by
V�x�=V0a��x�; and �ii� V�x�=V0 exp−��x� /a��. The disper-
sion of the bosonic modes is shown in Fig. 5. Although both
potentials are short ranged, case �ii� introduces a momentum
scale ks�1/a where the spectrum deviates significantly from
the soundlike behavior obtained with potential �i�. It is clear
from these results that although the coupling between the
edge modes and surface modes alters the dispersion at finite
wavelengths it does not lead to any instabilities in the clean
case. As we are going to show in what follows, the presence
of disorder changes this picture significantly.

B. Anderson localized surface states

If we assume the surface mode is localized as described
by Eq. �31� one can trace the surface mode completely from
the problem. In fact, using Eqs. �31� and �32� we find that the
surface mode is pinned by the edge mode:

��x,t� � − ��2Ku−1�x
2��x,t� �42�

and therefore s�x , t���x
2e�x , t�. The pinning of the surface

mode by the edge mode has a rather interesting physical
interpretation: in the presence of electron-electron interac-

FIG. 5. �Color online� Quasiparticles spectrum for the two po-
tentials considered in the text: �i� dashed line; and �ii� solid line.
The parameters are V1=1.1, V2=1.2, V3=1.3, a1=10.1, a2=10.2,
a3=10.3, vS=2.2, and vE=1.
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tions the surface mode is dragged by the edge mode in its
motion. The dragging described here has similarities with the
Coulomb drag between coupled clean nonchiral Luttinger
liquids in quantum wires24–26 but differs from it in some
fundamental ways: �i� the chiral edge state is a persistent
current, is not subject to backscattering, and hence can only
interact through forward scattering �small momentum trans-
fer�, as described in Eq. �32�; and �ii� the nonchiral Luttinger
liquid is localized by impurities and hence electrons are not
free to move �unless the applied force by the chiral compo-
nent is greater than a threshold that leads to the depinning of
the localized state, a situation not considered here�. Hence,
although there is no macroscopic voltage drop along the
edge, the force applied by the edge over the surface state will
lead to microscopic voltage drops �charge accumulations in
the electronic puddles, see Fig. 4�. The final picture can be
summarized in terms of the scattering of the edge electrons
by the potential created by the surface states.

Since the theory described by Eqs. �20�, �31�, and �32� is
Gaussian, the surface states can be exactly traced out of the
problem. The effective action for the chiral modes then reads

S =
m

4�
�

k,�
k�� − vEk�1 − g

k2

k2 + �−2�����k,���2, �43�

where

g =
2�2K

muvE
�44�

is the surface-edge coupling. Notice that the dispersion of the
chiral modes is given by

��k� = vEk�1 − g
k2

k2 + �−2� , �45�

and, hence, for k��−1 the chiral mode dispersion becomes
�k�vE�k− k3� where  =g�2, and for k��−1 one finds �k

�vE1−g�k.
At long wavelengths �k��−1�, that is, distances larger

than the localization length, the surface mode does not affect
the edge mode. The fact that the dispersion at short wave-
lengths can become negative if g�1 indicates the existence
of an instability �a quantum critical point� at finite wave
vectors. It is easy to see that the dispersion �45� vanishes at
k=kc where

kc
−1 � ��g − 1, �46�

for g�1. Therefore the spectrum of the edge mode becomes
negative for k�kc indicating that the edge state becomes
unstable. Notice that while disorder �and hence �� determines
the length scale kc

−1 of the instability, this instability only
occurs for a value of g above a critical value gc=1 which
marks a quantum phase transition in the problem. For g
�gc the edge mode is stable but for g�gc and for any
amount of disorder there is an instability in the system with
characteristic length scale given by Eq. �46�. The phase dia-
gram of the edge mode as a function of the Luttinger param-
eter, K, and surface-edge coupling, g, has, therefore, the
structure shown in Fig. 6.

In order to numerically estimate the experimental value of
this instability, let us consider the case of a weakly interact-
ing surface state �K�1, u�vS� so that

g �
e4

tt�
� . �47�

Hence there is a critical density �c such that g=gc=1 given
by

�c �
tt�

e4 , �48�

so that kc
−1→� at this point even for a small amount of

disorder. Clearly, in the absence of disorder D0=0, see Eq.
�30�� �→� we have kc=0 at the outset and the instability
cannot occur. Notice that �c is independent of the disorder,
depending only on the ratio between kinetic to Coulomb en-
ergies in the system. Although there is uncertainty27 on the
value of t�, if we use t��0.1t�0.2 eV, e2�16 eV Å, one
finds �c�1012–1013 cm−2, which is the order of magnitude
of carriers in these materials.1,2

As shown in Ref. 28, this instability is an indication of a
quantum Hall edge reconstruction where new low energy
modes are generated at the edge. Edge reconstruction has
been proposed to be important for the understanding of
IQHE17,29 as well as FQHE30 in semiconducting devices and
for the interpretation of point contact tunneling between a
Fermi liquid and a quantum Hall edge. In fact, the current-
voltage characteristics for point contact tunneling follows a
power law, I�V�, where the exponent �, in the absence of
reconstruction, is supposed to be universal and independent
of the details of the edge. Nevertheless, recent experiments
show a different picture.31 The discrepancy between theory
and experiment can be assigned to edge reconstruction. We
expect a similar effect to occur in graphene and graphite.

VI. CONCLUSIONS

The dragging of the surface mode by the edge mode has
also consequences for the magnetotransport. The longitudi-

FIG. 6. �Color online� Phase diagram of the problem, in the
presence of disorder D0�0, as a function of the Luttinger liquid
parameter, K, and surface-edge coupling, g.
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nal, xx, and Hall, xy, resistivities depend directly on whe-
ther the electronic states are localized or not. When the elec-
tronic states are localized and the longitudinal conductivity,
�xx, vanishes, one has xy=1/�QHE and xx=0 and therefore
a perfect quantization of the Hall resistivity in units of h /e2.

We have shown that the presence of edge disorder affects
directly the physics of the edge states allowing for the pos-
sibility of edge reconstruction. The effect is stronger in the
FQHE than in the IQHE because of the characteristic energy
scales in the problem. In the IQHE the dominant energy
scale is the cyclotron energy, �c. When �c is larger than the
broadening of the Landau levels due to disorder, the IQHE
becomes observable. For a magnetic field B�6 T we have
�c�1,000 K, which is much larger than the cyclotron en-
ergy in conventional semiconducting Hall bars �which is of
order of a few K�. This rather large cyclotron energy �a result
of the Dirac dispersion� makes the observation of the IQHE
relatively simple.1,2

The situation with the FQHE is very different. For the
FQHE what matters is the bulk energy of interaction between
the electrons32 which is of the order of e2 / ��0�B�
�e2 / ��2�0vF���c��c /�0 where �0 is the dielectric constant
of graphene we have used that e2 / ��2vF��1, see Ref. 7�.
Because of the presence a back gate in the experiments, we
expect screening to be as strong as in ordinary semiconduct-
ing devices where �0�10 and hence e2 / ��0�B���c. The sur-
face mode localization, and the formation of electronic
puddles, lead to changes in the local electrostatic potentials
in the Hall bar and affect screening, modifying the bulk
electron-electron interactions if the samples are not wide
enough �which is the case of the current experiments where
the samples are of order of 10 �m wide1,2�. Therefore the
bulk states of the FQHE will be directly affected by surface
state localization leading to a change of the longitudinal con-
ductivity in the system.

In the presence of a surface state, the longitudinal conduc-
tivity can be small but finite ��xx��QHE� and strongly de-
pendent on the amount of disorder at the edge. In this case
resistivities are given by

xx � xx
0 ��xx/�QHE�2,

xy � �QHE
−1 1 − ��xx/�QHE�2� , �49�

where xx
0 =1/�xx. Notice that although there is a large reduc-

tion in the longitudinal resistivity �xx�xx
0 since �xx

��QHE� it is still finite in the “quantum Hall regime.” At the
same time, the quantization of the Hall resistivity is only
partial since it will be spoiled by a factor ��xx/�QHE�2�1.
This type of effect has been observed in graphite33 and we
expect it to occur in disordered graphene samples.

In summary, we have studied the integer and fractional
quantum Hall effect in graphene taking into account edge
and surface modes. We show that although the surface modes
are localized by disorder in the absence of a magnetic field,
they become delocalized by the edge modes that drag the
surface modes in their motion via electron-electron interac-
tions. Our results indicate that in this case the Hall edge

undergoes a reconstruction leading to a nonuniversal point
contact exponent that depends strongly on the amount of
disorder in the system. Furthermore, we also show that a
perfect Hall effect is not possible in disordered graphene
samples due to the presence of surface modes. Our results
show that the Hall resistivity is not quantized and can change
significantly from sample to sample depending on disorder
and electron-electron interactions.
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APPENDIX: MATRIX ELEMENTS OF A

The matrix A has the following diagonal and off-diagonal
elements:

A�1,1� = qvS cos2 � cosh2 �

− 2V�q�cos ��sin � + cos � sinh ��cosh �

+ E�q��sin2 � + cos2 � sinh2 �� , �A1�

A�2,2� = �qvS cosh2 � sin2 � + Ṽ�q�


cosh �sin�2�� − 2 sin2 � sinh �� + E�q�


�cos2 � + sin2 � sinh2 ���cosh2 � + sinh�2��


„	Ṽ�q�cos � + qvS + E�q��cosh � sin �
sinh �

− Ṽ�q�cosh�2��sin �… + sinh2 ��E�q�cosh2 �

− 2Ṽ�q�sinh � cosh � + qvS sinh2 �� , �A2�

A�3,3� = qvS cos2 � cosh2 �

− 2Ṽ�q�cos ��sin � + cos � sinh ��cosh �

+ E�q��sin2 � + cos2 � sinh2 �� , �A3�

A�1,2� = Ṽ�q�cos�2��cosh � cosh � + sinh �„	qvS + E�q��


cos � cosh � − Ṽ�q�sin �
sinh �

− Ṽ�q�cos � cosh�2��… +
1

4
cosh � sin�2��	qvS

− 3E�q� + qṽS + E�q��cosh�2�� − 2Ṽ�q�sinh�2��
 ,

�A4�
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A�1,3� = − Ṽ�q�cos�2��cosh � sinh � −
1

4
sin�2��


	qvS − 3E�q� + qvS + E�q��cosh�2��

− 2Ṽ�q�sinh�2��
sinh � + cosh �	Ṽ�q�


cos � cosh�2�� + sin � sinh ��

− qvS + E�q��cos � cosh � sinh �
 , �A5�

A�2,3� =
1

8
sinh�2��	2qvS − 3E�q��cos2 � + qvS + E�q��


cos�2�� − 3�cosh�2�� − 4Ṽ�q�cosh � sin�2��

− 2Ṽ�q�cos�2�� − 3�sinh�2��
 +
1

2
cosh�2��


	2Ṽ�q�cosh�2��sin � − qvS + E�q��sinh�2��sin �

− 2Ṽ�q�cos � sinh �
 . �A6�
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