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We have developed a method to systematically compute the form of Rashba- and Dresselhaus-like contri-
butions to the spin Hamiltonian of heterostructures to an arbitrary order in the in-plane wave vector k�. This is
achieved by using the double-group representations to construct general symmetry-allowed Hamiltonians with
full spin-orbit effects within the tight-binding formalism. We have computed full-zone spin Hamiltonians for
�001�-, �110�-, and �111�-grown zinc-blende heterostructures �D2d ,C4v ,C2v ,C3v point-group symmetries�,
which are commonly used in spintronics. After an expansion of the Hamiltonian up to third order in k�, we are
able to obtain additional terms not found previously. The present method also provides the matrix elements for
bulk zinc blendes �Td� in the anion–cation and effective bond orbital model �EBOM� basis sets with full
spin-orbit effects.
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I. INTRODUCTION

There has been strong recent interest in spin effects in
semiconductors for applications in spintronics.1,2 In particu-
lar, there have been many studies of spin splittings due to
bulk inversion asymmetry3 �BIA�, which arises from the dif-
ferent chemical character of the anion and the cation in the
zinc-blende structure, and due to structural inversion
asymmetry4 �SIA�, which appears at surfaces and interfaces
or in layered structures with asymmetric composition or dop-
ing, where “top” is different from “bottom.” A good under-
standing of the intraband spin splittings is essential in any
attempt to understand the operation of spintronic devices at a
microscopic level, since they determine the spin dynamics
during relaxation and transport processes.5–13 The pioneering
work by Dresselhaus,3 Bychkov and Rashba,4 and
D’yakonov and Kachorovski�6 taught us the functional form
of the leading-order contributions—up to first �third� order in
the in-plane wave vector k� for SIA �BIA�—to the spin
Hamiltonians in bulk and heterostructure zinc blendes due to
the various sources of inversion asymmetry.

This constructive procedure is of great use as it describes
the main physics, but as shown below, O�k�

3� contributions
for heterostructures due to BIA �Ref. 6� should contain addi-
tional terms, while the O�k�

3� contributions arising from SIA
have not been studied. Thus, it is also important to have a
systematic modeling tool which guarantees that all spin-
related qualitative features in the band structures will be
present. The empirical tight-binding method as formulated
by Slater and Koster14 provides such a systematic way of
generating all the symmetry-allowed terms that can appear in
a Hamiltonian. It has been used extensively in the computa-
tion of bulk, heterostructure, and surface properties, and to-
day finds widespread use in the study of nanostructures in-
volving thousands and even millions of atoms15 or transport
properties.16

However, the original formulation by Slater and Koster

was obtained through the use of single group-symmetry op-
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erations, which prevented it from describing spin effects.
Later, Chadi17 extended the original method with an on-site
spin-orbit energy which effectively describes the zone-center
split-off splitting and breaks the double degeneracy of the
bands for systems without an inversion center. This scheme
contains the essential features of spin-orbit interaction, but
does not reproduce some qualitative aspects such as the lin-
ear spin splitting in valence bands in zinc blendes.3 Boykin18

has introduced supplementary matrix elements between
nearest-neighbor atomic orbitals as a remedy for zinc-blende
structures, but that procedure does not guarantee a priori that
all spin-orbit effects will be considered and does not treat
systematically other types of structures. The development
presented in this paper allows us to address these issues pre-
cisely.

Experimentally, apart from the large body of indirect ob-
servations by Shubnikov–de Haas measurements on semi-
conductor heterostructures,19–21 recently there have also been
elegant direct photoemission spectroscopy determinations of
large SIA-induced �Rashba� spin splittings in two-
dimensional electron gases �2DEG’s� arising from �111� sur-
face states in metals such as Au, Ag, and Cu, as well as
Gd �0001� surfaces.22–30 While there is at present no conclu-
sive evidence of the importance of these higher-order correc-
tions in experimental situations, 2DEG’s with concentrations
�1013 cm−2 have k�,Fermi�5% of the Brillouin zone in zinc-
blende wells. Higher-order corrections for k�’s at this range
should be expected, in a fashion similar to nonparabolicity
effects �k4� in bulk zinc blendes, for which the importance of
these effects is well known, particularly in narrow-gap semi-
conductors. Metal surface 2DEG’s, such as in Refs. 24 and
25, or extremely highly phosphorous-doped � layers31 have
k�,Fermi that extend even further into the Brillouin zone. Theo-
retically, nonlinear corrections to the Rashba and Dressel-
haus Hamiltonians stemming from numerical diagonalization
of large matrices have been shown to have a strong effect on
spin lifetimes in quantum wells.32

In this article, we compute the forms of SIA and BIA

contributions to the spin Hamiltonian of common hetero-

©2006 The American Physical Society-1

http://dx.doi.org/10.1103/PhysRevB.73.205341


CARTOIXÀ et al. PHYSICAL REVIEW B 73, 205341 �2006�
structures, beyond the conventional Rashba4 and
Dresselhaus3,6 terms, to an arbitrary order in the wave vector
k�. This allows us to treat SIA on the same footing as BIA,
providing higher-order corrections to the Rashba Hamil-
tonian for �001� �D2d ,C4v ,C2v�, �110� �C2v ,Cs�, and �111�
�C3v� diamond and zinc-blende quantum wells as well as
surface states. We achieve this by following the constructive
process of Slater and Koster14 �SK�, but using double-group
irreducible representations �irreps� as opposed to single-
group irreps. We also apply the method to the generation of
bulk zinc-blende �Td� Hamiltonians in the anion–cation and
effective bond orbital model33,34 �EBOM� basis sets contain-
ing full spin-orbit effects. The procedure presented could, of
course, also be used for the description of the bands of ma-
terials involving heavy elements �i.e., large relativistic ef-
fects�, such as lead compounds, rare earths, etc.

II. METHODS

In order to achieve our goal of constructing spin Hamil-
tonians to arbitrary order in the wave vector k, we first con-
struct the tight-binding Hamiltonian for the corresponding
point-group symmetry using the EBOM basis and then
series-expand in k to the desired order. Also, since we are
interested in the correct description of relativistic and, in
particular, spin effects in the electronic bands, we are led
naturally to the use of double-group irreps35 to describe the
symmetry operations of the crystal. Thus, if we follow the
SK procedure14 using double as opposed to single groups, we
will be assured to obtain the most general Hamiltonian com-
patible with the crystal symmetries which, by construction,
will include all spin-orbit �SO� effects.

Similarly to the invariant expansion of the Hamiltonian
�IEH� method by Bir and Pikus,36 the functional form of the
Hamiltonian will be purely determined from symmetry con-
siderations. Both the IEH and the double-group tight-binding
�DGTB� method presented here are capable of ultimately
producing the same results. But while the IEH inherently
provides a perturbative expansion which can involve cum-
bersome manipulations at high orders, the DGTB can pro-
vide a closed form valid for the full Brillouin zone from
which the desired perturbation order can be extracted easily.
It should be pointed out, however, that small strain effects
are more readily obtained with IEH than with DGTB.

The basis states of double-group irreps are much less
amenable to brute force algebraic manipulations than their
single-group counterparts. Therefore, it becomes necessary
to write the tight-binding equations and the symmetry con-
straints of the parameters in a form that allows computer
symbolic manipulation. This is done in Appendixes A and B,
yielding the implemented expression for the Hamiltonian
matrix element between two Bloch sums:

Hii�
����k� = �

rj

1

N�r j�
�
G

eiktD�G�
tt�
vec

rj,t�D�G�is
�Ess�

����r j�D�G−1�s�i�
�� ,

�1�

where � labels an irreducible representation of the point

group, i refers to the specific state within an irrep, G is a
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point-group operation, and Ess�
����r j� is the Hamiltonian ma-

trix element between two states s ,s� separated by r j. The
remaining symbols, which are not necessary for the interpre-
tation of the results below, are defined in Appendix A. That
appendix, while rederiving the empirical tight-binding basic
results, also helps establish a better connection with previous
authors’ conventions. For our actual double-group calcula-
tions we use the irrep matrices D�G�is

� as provided by
Shirai,37 which correspond to the ones tabulated by Onodera
and Okazaki.38

III. RESULTS

In order to illustrate the procedure with a familiar ex-
ample and for comparison purposes, we construct in Sec.
III A a four-band model with no spin included for a zinc
blende �point group Td� using an effective bond-orbital basis
set. Section III B presents the main results of our work, with
spin Hamiltonians for various sorts of quantum wells dis-
playing the terms additional to the Rashba and Dresselhaus
Hamiltonians. Finally, we show explicitly in Sec. III C the
equivalence between the Löwdin orbitals �LO’s� centered at
the primitive cell sites �effective bond orbitals �EBO’s�� and
the zone-center solutions of the k ·p theory.

The definition of the symbols appearing in the following
tables can be found in Eqs. �A4� and �A5� in Appendix A.
The phase of the parameters Eij�r�—the Hamiltonian matrix
elements between a state i at the origin and a state j at
r—has been factored out in the calculations of the tables.
Thus, all Eij�r� are real. Parameters appearing in different
tables are, of course, unrelated, while the procedure in Ap-
pendix B guarantees a high degree of independence within
the parameters in any one table.

A. Single group

We will study the top valence and lowest conduction
bands of a zinc blende �point group Td�, which have �5 and
�1 symmetry at the zone center �we will use the Koster-
Dimmock-Wheeler-Statz �KDWS� notation39 throughout this
paper for the irrep labels �see Fig. 1��. We consider only
coupling to the 12 nearest-neighbor sites. Since we are work-
ing with effective bond orbitals located at fcc lattice sites, the
nearest neighbors are at � 1

2
1
20� and their equivalent positions.

Table I shows the matrix elements. The use of the arguments
in Appendix B shows, for example, that, with our choice of
phases, the whole block E�5�5 �see Eq. �A5� for meaning� is
purely real—which is otherwise trivially obtainable since the
Hamiltonian without SO is real and the p orbitals have the
same �imaginary� phase—and that Ezx� 1

2
1
20�=−Exz� 1

2
1
20�.

These results coincide with those of Hass et al.,40 which
correct the misprints in Table V of Ref. 14, or those obtained
by the different method of adding a d component to p states
in an fcc lattice.41

B. Double group

In what follows, we present models of quantum wells
�QW’s� of different symmetries, including structural inver-
-2
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sion asymmetry4 effects only, bulk inversion asymmetry3

only, or both, having in mind the study of in-plane spin trans-
port in two-dimensional electron gases �2DEG’s�. This has
the advantage of yielding less cumbersome expressions than
those of the superlattice of the same symmetry, which can be
obtained if necessary by setting the matrix elements between
supercell instances of different z, Eij

���l ,m ,n�0�, to a finite
value. Therefore there will be no kz terms in the Hamiltonian
matrix elements. Since these results depend only on the sym-
metry point group assumed, they can be directly applied to
2DEG realizations other than QW’s �e.g., surface states� as
long as they have the same underlying symmetry.

Of course, for a numerical zinc-blende nanostructure
computation the starting point would be a Hamiltonian de-
rived from the bulk matrix elements given at the end of this
section. In this context, the following results should rather be
taken as an analytical tool for the study of the bands and the
spins and they can be used to test whether calculations from
other methods satisfy the symmetry requirements.

1. †001‡ quantum wells

a. SIA only. In this configuration only the Rashba
splitting4 should appear. These QW’s possess C4v symmetry,
and an example could be a Si1−xGex /Si QW with an asym-
metric Ge concentration profile. For C4v QW’s the CB will
transform according to �6. We construct a model for the CB

TABLE I. Matrix elements for the zinc-blende structure �single
group�. The definitions �
kxa /2, �
kya /2, and 	
kza /2 are
made. The remaining symbols are defined in Eqs. �A4� and �A5�.
For example, Hsx

�1�5�k� represents the element of the Hamiltonian
connecting a state belonging to the �1 irrep with s symmetry to a
state belonging to the �5 irrep with x symmetry. The parameters
Eij�r� appearing in a table have no relationship with similarly
named parameters of a different table.

Hss
�1�1�k� Ess�000�

+4Ess� 1
2

1
20��cos � cos �

+cos � cos 	+cos 	 cos ��
Hsx

�1�5�k� 4iEsx� 1
2

1
20��cos �+cos 	�sin �−4

Esz� 1
2

1
20�sin � sin 	

Hxx
�5�5�k� Exx�000�+4Exx� 1

2
1
20��cos �+cos 	�cos �

+4Ezz� 1
2

1
20�cos � cos 	

Hxy
�5�5�k� −4Exy� 1

2
1
20�sin � sin �

+4iExz� 1
2

1
20��cos �−cos ��sin 	

FIG. 1. Labeling of the irreducible representations �irreps� corr
bands, at the zone center, for structures with different point group s
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with on-site and second-nearest-neighbor coupling, with the
assumption that the supercell instances do not couple to each
other, and the results are shown in Table II.

Expanding about the � point and keeping terms of up to
third order, we obtain

Hspin
�6�6 � 2a�E↑↓�100� + 	2E↑↓�110���ky�x − kx�y�

+ �E↑↓�100� + 	2E↑↓�110��a3/3�− ky
3�x + kx

3�y�

+ 	2a3E↑↓�110�kxky�− kx�x + ky�y� . �2�

The first term on the right-hand side is, of course, the
well-known Rashba Hamiltonian. Here we also derived the
two O�k�

3� terms, which are the next order in importance. Up
to the present there have been calculations that have been
carried out to third order in BIA effects but only to linear
order in SIA terms.7 The results from these calculations can
be improved and be made consistent within the chosen order
of approximation if the higher-order SIA terms are included.

b. BIA only. Here the corresponding point group for a
zinc-blende �001� QW is D2d. The different orientation of the
bonds at the interfaces �native inversion asymmetry42 �NIA��
may lower the symmetry to C2v, but this case is equivalent to
SIA+BIA and is treated in the next section. Applying Eq. �1�
to the CB ��6� we obtain the results in Table III, and expand-
ing close to �,

Hspin
�6�6 � 2a�E↑↓�100� − 	2E↑↓�110���− kx�x + ky�y�

+ 	2a3E↑↓�110�kxky�− ky�x + kx�y� + �E↑↓�100�

− 	2E↑↓�110��a3/3�kx
3�x − ky

3�y� . �3�

We recover now the Dresselhaus Hamiltonian for �001�
zinc-blende quantum wells6,43,44 in the first two terms. The
middle term can be obtained by the procedure of taking the
spin Hamiltonian for bulk zinc blendes �Ref. 5 and Eq. �14�
below� and substituting kz

2 for its expectation value in the

TABLE II. Matrix elements for an �001� structure with SIA only
described by the C4v point group. The definitions �
kxa and �

kya are made.

H↑↑
�6�6 E↑↑�000�+2E↑↑�100��cos �+cos ��

+4E↑↑�110�cos � cos �

H↑↓
�6�6 2E↑↓�100��i sin �+sin ��

+2	2E↑↓�110��i sin � cos �+cos � sin ��

nding to the lowest conduction band and the two highest valence
etries. Spin splittings at k�0 are omitted for clarity.
espo
ymm
-3
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quantum well.6 However, the last term cannot be obtained in
this fashion,45 which shows the power of our proposed ap-
proach. The symbols E↑↑�100�, E↑↓�110�, etc., have no rela-
tionship with their analogous in the other cases, and the ref-
erence to the corresponding point group has been dropped to
lighten the notation.

c. SIA
BIA. The corresponding point group for these
structures is C2v, and the conduction band is associated with
the �5 irrep. Table IV shows the results, and the spin Hamil-
tonian is

Hspin
�5�5 � − 2a��E↑↓�010� + 2 Im�E↑↓�110���ky�x + �E↑↓�100�

+ 2 Re�E↑↓�110���kx�y� + a3/3��E↑↓�010�

+ 2 Im�E↑↓�110���ky
3�x + �E↑↓�100�

+ 2 Re�E↑↓�110���kx
3�y + 6 Im�E↑↓�110��kx

2ky�x

+ 6 Re�E↑↓�110��ky
2kx�y� , �4�

where Re and Im label real and imaginary parts, respectively.
This Hamiltonian can be transformed into a more familiar

form by making the substitutions E↑↓�010�→EBIA+ESIA,
E↑↓�100�→EBIA−ESIA, and E↑↓�110�→ �EBIA,110

+ESIA,110� /2+ i�EBIA,110−ESIA,110� /2 and reverting to the
original axis definitions for the zinc-blende structure:

Hspin
�5�5 � 2a�ESIA − 2ESIA,110��− ky�x + kx�y� + 2a�EBIA

+ 2EBIA,110��− kx�x + ky�y� + a3/6��ESIA − 4ESIA,110�

��ky
3�x − kx

3�y� + �EBIA + 4EBIA,110��kx
3�x − ky

3�y�

+ 3ESIAkxky�kx�x − ky�y� + 3EBIAkxky�ky�x − kx�y�� ,

�5�

which contains the same functional dependence as the sum
of the separated SIA- and BIA-only cases, Eqs. �2� and �3�.

TABLE III. Same as Table II, but with BIA-only effects
�D2d�.

H↑↑
�6�6 E↑↑�000�+2E↑↑�100��cos �+cos ��

+4E↑↑�110�cos � cos �

H↑↓
�6�6 −2E↑↓�100��sin �+ i sin ��

+2	2E↑↓�110��sin � cos �+ i cos � sin ��

TABLE IV. Same as Table II, but with SIA and BIA effects
�C2v�. The phase of E↑↓�110� has not been factored out as it is not
determined by symmetry. Thus, Re and Im label its real and imagi-
nary part, respectively.

H↑↑
�5�5 E↑↑�000�+2E↑↑�100�cos �

+2E↑↑�010�cos �+4E↑↑�110�cos � cos �

H↑↓
�5�5 2E↑↓�100�i sin �−2E↑↓�010�sin �

−4 Im�E↑↓�110��cos � sin �

+4 Re�E↑↓�110��i sin � cos �
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2. †110‡ quantum wells

a. SIA only. The symmetry group is C2v, so the results are
essentially the same as for �001� heterostructures with BIA
+SIA. It is worth noting that, because of the reduced sym-
metry with respect to SIA-�001�, there appear additional
Dresselhaus-like terms although for SIA-only one would ex-
pect only Rashba terms.

We have verified these predictions with the help of a k ·p
code where BIA effects can be turned on and off46 for a
�110� 16/16 AlSb/GaSb/ InAs/AlSb QW �see Fig. 2�. We
see for this case that the splitting presents a small degree of
anisotropy due to the interplay of Rashba- and Dresselhaus-
like terms in the spin Hamiltonian, although the simulation
only accounts for SIA effects. The axes of constructive and
destructive Rashba-Dresselhaus interference are rotated by
� /4 with respect to the �001� BIA
SIA case44 because here
the planes of symmetry coincide with the usual choice of x
and y axes, while in the �001� case the reflection planes
bisect the x and y axes.

b. BIA only. The symmetry group is again C2v, but now
the twofold axis is in-plane, whereas in the previous case it
was along the growth direction. This changes the symmetry
considerations considerably. The results for a second-nearest-
neighbor model are displayed in Table V.

An interesting feature that is recovered is that, for kz=0
�or for a quantum well�, the spin will align or antialign along

FIG. 2. �Color online� Polar plot of the spin splitting in the CB
for a �110� 16/16 AlSb/GaSb/ InAs/AlSb QW with SIA only cal-
culated with k ·p. The anisotropy of the splitting is due to the in-
terplay of Rashba- and Dresselhaus-like terms in the spin Hamil-
tonian, although the simulation only accounts for SIA effects.

TABLE V. Matrix elements for an �110� structure with BIA only
described by the C2v point group. The definitions �
kxax and �

kyay are made.

H↑↑
�5�5 E↑↑�000�+2Re�E↑↑�100��cos �

−2 Im�E↑↑�100��sin �+2E↑↑�010�cos �

+4 Re�E↑↑�110��cos � cos �

−4 Im�E↑↑�110��sin � cos �

H↑↓
�5�5 0
-4
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the growth direction. This result still holds even when all the
neighbors are included: a general k� point in the well Bril-
louin zone has Cs symmetry �reflection with respect to the
well plane�, which confines the spin to lie perpendicular to
the plane. This makes symmetric �110� structures have un-
usually long spin lifetimes6,47 for spins along the growth di-
rection because of the suppression of the D’yakonov-Perel’
�DP� spin relaxation mechanism.5 Then, the spin Hamil-
tonian takes the simple form

Hspin
�5�5 � − 2axIm�E↑↑�100� + 2E↑↑�110��kx�z

+ ax/3�ax
2Im�E↑↑�100� + 2E↑↑�110��kx

2

+ ay
26 Im�E↑↑�110��ky

2�kx�z. �6�

Note that, along the �100� direction, symmetry predicts
that the ratio of the O�kx

3� splitting coefficient to the O�kx�
coefficient should be given by ax

2 /6, independent of the val-
ues of the Eij�r� parameters. This prediction could be verified
experimentally, for instance, by using angle-resolved photo-
emission spectroscopy with sufficient energy
resolution.22,24,25

c. SIA
BIA. In this case the symmetry will be lowered to
Cs �a single reflection plane� and the above arguments will
not be able to put any restrictions on the spins. This is further
understood if we combine the BIA-only results, which keep
the spins pointing along the growth direction, with the SIA-
only results, which tend to keep the spins perpendicular to
the growth axis. Thus, the spins will point in a general direc-
tion dependent on the particular structure under study.

3. †111‡ quantum wells

For BIA-only, these quantum wells transform according
to the C3v point group,48 which consists of the identity, two
threefold rotations about the growth axis, and three reflection
planes separated by 120° that contain the threefold axis. It is
easy to see by inspection that the inclusion of SIA does not
reduce the symmetry with respect to the BIA-only case.
Thus, here it is only necessary to derive the TB Hamiltonian
for C3v structures, which is shown in Table VI.

The expansion about the � point yields a spin Hamil-

TABLE VI. Matrix elements for a �111� structure described by
the C3v point group. The definitions �
kxa and �
kya are made,
and the primitive vectors are taken to be a�0,1� and a�	3/2 ,1 /2�.

H↑↑
�4�4 E↑↑�000�

+2 Re�E↑↑�010���2 cos 	3� /2 cos � /2+cos ��
+2 Im�E↑↑�010���2 cos 	3� /2 sin � /2−sin ��
+2E↑↑�	300��cos	3�+cos�	3� /2−3� /2�
+cos�	3� /2+3� /2��+

H↑↓
�4�4 −2E↑↓�010��cos	3� /2 sin � /2+sin �

+i	3 sin 	3� /2 cos � /2�
+iE↑↓�	300��2 sin 	3�+ �1
+i	3�sin�	3� /2−3� /2�
+�1− i	3�sin�	3� /2+3� /2��
tonian
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Hspin
�4�4 � 3a�	3E↑↓�	300� − E↑↓�010���ky�x − kx�y�

+ a3/8��3E↑↓�010� − 9	3E↑↓�	300��k2�ky�x − kx�y�

+ 2 Im�E↑↑�010���− 3kx
2 + ky

2�ky�z� . �7�

Thus, no matter the situation in �111� QW’s, we only
have—at O�k��—Rashba-like terms, as shown previously
with a different method.13 This is important because the
Rashba contribution can be tuned through the action of a
gate bias and it is in principle possible to make the first-order
spin splitting vanish, suppressing the DP spin relaxation
mechanism for all components at the same time.13

4. Zinc blendes with effective bond orbitals

Here we will construct the model equivalent to the H�5�5

block in Sec. III A, but with spin. Thus, it will include a
heavy- and light-hole �8 and a split-off �7 set of states. We
provide the symmetry-constrained matrices E�i�j, as they are
the primary quantities in nanostructures:

E�8�8� 1
2

1
20� =

E33 *E31 iE31̄ E33̄

− E31 E11 *E11̄ iE31̄

− iE31̄ − E11̄ E11 *E31

− *E33̄ − iE31̄ − E31 E33

� ,

�8�

E�8�7� 1
2

1
20� =

*E3↑ iE3̄↑

E1↑ *E1̄↑

E1̄↑ − E1↑

iE3̄↑ E3↑
� , �9�

E�7�8� 1
2

1
20� = �− E3↑ E1↑ − *E1̄↑ − iE3̄↑

− iE3̄↑ − E1̄↑ E1↑ − *E3↑
� ,

�10�

and

E�7�7� 1
2

1
20� = � E↑↑ *E↑↓

− E↑↓ E↑↑
� , �11�

where 
ei�/4, l̄
−l, l refers to ��l/2
�8� and ↑ �↓� refers to

��1/2
�7 � ���−1/2

�7 ��, and the phase factors are explicitly shown so
that all parameters Eij are real. Thus, using symmetry opera-
tions, the 36 initial matrix elements are reduced to 12 inde-
pendent parameters. The matrix elements E�i�j�Gr j� for the
remaining nearest-neighbor sites are obtained combining
Eqs. �8�–�11� and �A8�.

Now we can construct the bulk tight-binding matrix ele-
ments, which will be the foundation for further analysis of
the meaning of the parameters. Table VII shows the com-
puted matrix elements from Eqs. �1� and �B8�. The remain-
ing matrix elements can be obtained from the Hermiticity of
-5
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the Hamiltonian in the Bloch sum representation. We can
obtain information about the physical effects that are in-
cluded in this model by expanding the matrix elements about
the � point33 and comparing to k ·p results.49 Similar expan-
sions to obtain k ·p parameters from atomic-orbital-based
tight-binding Hamiltonians have also been made by Jancu et
al.50

We focus first on the heavy-hole �HH� and light-hole �LH�
bands, given by the �7 irrep. Empirical tight-binding �ETB�
implementations based on atomic or bond orbitals with the
addition of on-site spin-orbit17,41 yield an incorrect intraband
splitting proportional to k3 along �110�, while Dresselhaus
showed3 from symmetry arguments that it should be linear
with k. Our current method solves this problem. From k ·p
theory we know that a parameter C describes the linear
splitting.49 Looking, for example, at the H

3̄3

�8�8 matrix ele-

ment and comparing to the corresponding k ·p matrix ele-
ment −	3C�kx+ iky� /2, we can identify

C = 	2a�	3E11̄� 1
2

1
20� − 2E31� 1

2
1
20� + 	3E33̄� 1

2
1
20�� .

�12�

If the parameters in C were calculated from single-group
theory, we would obtain E11̄� 1

2
1
20�=−2	2Exz� 1

2
1
20� /3,

E31� 1
2

1
20�=−	2/3Exz� 1

2
1
20�, and E33̄� 1

2
1
20�=0, yielding C=0

TABLE VII. Matrix elements for the zinc-blende structure �do
hermiticity of the Hamiltonian in the Bloch sum representation. Th

H33
�8�8�k� E33�000�+�3E11� 1

2
1
20�+E33� 1

2
1
20���cos � co

+ 1
	2

�3E11̄� 1
2

1
20�+2	3E31� 1

2
1
20�−E33̄� 1

2
1
20

H11
�8�8�k� E33�000�+�3E33� 1

2
1
20�+E11� 1

2
1
20���cos � co

− 1
	2

�E11̄� 1
2

1
20�−2	3E31� 1

2
1
20�−3E33̄� 1

2
1
20

H31
�8�8�k� −�	2E31� 1

2
1
20�+	3/2�E11̄� 1

2
1
20�+E33̄� 1

2
1
20��

+4E31̄� 1
2

1
20��sin �− i sin ��sin 	

H
31̄

�8�8�k� �−	2E31� 1
2

1
20�+	3/2�E11̄� 1

2
1
20�+E33̄� 1

2
1
20��

−E33� 1
2

1
20���cos �−cos ��cos 	−4iE31̄� 1

2

H
33̄

�8�8�k� �−3E11̄� 1
2

1
20� /	2+	6E31� 1

2
1
20�+E33̄� 1

2
1
20� /

H
11̄

�8�8�k� −�E11̄� 1
2

1
20� /	2+	6E31� 1

2
1
20�−3E33̄� 1

2
1
20� /

H
3̄3̄

�8�8�kx ,ky ,kz�=H33
�8�8�kx ,−ky ,−kz� ;H

1̄1̄

�8�8�kx ,ky ,kz�=H11
�8�8�kx ,−ky ,

H
13̄

�8�8�kx ,ky ,kz�=H
31̄

�8�8*�kx ,−ky ,−kz�; H
1̄3̄

�8�8�kx ,ky ,kz�=H31
�8�8*�kx ,−k

H↑↑
�7�7�k� E↑↑�000�+4E↑↑� 1

2
1
20��cos � cos �+cos � co

H↑↓
�7�7�k� 2	2E↑↓� 1

2
1
20���cos �−cos 	�sin �− i�cos 	−

H↓↓
�7�7�kx ,ky ,kz�=H↑↑

�7�7�kx ,−ky ,−kz�
H3↑

�8�7�k� 2	2E3↑� 1
2

1
20��sin � cos �+ i cos � sin ��− �	

+2E3̄↑� 1
2

1
20��sin �− i sin ��sin 	

H1↑
�8�7�k� 4E1↑� 1

2
1
20�cos � cos �−2E1↑� 1

2
1
20��cos �+c

H
1̄↑
�8�7�k� 2	2E1̄↑� 1

2
1
20��−sin � cos �+ i cos � sin ��+

+2	3E3̄↑� 1
2

1
20��sin �+ i sin ��sin 	

H
3̄↑
�8�7�k� −4iE3̄↑� 1

2
1
20�sin � sin �−2	3E1↑� 1

2
1
20��cos

H
3̄↓
�8�7�kx ,ky ,kz�=−H3↑

�8�7�kx ,−ky ,−kz� ;H
1̄↓
�8�7�kx ,ky ,kz�=−H1↑

�8�7�kx ,−

H1↓
�8�7�kx ,ky ,kz�=−H

1̄↑
�8�7�kx ,−ky ,−kz� ;H3↓

�8�7�kx ,ky ,kz�=−H
3̄↑
�8�7�kx ,−
and, therefore, no linear splitting in the HH-LH bands.
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Figure 3 shows the calculated HH, LH, and SO bands for
bulk GaSb. For actual calculations to show the inclusion of
the effect, we set the double-group parameters to the single-
group values as determined from the EBOM method,33 with
the addition of E33̄� 1

2
1
20�=	2/3C /a. We have taken C

=0.7 meV Å as calculated by Cardona et al.51 Plot �a� shows
the full zone bands. The inclusion of E33̄� 1

2
1
20� makes no

appreciable change to the bands at the scale of the plot �i.e.,
no linear splitting is visible at this scale�. Plot �b� is a closer
look at the HH and LH bands at the top of the valence band
comparing the method presented here �solid lines� and a pre-
vious EBOM implementation allowing for bulk inversion
asymmetry41 �dashed lines�. Only the present method repro-
duces the linear splittings, in accordance with the predictions
from group theory,3 showing that the linear splitting arises
from off-site SO interactions, which were not included in
Ref. 41. In this particular case, the scale of the energy is tiny
and it makes little sense to make any claim when such small
energy scales are involved. Nevertheless, this example shows
that it is indeed possible to describe correctly all spin-orbit
effects within a tight-binding framework and, moreover, the
effects of a finite C have been observed experimentally for
GaSb in hole transport measurements.52,53

We now turn our attention to the lowest conduction band
in zinc blendes, which is associated with the �6 irrep. All the
symmetry-equivalent points of � 1

2
1
20� are spanned by the

group�. The remaining matrix elements can be obtained from the
nitions �
kxa /2, �
kya /2, 	
kza /2, are made.

cos � cos 	+cos 	 cos ��+3E33� 1
2

1
20�cos � cos �

os �−cos ��sin 	

cos � cos 	+cos 	 cos ��+3E11� 1
2

1
20�cos � cos �

os �−cos ��sin 	

�+ i sin ��cos 	+2	2E31� 1
2

1
20��sin � cos �+ i cos � sin ��

s �+cos ��sin 	+	3�E11� 1
2

1
20�

in � sin �

sin �− i sin ��cos 	+2	2E33̄� 1
2

1
20��−sin � cos �+ i cos � sin ��

sin �+ i sin ��cos 	+2	2E11̄� 1
2

1
20��sin � cos �+ i cos � sin ��

z�
cos 	 cos ��+2	2E↑↓� 1

2
1
20��cos �−cos ��sin 	

�sin ��

� 1
2

1
20�+	6E1̄↑� 1

2
1
20���sin �+ i sin ��cos 	

cos 	− �	6E3↑� 1
2

1
20�+	2E1̄↑� 1

2
1
20���cos �−cos ��sin 	

3↑� 1
2

1
20�−	2E1̄↑� 1

2
1
20���sin �− i sin ��cos 	

s ��cos 	+ �	2E3↑� 1
2

1
20�−	6E1̄↑� 1

2
1
20���cos �+cos ��sin 	

kz�;

kz�;
uble
e defi

s �+
���c

s �+
���c
��sin

��co
1
20�s

	2��
	2��

−kz�

y ,−k

s 	+

cos �

2E3↑

os ��
�	6E

�−co

ky ,−

ky ,−
proper rotations of Td, which under �6 correspond to the
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same matrices as �7. Therefore, the H�7�7 matrix elements
remain unchanged under the substitution �7→�6, leading to
a full-zone spin Hamiltonian

Hspin
�6�6 = 2	2E↑↓

�6�6� 1
2

1
20���z�cos � − cos ��sin 	 + c.p.� ,

�13�

where “c.p.” stands for cyclic permutations and which, after
expanding to lowest order about the zone center, allows us to
recover the k3 Hamiltonian5

Hspin
�6�6 � �c��kx

2 − ky
2�kz�z + c.p.� , �14�

with �c
a3 / �2	2�E↑↓
�6�6� 1

2
1
20� and �i the Pauli spin matrices.

5. Zinc blendes with quasiatomic orbitals

Within ETB, a more common approach for the study of
zinc blendes is the use of orbitals assigned to atomic
positions14,54–56 rather than Bravais lattice sites. This in-

creases the spatial resolution and the size of the basis set.

E33=0. The nontrivial Hamiltonian matrix elements in the
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The anion is assumed to have da=0, while the cation is at
dc=a�1,1 ,1� /4. The blocks for the first-neighbor overlaps
for VB states are then given by

E�7
a�7

c� 1
4

1
4

1
4� = �E↑↑ 0

0 E↑↑
� , �15�

E�7
a�8

c� 1
4

1
4

1
4� = � E↑3 0 − *	3E↑3 i	2E↑3

i	2E↑3 − 	3E↑3 0 *E↑3
� ,

�16�

E�8
a�7

c� 1
4

1
4

1
4� =

*E3↑ − i	2E3↑

0 − *	3E3↑

− 	3E3↑ 0

− i	2E3↑ E3↑
� , �17�

FIG. 3. �a� Full-zone HH, LH,
and SO bands for GaSb. �b� Bands
very close to the zone center along
�100� and �110� directions calcu-
lated with the present method
�solid lines�, featuring the linear
splitting and calculated with the
method of Ref. 41 �dashed lines�.
and
E�8
a�8

c� 1
4

1
4

1
4� =

E33 − *�	2E31̄ + 	3E33̄� iE31̄ E33̄

− �	2E31̄ + E33̄/	3� E33 *E33̄ iE31̄ + 2i	2/3E33̄

− iE31̄ − 2i	2/3E33̄ − E33̄ E33 *�	2E31̄ + E33̄/	3�

− *E33̄ − iE31̄ �	2E31̄ + 	3E33̄� E33

� , �18�
and E�i
c
�j

a� −1
4

−1
4

−1
4

� can be obtained from

���Ei�i
����− R j − d�� + d�� = ���Ei�i

���*�R j + d�� − d�� ,

�19�

with � ,��=a ,c �anion or cation�. The spinless model is re-
covered setting E33=E↑↑=Exx, E31̄=E3↑=E↑3=Exy /	3 and

¯

bulk orbital representation are given in Table VIII.

C. Effective bond orbitals and k·p

We can obtain further insight into the nature of the LO’s
used as a basis set by noting that, for orbitals associated with

the primitive cells �EBO’s� and at k=0, we have

-7
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Hii�
����k = 0� = �

rj

1

N�r j�
�
G

D�G�is
�Ess�

����r j�D�G−1�s�i�
�� ,

�20�

and by use of the orthogonality theorem for the irreducible
representations57 we arrive at

Hii�
����k = 0� = �����ii��

rj,s

N�G0�
N�r j�d�Ess

����r j� , �21�

where N�G0� is the number of operations of the point group
and d� is the dimensionality of the �th irrep.

Thus, if one is constructing a model where there are no
repeated irreps, we see that the Bloch sums of EBO’s will

TABLE VIII. Matrix elements for the zinc-blende structure
�double group� for quasiatomic orbitals. The remaining matrix ele-
ments can be obtained from the Hermiticity of the Hamiltonian in
the Bloch sum representation. The definitions g0

=4�cos � cos � cos 	− i sin � sin � sin 	�, gx=4�−cos � sin � sin 	
+ i sin � cos � cos 	� �and cyclic permutations�, are made, where �

kxa /4, �
kya /4, and 	
kza /4.

H33
�8

a
�8

c

�k� E33� 1
4

1
4

1
4

�g0

H33
�8

a
�8

c

�k� i�E31̄� 1
4

1
4

1
4

�+	3/2E33̄� 1
4

1
4

1
4

���gx+ igy�

H
31̄

�8
a
�8

c

�k� iE31̄� 1
4

1
4

1
4

�gz

H
33̄

�8
a
�8

c

�k� iE33̄� 1
4

1
4

1
4

��gx− igy� /	2

H13
�8

a
�8

c

�k� −i�E31̄� 1
4

1
4

1
4

�+	1/6E33̄� 1
4

1
4

1
4

���gx− igy�

H11
�8

a
�8

c

�k� E33� 1
4

1
4

1
4

�g0

H
11̄

�8
a
�8

c

�k� −iE33̄� 1
4

1
4

1
4

��gx+ igy� /	2

H
13̄

�8
a
�8

c

�k� i�E31̄� 1
4

1
4

1
4

�+2	2/3E33̄� 1
4

1
4

1
4

��gz

H
īj̄

�8
a
�8

c

�kx ,ky ,kz�=Hij
�8

a
�8

c

�kx ,−ky ,−kz�

H↑↑
�7

a
�7

c

�k� E↑↑� 1
4

1
4

1
4

�g0

H↑↓
�7

a
�7

c

�k� 0

H↓↓
�7

a
�7

c

�kx ,ky ,kz�=H↑↑
�7

a
�7

c

�kx ,−ky ,−kz�;

H↓↑
�7

a
�7

c

�kx ,ky ,kz�=H↑↓
�7

a
�7

c

�kx ,−ky ,−kz�

H3↑
�8

a
�7

c

�k� −iE3↑� 1
4

1
4

1
4

��gx+ igy� /	2

H1↑
�8

a
�7

c

�k� 0

H
1̄↑
�8

a
�7

c

�k� −i	3/2E3↑� 1
4

1
4

1
4

��gx− igy�

H
3̄↑
�8

a
�7

c

�k� −i	2E3↑� 1
4

1
4

1
4

�gz

H
ī↓
�8

a
�7

c

�kx ,ky ,kz�=−Hi↑
�8

a
�7

c

�kx ,−ky ,−kz�

H↑3
�7

a
�8

c

�k� iE↑3� 1
4

1
4

1
4

��gx− igy� /	2

H↑1
�7

a
�8

c

�k� 0

H↑1̄

�7
a
�8

c

�k� i	3/2E↑3� 1
4

1
4

1
4

��gx+ igy�

H↑3̄

�7
a
�8

c

�k� i	2E↑3� 1
4

1
4

1
4

�gz

H↓ī

�7
a
�8

c

�kx ,ky ,kz�=−H↑i
�7

a
�8

c

�kx ,−ky ,−kz�
exactly diagonalize the Hamiltonian at k=0. In other words,
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the Bloch sums of EBO’s will be the zone-center solutions,
making the connection between the EBO’s and k ·p basis
evident.

IV. SUMMARY

In conclusion, we have constructed full-zone spin Hamil-
tonians for �001�, �110�, and �111� zinc-blende quantum
wells. We then performed small-k� expansions of those
Hamiltonians about the zone center, yielding their k ·p coun-
terparts. The k ·p Hamiltonians thus obtained present spin-
dependent terms that had not been previously described in
the literature. In particular, we see that the Rashba Hamil-
tonian can be supplemented with third-order terms, which
will need to be included in calculations where other sources
of spin splitting are considered up to that order. We also
generate additional, growth direction-dependent O�k�

3� con-
tributions to the Dresselhaus Hamiltonian. These results hold
for any system having the same symmetry as the studied
quantum wells. The method we have employed is not re-
stricted to these particular cases, as it extends the tight-
binding formalism to include the treatment of spin by using
double-group representations. This guarantees the systematic
inclusion of all spin-related effects in the bands. Thus, our
work can serve as the basis for numerical studies of large-
scale nanostructures where spin effects are important, as well
as an analytic tool for predicting spin properties in reduced-
symmetry systems.
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APPENDIX A: EMPIRICAL TIGHT-BINDING REVIEW

We review the empirical tight-binding method in order to
set forth the notation employed in the paper. Following Ref.
14, we choose as our basis a collection of Löwdin-
symmetrized orbitals58 ��i

� ;R j�, denoting an orbital centered
on the lattice site R j that transforms as the ith state of a basis
set for the �th irrep of the point-group symmetry of the
crystal �� and i jointly define the band index of the state�.
Explicitly, they are given by

��i
�;R j� = ��i�

��;R j���S
−1/2�i�i,Rj�Rj

��� , �A1�

where S−1/2 is the inverse of the square root of the overlap

matrix S, with elements S��� = ���� ;R ��� ;R �, and
i�i,Rj�Rj i� j� i j

-8
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��i
� ;R j� is the atomic orbital �or, in general, a state with

finite overlap—e.g., a bond orbital� analogous to ��i
� ;R j�.

This is well defined, as the Löwdin symmetrization proce-
dure ensures that the state will have the same symmetry
properties as the underlying atomic orbital from which it is
constructed.14 As shown by Chang33 and exploited in Sec.
III, under certain conditions LO’s provide the simplest con-
nection to the k ·p method. Another useful property is that
LO’s centered at different sites are orthogonal.

For the case of a bulk material, SK proceeded to construct
bulk Bloch sums from the LO’s:

��i,k
� � =

1
	N

�
Rj

eik·Rj��i
�;R j� , �A2�

where N is the number of lattice sites in the crystal and k lies
within the first Brillouin zone. When the Schrödinger equa-
tion H ��k�=E ��k� is expanded in terms of Bloch sums with
coefficients ci

��k�
��i,k
� ��k�, it becomes an eigenvalue

problem

�
��,i�

��i,k
� �H��i�,k

�� �ci�
���k� = Ei,k

� ci
��k� , �A3�

where Ei,k
� is the energy at point k. The tight-binding matrix

elements are easily seen to be given by

Hii�
����k� 
 ��i,k

� �H��i�,k
�� � = �

Rj

eik·Rj��i
�;0�H��i�

��;R j� .

�A4�

In ETB, the matrix elements on the right-hand side of Eq.
�A4� are taken as adjustable parameters

Eii�
����R j� 
 ��i

�;0�H��i�
��;R j� . �A5�

The sum over the neighboring sites in Eq. �A4� can be
rewritten as

��i,k
� �H��i�,k

�� � = �
rj

1

N�r j�
�
G

eik·GrjEii�
����Gr j� , �A6�

where r j is the collection of Bravais lattice sites not related
by point-group �G0� operations G �i.e., sum over lattice
points belonging to different stars� and N�r j� is the number
of operations that leave r j invariant.

Since G acting on a state ��i�
�� ;r j� changes both the type

of state and its lattice point, it is easy to see that TGrj

=GTrj
G−1, where Trj

translates a state ��i�
�� ;0� into ��i�

�� ;r j�.
Thus, we have

Eii�
����Gr j� = ��i

�;0�HTGrj
��i�

��;0� = ��i
�;0�HGTrj

G−1��i�
��;0� .

�A7�

Since G�G0, we have that HG=GH; therefore, we arrive at

Eii�
����Gr j� = D�G�is

�Ess�
����r j�D�G−1�s�i�

�� , �A8�

where we make use of
205341
G��i
�;r j� = ��s

�;Gr j�D�G�si
� �A9�

and D�G�si
� is the element for the matrix corresponding to

operation G of the �th irrep of the crystal point group. We
substitute Eq. �A8� into Eq. �A6� to obtain

Hii�
����k� = �

rj

1

N�r j�
�
G

eiktD�G�
tt�
vec

rj,t�D�G�is
�Ess�

����r j�D�G−1�s�i�
�� ,

�A10�

�Equation �1� in the text� where D�G�vec is the representation
of G for polar vectors, which in general will not be an irrep
of the point group. This form allows for an easier computer
implementation since there is no need to keep track of which
neighbor positions have been visited and which not, and a
single loop over all symmetry operations can be used.

SK present in their tables results for the Hamiltonian ma-
trix elements computed with a method analogous to Eq.
�A10�, but only single-group irreps are used, which effec-
tively does away with spin. In Sec. III we carry out calcula-
tions with double-group irreps, thus taking into account all
spin effects within the single-particle approximation.

Note that this procedure can deal with general kinds of
crystal lattices, not only those with a single atom per primi-
tive cell, because any symmetry reduction due to the atom
basis attached to each lattice site is mimicked by the imposed
symmetry of the Löwdin orbitals. For example, in a zinc-
blende structure orbitals transforming according to Td �i.e.,
without definite parity� are attached to fcc lattice sites.

The inclusion of more than one type of orbital per primi-
tive cell �i.e., the need to have orbitals attached to atomic
sites rather than lattice sites� is easily achieved by introduc-
ing and extra index � for the atom type in the states and
having R j→R j +d��−d� in Eq. �A4�, where d� is the offset
of species � with respect to the lattice site. After that the
derivation until Eqs. �A8� and �A10� continues unchanged.

APPENDIX B: SYMMETRY CONSIDERATIONS

It is useful to use all the available symmetries to reduce as

much as possible the number of independent Ess�
����r j�’s. This

becomes specially important when ETB is applied to lower
dimensionality structures, as then the sum �A4� is not carried
out for some directions �i.e., planar, linear or point orbitals
are constructed�.

1. Point-group symmetry

When a G0 operation G is such that Gr j =r j for a given r j,
we obtain a number of consistency requirements for the

neighbor matrix elements Eii�
����r j� from Eq. �A8�:

Eii�
����r j� = D�G�is

�Ess�
����r j�D�G−1�s�i�

�� . �B1�

2. Time reversal

For double-group irreps, the basis states can be labeled39

by i=−q , . . . ,−1/2 ,1 /2 , . . . ,q . For example, the top of the
� �

-9
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valence band in zinc blendes would have q�=3/2, the bot-
tom of the conduction band q�=1/2, etc. We employ the
phase convention39

���i
�;r j� 
 ��̃i

�;r j� = �− 1�q�−i��−i
� ;r j� �B2�

for the action of the time reversal operator �. Since � is
antiunitary,59 we will have

Eii�
����r j� = �− 1�q�+q���− 1�i+i�E−i,−i�

��� *�r j� . �B3�

3. Rotation followed by translation

If there is an operation such that Gr j =−r j, we can com-
bine Eq. �A8� with the translational symmetry requirement

Eii�
����−r j�=Ei�i

���*�r j� to obtain

Ei�i
���*�r j� = D�G�is

�Ess�
����r j�D�G−1�s�i�

�� . �B4�

Now we can remove the complex conjugation operation by
employing time reversal, Eq. �B3�. The result is

E−i�,−i
��� �r j� = �− 1�q�+q���− 1�i+i�D�G�is

�Ess�
����r j�D�G−1�s�i�

�� .

�B5�

If the crystal has an inversion center, we will always be
able to pick G= I, where I is the inversion operator. Then,
since every irrep � of a crystal with inversion will have a
definite parity ��, we arrive at

E−i�,−i
��� �r j� = �− 1�q�+q���− 1�i+i������Eii�

����r j� . �B6�

4. Bloch sums

It is also convenient to state explicitly the transformation
properties of Bloch sums and their matrix elements. This can
reduce the number of elements that need to be specified.
88, 126601 �2002�.

205341-
Combining Eqs. �A1� and �A9� it is easy to see that

G��i,k
� � = ��s,Gk

� �D�G�si
� , �B7�

which leads to the relationship36

Hii�
����k� = D�G�is

�Hss�
����G−1k�D�G−1�s�i�

�� , �B8�

constraining the values of the Hamiltonian matrix elements
between Bloch sums.

APPENDIX C: MODELS WITH A FINITE NUMBER
OF BANDS

The procedure described in Appendix A will only yield
the exact Hamiltonian when an infinite number of LO’s is
included and interaction with all neighbors is accounted for.
Of course, the localized character of the LO’s will limit the
neighbor distance at which there is non-negligible overlap.
On the other hand, since the number of included neighbors is
directly related to the number of Fourier components of the
bands, the effect of coupling to bands outside the model—
which will add to the number of Fourier components—can
be modeled by increasing the range of the effective Hamil-
tonian interaction.60

In the extreme case where only two bands are included
�say, spin up and spin down�, a large number of included
neighbors will provide a good description of the bands. In
this context Kramers degeneracy is easily shown for doubly
degenerate irreps �i.e., doubly degenerate at the zone center,
but not a priori at a general k point�. Labeling �→2q�, time
reversal combined with inversion symmetry �Eq. �B6�� im-
plies E↑↑

11�r j�=E↓↓
11�r j� and E↑↓

11�r j�=E↓↑
11�r j�=0. Thus, the spin

2�2 Hamiltonian takes on the form

Hinv
11 = �H↑↑�k� 0

0 H↑↑�k�
� , �C1�

which shows that the bands will indeed be degenerate at a

general k point.
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