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Electron-electron scattering conserves total momentum and does not dissipate momentum directly in a
low-density system where the umklapp process is forbidden. However, it can still affect the conductance
through the energy relaxation of the electrons. We show here that this effect can be studied with arbitrary
accuracy in a multisublevel one-dimensional �1D� single quantum wire system in the presence of roughness
and phonon scattering using a formally exact solution of the Boltzmann transport equation. The intrasubband
electron-electron scattering is found to yield no net effect on the transport of electrons in 1D with only one
sublevel occupied. For a system with a multilevel occupation, however, we find a significant effect of inter-
sublevel electron-electron scattering on the temperature and density dependence of the resistance at low
temperatures.
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I. INTRODUCTION

Carrier transport in low-dimensional semiconductor struc-
tures �quantum wells and wires� is of interest for fast �high
mobility� electronic devices. Many previous studies have fo-
cused on the low-temperature conduction in semiconductor
quantum wires.1–12 The scope of these past investigations
covers fields of low-temperature elastic scattering,1–8 inelas-
tic scattering,10,11 and magnetic-field effects5,6,8–10,12 in quan-
tum wires. In these quantum-wire systems, scattering by im-
purities, interface roughness at low temperatures and by
phonons at high temperatures plays a dominant role for the
momentum relaxation of drifting electrons. Although
electron-electron scattering has been known to affect the car-
rier transport in semiconductors for a long time,13–15 it has
not received sufficient attention in the past, especially in the
recent calculations of mobilities in semiconductor quantum-
wire systems, due to the complexity of calculations involved.
In this paper, we examine the effect of electron-electron scat-
tering on the resistivity using the Fermi liquid model. As is
well known, electron-electron interaction yields the Lüttinger
liquid effect in clean systems. This effect will not be consid-
ered here.

In modulation n-doped quantum-wire structures, there are
usually many more conduction electrons than ionized impu-
rities inside the channel. As a result, an electron can be scat-
tered much more frequently by other electrons than by ion-
ized impurities, leading to an enhanced effect of electron-
electron scattering. In addition, acoustic phonon scattering is
suppressed at low temperatures.10,11 Therefore, electron-
electron scattering cannot be ignored in the calculation of the
conductance in modulation-doped quantum wires. However,
electron-electron scattering alone does not produce momen-
tum dissipation directly because of two-particle momentum
conservation.16 The major role of electron-electron scattering
is the energy relaxation where carriers undergo rapid inelas-

tic transitions among all the states accessible by electron-
electron scattering. As a result, the momentum relaxation
rate becomes averaged over many states, becoming less de-
pendent on the energy, and is driven from the original exact
relaxation rate for the rest of the elastic and inelastic scatter-
ing mechanisms without electron-electron scattering. This ef-
fect increases the resistivity. A quantitative argument based
on the variational principle was given earlier for this effect.15

In this paper, we quantitatively study the effect of the com-
petition of elastic, inelastic, and electron-electron scattering
as functions of the temperature T and the electron density
n1D.

The intrasubband electron-electron scattering is found to
yield no net effect on the transport of electrons in the one-
dimensional �1D� limit where only one sublevel is occupied.
This is in sharp contrast to a finite intrasubband electron-
electron scattering in the two-dimensional �2D� limit.15 In
multisublevel quantum wires, intersubband electron-electron
scattering is found to be significant at low temperatures in
momentum-relaxation processes as will be demonstrated
later in our numerical calculations. It is prohibitively difficult
to study the effect of electron-electron scattering in two and
three dimensions accurately. In a one dimensional system,
however, we can develop an accurate solution to the Boltz-
mann transport equation utilizing the fact that there are only
a discrete number of points in k space for a given energy
unlike in higher dimensions.

We establish a matrix equation approach for numerical
calculation. This approach has the advantage of performing
numerical calculation with any desired accuracy. As a result,
the Boltzmann transport equation �described in the next sec-
tion� can be solved exactly for quantum wires yielding accu-
rate numerical results. We apply this approach to study the
temperature- and density-dependent resistance of a single
quantum wire. For elastic scattering, we consider only
surface-roughness scattering and neglect scattering from ion-
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ized impurities by assuming that dopants sit far away from
the quantum wire in the growth �z� direction in modulation-
doped systems. We study only high-quality quantum wires
where the localization length is expected to be longer than
the sample length.

The outline of this paper is as follows. In Sec. II we
derive an expression for the conductance in the presence of
interface roughness, phonon and electron-electron scattering
in a multisublevel single quantum wire. In Sec. III we con-
struct a matrix equation approach for solving the Boltzmann
transport equation numerically with any desired accuracy. In
Sec. IV effects of intersubband electron-electron scattering
on the temperature and density dependence of the resistance
are computed numerically, along with detailed discussions
and explanations of the numerical results. A brief conclusion
is given in Sec. V.

II. SCATTERING EFFECTS ON MULTISUBLEVEL
TRANSPORT

In this section, we briefly review the key results in our
previous studies8,10 and repeat some of the equations for
completeness of the theory presented in this paper. By using
notation nearly identical to that already in the literatures,8,10

the Boltzmann transport equation for electrons along the
wire �y� direction is given by

v j +
2�

�
�
j�

�Ij�,j�2�gj� − gj���� j − � j�� + Pj + Qj = 0, �1�

where Pj stands for the electron-phonon scattering and Qj
represents the electron-electron scattering. These quantities
will be given below. In Eq. �1�, � j and v j =�−1d� j /dk are the
kinetic energy and the group velocity of the electrons in the
electronic state j= �n ,k�. Here, n=0,1 , . . . represents the sub-
level index due to the size quantization of the wire in the x
direction and k is the wave number of free electrons along
the y direction. Moreover, Ij�,j is the elastic scattering matrix8

due to interface roughness. The quantity gj is proportional to
the nonequilibrium deviation from the equilibrium Fermi dis-
tribution function f j

�−�� f0�� j� after a linear expansion of the
distribution function to the leading order in the external elec-
tric field E: f j = f j

�−�+gj�−�f0�� j��� j	eE.
The quantity Pj in Eq. �1�, representing the contribution

from the inelastic electron-phonon interaction, is given
by10,17

Pj =
2�

�
�

j�,s,q� ,±

�Vj�,j
sq� �2�f j�

��� + nsq���gj� − gj���� j

− � j� ± ��sq���k�,k±qy
, �2�

where Vj�,j
sq� is the screened electron-phonon interaction11 de-

fined by 
n�k��Vs,q�
e−ph�nk�=Vj�,j

sq� �k�,k+qy
and the sign � �or ��

corresponds to the one-phonon emission �or absorption� pro-
cess. In Eq. �2�, f

j�
�+��1− f

j�
�−� and nsq� is the Boson distribu-

tion function for phonons of mode s, having wave vector q�
= �qx ,qy ,qz� and equilibrium phonon energy ��sq�.

To consider the effect of electron-electron scattering on
transport we assume that only the quantum-well ground state
	0�z� with energy level E1z is relevant in the z direction due
to an extra-thin thickness of the wire in this direction and
low temperatures. The wave function along the wire direc-
tion is just a plane wave. The wave function of the nth sub-
level in the x direction is denoted by 
n�x�. We further as-
sume that the confining potential in the x direction is a
parabolic confinement. This gives rise to a harmonic wave
function 
n�x�= �� /��2nn!�1/2 exp�−�2x2 /2�Hn��x� and a
quantized energy level �n+1/2���0, where Hn�x� is the nth
order Hermite polynomial, �=�m*�0 /�, m* is the effective
mass of electrons, and ��0 is the energy-level separation. An
electron in an initial state j= �n ,k� will be scattered into a
final state j�= �n� ,k�� by simultaneously scattering another
electron from an initial state j1= �n1 ,k1� into a final state j1�
= �n1� ,k1�� through the Coulomb interaction between two elec-
trons, which is given by

Kj,j1

j�,j1� =
e2

0rL
2  d3r�	0

2�z�
n�
* �x�
n�x�

�exp�i�k − k��y	  d3r�1	0
2�z1�
n1�

* �x1�
n1
�x1�

�
exp�i�k1 − k1��y1	

�r� − r�1�
,

where r is the dielectric constant of the host material and L
is the wire length. This can be explicitly calculated as

Kj,j1

j�,j1� =
e2

0rL
�qy,k1−k1�

�k+k1,k�+k1� dx dz	0
2�z�

�
n�
* �x�
n�x�  dx1 dz1	0

2�z1�
n1�
* �x1�
n1

�x1�

� dy
exp�iqyy�
�R2 + y2

,

and is further simplified to

Kj,j1

j�,j1� = �k+k1,k�+k1�� 2e2

0rL
�  dx dz dx1 dz1K0��k�

− k�R�	0
2�z�
n�

* �x�
n�x�	0
2�z1�
n1�

* �x1�
n1
�x1� , �3�

where K0�x� is the modified Bessel function of the third kind,
and R=��z1−z�2+ �x1−x�2. By denoting the two-electron
wave function as

��j, j1� = 
n�x�
exp�iky�

�L

n1

�x1�
exp�ik1y1�

�L
,

the matrix element of the Coulomb interaction Vc for the
normalized spin singlet �upper sign� and the spin triplet
�lower sign� states is given by

1
2 
��j�, j1�� ± ��j1�, j���Vc���j, j1� ± ��j1, j��

= 
��j�, j1���Vc���j, j1�� ± 
��j1�, j���Vc���j, j1�� .

Here, the first term corresponds to Eq. �3� and the second
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�i.e., the exchange� term is found by interchanging j�↔ j1�.
The interaction averaged over the spin configuration leads to

K̄j,j1

j�,j1� = Kj,j1

j�,j1� − 1
2Kj,j1

j1�,j�. �4�

The electron-electron scattering adds a term Qj on the left
hand side of Eq. �1�,18,19 which is given by

Qj =
4�

�kBT
�−

�f j
�−�

�� j
�−1

�
j�,j1,j1�

�K̄j,j1

j�,j1��2f j
�−�f j1

�−�f j�
�+�f j1�

�+��gj� + gj1�

− gj − gj1
���� j + � j1

− � j� − � j1�
� . �5�

Here, T is the temperature of the thermal-equilibrium system,
and the spin degeneracy has been taken into account. The
dynamical screening to the electron-electron scattering in Eq.
�5� can be included through the following substitutions

�Kj,j1

j�,j1�,Kj,j1

j1�,j�� →� Kj,j1

j�,j1�

 j�j
RPA��k� − k�,�� j� − � j�/�	

,
Kj,j1

j1�,j�

 j1�j
RPA��k1� − k�,�� j1�

− � j�/�	� ,

where ij
RPA��qy� ,�� can be found from diagonal elements of a

dielectric-function matrix under a random-phase approxima-
tion �RPA�.20 After the Fourier transform of K0�x� with re-

spect to �, the expression for qy dependent Kj,j1

j�,j1� in Eq. �3� is
found to be

Kj,j1

j�,j1��qy� = �k+k1,k�+k1�� 2e2

0rL
��n�!n1

�!

n�!n1
�!


0

+�

d�
F��,qy�
��2 + qy

2

��− P��n�−n�+n1
�−n1

��/2 exp�− P�Ln�
�n�−n���P�

�L
n1

�
�n1

�−n1
���P�

���n�−n�,even�n1
�−n1

�,even − 2�n�−n�,odd�n1
�−n1

�,odd� ,

where qy =k�−k, Ln
�s��x� is the nth order associated Laguerre

polynomial, n�=min�n ,n��, n�=max�n ,n��, n1
�

=min�n1 ,n1��, n1
�=max�n1 ,n1��, P=�2 /2�2, and the form fac-

tor is

F��,qy� = dz dz1	0
2�z�exp�− ��2 + qy

2�z − z1��	0
2�z1� .

The conductance is found to be8

G =
2e2

L2 �
j

v jgj
0

+�

d���� j − ���−
�

��
f �−�����

=
2e2

hL


0

+�

d��−
�

��
f �−�����S†

� g̃ , �6�

where the symbol � represents the matrix inner product, the
k summation for the running variable j is converted into the
� j integration in the second equality, and S , g̃ are column
vectors with elements s� and g̃� defined below. The index �
describes a group of discrete equienergy points given by the

intersection of the horizontal line at an energy � with a series
of energy-dispersion curves, namely the solution of �=� j for
each j. The element s�=v� / �v�� of the column vector S in Eq.
�6� is the sign of the slope of the tangent to the dispersion
curves at these points. The quantity g̃� is related to g� at the
equienergy point �. Enumerating the indices of these points
by

� = − N,− N + 1, . . . ,− 1,1, . . . ,N − 1,N �7�

for symmetric dispersion curves, introducing g�= g̃�+gN, and
using the fact that g−�=−g�, we find8

g� = g̃� − 1
2 g̃−N, g̃N � 0. �8�

The branch index n and the wave number k of the equien-
ergy point � depends on the energy �. Hereafter, we put this
� dependence specifically on all quantities, e.g., g����. Fol-
lowing the previous treatment,8 we find

U��� � g̃��� + V−1��� � P��� + V−1��� � Q��� = − S��� .

�9�

Here g̃, S, P, and Q are column vectors with the index �
excluding the end point �=N for each energy � in Eq. �7�,
V��� is a diagonal matrix with absolute velocity �v� being its
element in �, and U is the 2N−1 by 2N−1 square matrix
�taking away the last row and column�8 with its off-diagonal
elements �j�� j� by

uj�,j =
��2V0

2�b2

�2�v j�v j�
exp�−

1

4
�k − k��2�2��	0�z1��4

0

+�

d�

�exp�− �2/2�Ln��2/2�Ln���
2/2�

and its diagonal elements by

uj,j = − �
j��j

uj,j�.

Here, Ln�x��Ln
�0��x�, z1 is the position of the

AlxGa1−xAs/GaAs interface of a symmetric quantum well in
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the growth direction, V0 is the conduction band offset at the
interface, �b is the average layer fluctuation, and � is the
correlation length of roughness in the x ,y directions. The
elimination of the Nth point in the process of reducing Eq.
�1� into Eq. �9� is necessary due to the fact that the matrix U
is singular in general and has no inverse if this point is
included.8

In order to carry out the q� summation in Eq. �2� for pho-
non scattering, we introduce a cylindrical coordinate qx

=q� cos 	, qz=q� sin 	, q=�q�
2 +qy

2 and transform

�
q�

�qy,k�−k =
A

�2��2  q�dq� d	�qy,k�−k

=
A

�2��2  qdq d	�qy,k�−k,

where A is the cross sectional area of the wire. We now
employ the Debye approximation at low temperatures for
acoustic phonons and use ��sq� =�csq, where cs is the sound
velocity. Carrying out the q integration through the energy �
function and converting the k� summation into the energy
integration, we find

P����
�v�����

=
�

�2��2�2 �
n�,s,±

 d��
q��±�� � ��

�cs

� d	
�Vj�,�

sq� ��,����2

�v j�����v�����
�f j�

��� + nsq���gj����� − g����	 ,

�10�

where �=AL is the sample volume, ���� is the unit step
function

�csq = ��� − � j�
� �, �qy� = �k� − k�, and q� = �q2 − qy

2.

�11�

In Eq. �10�, �� indicates the point � at the energy �, and the
�� integration excludes the region where q� becomes imagi-
nary. The electron-phonon interaction matrix elements in Eq.
�10� are calculated as

�Vn�,n
sq� �2 =

Vsq�
2

�n�n
RPA��qy�,���2

�n�n�qx��z�qz�

with �= ��n�,k�−�n,k� /�, where

�n�n�qx� =
n�!

n�!
P1

m exp�− P1��Ln�

�m��P1�	2,

P1=qx
2 /2�2, m=n�−n�, n� �n�� are the larger �lesser� of n

and n�, and

�z�qz� = � dz exp�iqzz�	0
2�z��2

.

Moreover, for the longitudinal �s= l� and transverse �s= t�
modes of acoustic phonons, we find

Vlq�
2 =

�q

2��0cl
�D2 + �eh14�2Al�q��

q2 � ,

Vtq�
2 =

�q

2��0ct
�eh14�2At�q��

q2 ,

where �0, D, and h14 are the ion-mass density, deformation-
potential coefficient, and piezoelectric constant,10 and the
form factors are

Al�q�� =
36qx

2qy
2qz

2

q6 ,

At�q�� =
2�q2�qx

2qy
2 + qy

2qz
2 + qz

2qx
2� − 9qx

2qy
2qz

2	
q6 .

By defining

� j�k = 0� + � j1
�k1 = 0� − � j��k� = 0� − � j1�

�k1� = 0� =
�2�

m* ,

the energy � function in Eq. �5� with a parabolic energy
dispersion � j ��n,k=E1z+ �n+1/2���0+�2k2 /2m* can be re-
written as

��� j + � j1
− � j� − � j1�

� =
m*

�2 ���k� − k��k� − k1� − �	 .

Here, � is related to the energy-level separation ��0. When
both electrons undergo intrasubband scattering, only the ex-
change scattering with k�=k1 and k1�=k is possible in view of
�=0. In this case, however, Qj =0 because the sum of all g
factors in Eq. �5� vanishes. Therefore, the intrasubband
electron-electron scattering cancels itself completely and has
no net effect on the conductance for a single-sublevel occu-
pation in the 1D limit. In the following, we consider inter-
subband electron-electron scattering that involves only two
occupied sublevels at low densities for simplicity and write
��0��2k�

2 /2m*. Possible values of � are given by �
=�nk�

2 /2, where �n= ±1, ±2, depending on whether only
one electron undergoes intersubband scattering or both elec-
trons jump from the same sublevel to the other.

For electron-electron scattering, we now carry out mo-
mentum summations in Eq. �5� for the last two terms �gj

+gj1
which are denoted by Qj

�−�. For this purpose, we write
the energy � function as

��� j + � j1
− � j� − � j1�

� =
m*

�2 ���k� − k−�k1,k,�n�	�k�

− k+�k1,k,�n�	�

=
m*��D�k1 − k,�n�	

�2�D�k1 − k,�n�
���k�

− k−�k1,k,�n�	 + ��k� − k+�k1,k,�n�	� ,

where

k±�k1,k,�n� = 1
2 �k1 + k ± �D�k1 − k,�n�	, D�k1 − k,�n� = �k1

− k�2 + 2�nk�
2 , �12�

�n=n+n1−n�−n1��0. From these, we find
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Qj
�−� = −

m*L2

��3f j
�+� �

n1,n�,n1�,s=±

 dk1�K̄j,j1

j�,j1��2f j1
�−�f j�

�+�f j1�
�+��gj + gj1

�
��D�k1 − k,�n�	
�D�k1 − k,�n�

�k1�,ks�k1,k,�n��k�,k−s�k1,k,�n�, �n � 0. �13�

The first two terms �gj�+gj1�
in the momentum summations of Eq. �5� are denoted by Qj

�+�. Using

��� j + � j1
− � j� − � j1�

� =
m*

�2 ���k1 − k−�k�,k1�,− �n�	�k1 − k+�k�,k1�,− �n�	� =
m*��D�k1� − k�,− �n�	

�2�D�k1� − k�,− �n�
���k1 − k−�k�,k1�,− �n�	 + ��k1

− k+�k�,k1�,− �n�	� ,

we find k1=k±�k� ,k1� ,−�n� and k=k��k� ,k1� ,−�n�. The expression for k yields

k1� = k −
�nk�

2

2�k� − k�
� k� = k −

�nk�
2

2�k1� − k�
. �14�

Based on these, we arrive at

Qj
�+� =

m*L2

��3f j
�+� �

n1,n�,n1�,s=±

� dk�gj��k1�,k−�nk
�
2 /�2�k�−k�	 + dk1�gj1�

�k�,k−�nk
�
2 /�2�k1�−k�	�

��K̄j,j1

j�,j1��2f j1
�−�f j�

�+�f j1�
�+���D�k1� − k�,− �n�	

�D�k1� − k�,− �n�
�k1,ks�k�,k1�,−�n�, �n � 0. �15�

We now interchange variables j�↔ j1 for the k� integration and variables j1�↔ j1 for the k1� integration in Eq. �15�, and
obtain

Qj
�+� =

m*L2

��3f j
�+� �

n1,n�,n1�,s=±

 dk1gj1��K̄j,j�
j1,j1��2f j1

�+�f j�
�−�f j1�

�+���D�k1� − k1,− �n1�	
�D�k1� − k1,− �n1�

�k�,ks�k1,k1�,−�n1��k1�,k−�n1k
�
2 /�2�k1−k�	

+ �K̄j,j1�
j�,j1�2f j1

�+�f j�
�+�f j1�

�−���D�k1 − k�,− �n2�	
�D�k1 − k�,− �n2�

�k1�,ks�k�,k1,−�n2��k�,k−�n2k
�
2 /�2�k1−k�	� , �16�

where �n1=n−n1+n�−n1��0 and �n2=n−n1−n�+n1��0.

III. MATRIX FORMALISM FOR THE CONDUCTANCE

In this section, we present details of the matrix formalism
for solving the Boltzmann transport equation numerically
with any desired accuracy. For the phonon scattering P term,
let us first define the scattering-out �second� term on the
right-hand side of Eq. �10�

W�
�0���� =

�

�2��2�2 �
n�,s,±

 d��
q��±�� � ��

�cs

� d	
�Vj�,�

sq� ��,����2

�v����v j������
�f j�

��� + nsq�� �17�

along with conditions given in Eq. �11�. We now replace the
�� integration in the scattering-in �first� term in Eq. �10� by a
summation over energy points uniformly spaced with a suf-
ficiently small energy interval ��. We further introduce an
index t= �� ,m�, where � counts points from the left to the
right for a given energy and m indicates energy branches in
the above subdivision. Defining

Wt,t� =
���

�2��2�2�
s,±

q��±�� � ��
�cs

 d	
�Vt�,t

sq� �2

�vtvt��
�f t�

��� + nsq�� ,

�18�

we can recast Eq. �10� into a matrix form

Pt

�vt�
+ Wt

�0�gt = �
t�

Wt,t�gt� �19�

with Wt
�0�=�t�Wt,t�. This equation can be rewritten in view of

Eq. �8� as

Pt

�vt�
= �

t�

W̃t,t�g̃t�, �20�

where for t= �� ,m� and t�= ��� ,m�� we have

W̃t,t� = �Wt,t� − �t,t�Wt
�0���1 − 1

2���,1� . �21�

It is understood that the index t �t�� excludes the right-most
point for a given energy index m �m��. Here, ��=1 signifies
the left-most point for any energy index m�.

For the intersubband electron-electron scattering Q term,
we now transform the k1 integration in Eqs. �13� and �16�
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into an energy integration using dk1=d� j1
/��v j1

� and change
the � j1

integration into a discrete summation by chopping the
integration into many sufficiently small uniform intervals of
width �� as before. Equation �13� leads to

Qj
�−� = − �v j��Zj

�0�gj + �
j1

Zj,j1
�1� gj1� , �22�

where Zj
�0�=� j1

Zj,j1

�1� and

Zj,j1
�1� = −

m*L2��

��4f j
�+� �

n�,n1�,s=±

f j1
�−�

�v jv j1
�
�K̄j,j1

j�,j1��2f j�
�+�f j1�

�+���D�k1 − k,�n�	
�D�k1 − k,�n�

�k1�,ks�k1,k,�n��k�,k−s�k1,k,�n�, �n � 0. �23�

The quantity Qj
�+� in Eq. �16� can also be written in a matrix form

Qj
�+� = �v j��

j1

Zj,j1
�2� gj1

, �24�

where

Zj,j1
�2� =

m*L2��

��4f j
�+� �

n�,n1�,s=±

f j1
�+�

�v jv j1
���K̄j,j�

j1,j1��2f j�
�−�f j1�

�+���D�k1� − k1,− �n1�	
�D�k1� − k1,− �n1�

�k�,ks�k1,k1�,−�n1��k1�,k−�n1k
�
2 /�2�k1−k�	

+ �K̄j,j1�
j�,j1�2f j�

�+�f j1�
�−���D�k1 − k�,− �n2�	

�D�k1 − k�,− �n2�
�k1�,ks�k�,k1,−�n2��k�,k−�n2k

�
2 /�2�k1−k�	�, �n1 � 0, �n2 � 0. �25�

Finally, the last term on the left side of Eq. �1� is then given by

Qj = �v j��− Zj
�0�gj + �

j1

Zj,j1
gj1� �26�

with Zj,j1
=Zj,j1

�2� −Zj,j1

�1� , and the summation on j1 indicates
summing over all points generated by intersections between
uniformly spaced horizontal energy lines and energy-
dispersion curves. Replacing gj = g̃j −

1
2 g̃−N, we obtain

Qt

�vt�
= �

t�

Z̃t,t�g̃t�, �27�

where for t= �� ,m� and t�= ��� ,m��

Z̃t,t� = �Zt,t� − �t,t�Zt
�0���1 − 1

2���,1� . �28�

Inserting Eqs. �20� and �27� into Eq. �9�, we find

�U + W̃ + Z̃	 � g̃ = − S , �29�

and the solution of Eq. �29� is

g̃ = − �U + W̃ + Z̃	−1
� S . �30�

Here, indices t= �� ,m� and t�= ��� ,m�� exclude the right-
most points for any given energy indices m ,m�. The index m
is the k value at the intersection point t. Note that U is block
diagonal, namely Ut,t���m�,m, while �vt,t����t,t� is diagonal.
When both the roughness and phonon scattering are absent

from Eq. �30�, i.e., U=W̃=0, we find that the matrix Z̃ itself
is singular. This confirms that the electron-electron scattering
alone does not contribute to the resistance in the transport
due to the fact that it conserves total momentum and does not

dissipate momentum. The conductance is found from the dis-
crete version of Eq. �6�

G =
2e2

hL
���

t
�−

�

��t
f �−���t��St

†
� g̃t. �31�

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the numerical results and dis-
cussions. In our numerical calculations, we have chosen the
following parameters. For the quantum well in the z direc-
tion, we employ m*=0.067m0 in the well �m0 being the free
electron mass�, mB=0.073m0 in the barrier, V0=280 meV for
the barrier height, LW=50 Å for the well width, and r=12
for the average dielectric constant. These parameters yield
E1z=84 meV for the ground-state energy and E2z−E1z
=188 meV for the energy separation between the first ex-
cited level and the ground state. For the parabolic confine-
ment in the x direction, we use ��0=2.7 meV for the
energy-level separation. For the interface roughness, we as-
sume �b=5 Å for the average layer fluctuation in the z di-
rection and �=10 Å for the Gaussian correlation length in
the x ,y directions. For the acoustic phonons in the bulk, the
following parameters are employed: cl=5.14�105 cm/s for
the longitudinal mode, ct=3.04�105 cm/s for the transverse
mode, D=−9.3 eV for the deformation potential, h14=1.2
�107 V/cm for the piezoelectric field, and �0=5.3 g/cm3

for the ion mass density. The wire length in the y direction is
assumed to be L=1 �m except for the cases indicated.

For the 1D density n1D=106 cm−1 assumed for the nu-
merical study, the relative chemical potential �̄=�−E1z
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−��0 /2 shows that ��0��̄�2��0 for the temperature
range 0.5�T�8 K considered, indicating occupation of the
two lowest sublevels n=0,1. When T tends to zero, �̄ ap-
proaches the Fermi levels E1F=4.98 meV and E2F
=2.28 meV, indicating that the electrons are highly degener-
ate.

In Fig. 1, we present the scaled resistances R /R0 as a
function of the temperature T in the range 4�T�8 K. Here,
R0 is the resistance R1 due to surface roughness scattering at
T=0.5 K. When only the roughness scattering is present, R1
�dash-dot-dotted curve� increases with T due to gradual
population ��̄�2��0� of the bottom of the sublevel n=2,
where the density of states �proportional to the inverse of the
electron group velocity� is very large, yielding enhanced
roughness scattering. When T is very high, R1 becomes lin-
ear in T. When phonon scattering is added, the total resis-
tance R2 �dashed curve� increases with T faster compared to
R1, causing an appreciable enhancement of the resistance at
T=8 K. When electron-electron scattering is further in-
cluded, R3 �solid curve� displays a much stronger increase
with T compared to R2, showing a significant enhancement
of the resistance at T=8 K. On the other hand, the differ-
ences among R1, R2, and R3 become negligible at low tem-
peratures T�1 K. The inset of the figure shows R3 /R0 as a
function of T in the whole range of T considered. The overall
feature of R3 /R0 reflects the T dependence of R1 /R0 since the
system is dominated by roughness scattering.

Electron-electron scattering itself does not directly con-
tribute to the resistance in the transport of electrons because
it conserves the two-particle momentum in the scattering
process. However, it contributes to the momentum dissipa-
tion indirectly by redistributing the electron energy. This
point can be made clear by using Kohler’s variational

principle.15,18 According to this theorem, the resistance is
minimum and exact when the entropy production rate due to
the external field is minimum. To make the argument simple,
we suppose for a moment that the electron-electron interac-
tion is infinitely large in comparison with other elastic and
inelastic interactions. In this case, the exact resistivity is ob-
tained when the transport relaxation time is independent of
the energy in the effective-mass model. The exact resistivity
is proportional to the entropy production rate under the dc
field which vanishes for this solution.18 What happens is that
the electrons are swept through all possible accessible states
rapidly by electron-electron scattering. As a result, the relax-
ation rate is averaged over these states and becomes indepen-
dent of the energy. While this energy-independent relaxation
rate minimizes the entropy production rate from electron-
electron scattering and the resistance, this solution does not
minimize the entropy production rate from other elastic and
inelastic scattering mechanisms and raises the resistivity for
these mechanisms beyond their original exact resistivity ob-
tained in the absence of electron-electron scattering. In the
presence of realistic �i.e., finite� electron-electron scattering,
there is a compromise between the electron-electron scatter-
ing and the rest of the scattering mechanisms in minimizing
the entropy production rate, enhancing the net resistivity be-
yond the resistivity value without electron-electron scatter-
ing. Practically, the roughness scattering often dominates the
phonon and electron-electron scattering at low temperatures,
as seen in Fig. 1. However, we can theoretically highlight the
importance of the buried electron-electron scattering either
by deducting the contribution of roughness scattering or even
by assuming the absence of roughness scattering in our sys-
tem.

Figure 2 shows the effect of electron-electron scattering
on the resistivity in the presence of strong roughness scatter-
ing in �a� and without roughness scattering in �b�. Case �a�
corresponds to the situation studied in Fig. 1 with the same
definitions for R1, R2, R3 but not for R0. The contribution
from the phonon or electron-electron scattering can be sepa-
rated as clearly seen in �a� which presents the scaled resis-
tance differences �R /R0 and in �b� which shows the scaled
resistance R /R0 as a function of the temperature. In �a�, the
contribution from phonon scattering is shown as R2−R1
�dashed curve�, while the contribution from electron-electron
scattering is shown as R3−R2 �solid curve�. The phonon scat-
tering part R2−R1 displays a rapid rise above T�T0

=2cs�2m*��̄−��0� /kB�2.7 K. The energy kBT0 equals the
energy of the phonon with wave number qy =2k1F corre-
sponding to the momentum transfer between the Fermi
points in the sublevel n=1. For T�T0, R2−R1 is found to
exhibit a linear behavior in T /T0. The electron-electron scat-
tering contribution R3−R2 vanishes at T=0 K due to the re-
stricted phase space available for scattering. However, R3
−R2 increases rapidly with T, roughly �T2 below 2 K, a
well-known behavior from the umklapp scattering process.18

In the high-temperature nondegenerate regime, we can show
analytically that �R3−R2� /R1 approaches a constant �4
−�� /� for the roughness-scattering dominated system in the
presence of strong electron-electron scattering following the
method given earlier by one of the authors.15 In this high

FIG. 1. Scaled resistances �R /R0� as functions of the tempera-
ture T in the range 4�T�8 K. Here, R0=1.06�h /2e2� is the resis-
tance R1 due to surface roughness scattering alone around T
=0.5 K. Three different cases are compared to each other in the
figure: �1� R1 �dash-dot-dotted curve�; �2� roughness plus phonon
scattering �R2, dashed curve�; �3� roughness plus phonon plus
electron-electron scattering �R3, solid curve�. The inset shows
R3 /R0 in the temperature range 0.5�T�8 K.
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temperature regime, the increase of R3−R2 slows down to a
quasilinear dependence of R1 as seen from �a�. In contrast,
we do not see the slow down in the increase of electron-
electron scattering contribution with T at high temperatures
in �b� in the absence of roughness scattering. In this case, we
can show analytically that the ratio of the upper solid curve
and the lower dashed curve approaches a constant 4 /� in the
high-temperature nondegenerate regime for strong electron-
electron interaction.15 Interestingly, the numerical ratio of the
resistance between the solid and dashed curves in �b� ap-
proaches roughly 4/��1.3 at high temperatures.

In the following we study the density dependence of the
resistivity at T=4 K. The quantity �̄ increases with n1D from

one range 0��̄���0 to another range ��0��̄�2��0,
passing through the occupation of the bottom of sublevel n
=1 in the x direction at n1D=0.5�106 cm−1. In Fig. 3, we
show the calculated scaled resistances R /R0 as functions of
the density n1D within a small range 0.8�106�n1D�1.0
�106 cm−1. Here, R0 is the resistance R1 due to surface
roughness scattering at n1D=106 cm−1. When only roughness
scattering is present, the resistance R1 �dash-dot-dotted
curve� decreases with n1D as 1/n1D. With phonon scattering
added, we see very small changes in R2 �dashed curve�.
When electron-electron scattering is further taken into ac-
count, we find relatively large changes in R3 �solid curve�
compared to that in R2. In addition, the differences among
R1, R2, and R3 as functions of n1D are smaller compared to
those shown as functions of T in Fig. 1. The inset of the
figure shows R3 /R0 as a function of n1D in the whole range
of n1D considered. The overall feature of R3 /R0 in the inset is
dominated by the roughness-scattering contribution R1 /R0.
The plateau-like feature in the range 0.4�106�n1D�0.6
�106 cm−1 arises from the abrupt rise of R1 near n1D=0.5
�106 cm−1, where �̄ passes through the bottom of the n=1
sublevel, and the scattering rate is very large due to the large
density of states. This abrupt rise tends to cancel the back-
ground n1D dependent decrease of the resistivity producing
the above plateau-like feature.

The dominance of roughness scattering in Fig. 3 over-
shadows the electron-electron scattering as a function of the
electron density. Figure 4 highlights the effects of electron-
electron and phonon scattering by �a� including and �b� re-
moving the roughness scattering from our system. Case �a�
corresponds to the situation studied in Fig. 3 with the same
definitions for R1, R2, R3 but not for R0. The contribution

FIG. 2. Scaled resistance differences �R /R0 in �a� and the
scaled resistance R /R0 in �b� as functions of the temperature T. The
roughness scattering is included in �a� but is excluded in �b�. Case
�a� corresponds to the situation studied in Fig. 1 with the same
definitions for R1, R2, R3 but not for R0. Two different cases are
compared to each other in �a� with R0=0.106�h /2e2� and L
=0.1 �m: �1� R2−R1 �dashed curve, effect of phonon scattering�;
�2� R3−R2 �solid curve, effect of electron-electron scattering�. We
have compared two results in �b� for phonon scattering only �dashed
curve� and for combined electron-electron and phonon scattering
�solid curve� with R0=0.678�h /2e2� and L=100 �m.

FIG. 3. Scaled resistances �R /R0� as a function of the density
n1D in the range 0.8�106�n1D�1.0�106 cm−1. Here, R0

=1.236�h /2e2� is the resistance R1 due to surface roughness scat-
tering alone at n1D=106 cm−1. Three different cases are compared
to each other in the figure: �1� R1 �dash-dot-dotted curve�; �2�
Roughness plus phonon scattering �R2, dashed curve�; �3� Rough-
ness plus phonon plus electron-electron scattering �R3, solid curve�.
The inset shows R3 /R0 in the range 0.35�106�n1D�1.0
�106 cm−1.
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from the phonon or electron-electron scattering can be sepa-
rated as clearly seen in �a� which presents the scaled resis-
tance differences �R /R0 and in �b� which shows the scaled
resistance R /R0 as a function of the density. In �a�, the con-
tribution from phonon scattering is shown as R2−R1 �dashed
curve�, while the contribution from electron-electron scatter-
ing is shown as R3−R2 �solid curve�. For phonon scattering
in �a�, R2−R1 displays a broad peak around n1D=0.5
�106 cm−1 where the n=1 sublevel starts to be populated.
Just above the threshold density for the occupation of the n
=1 sublevel, the Fermi wave vector k1F of this sublevel is
small allowing efficient emission and absorption of small-
momentum phonons. With further increasing of n1D, k1F be-

comes larger, leading to a suppression of phonon scattering
or a decrease of R2−R1 with n1D. The electron-electron scat-
tering contributions R3−R2 vanishes in �a� at low density due
to the complete cancellation of the intrasubband electron-
electron scattering until the n=1 sublevel is populated at
n1D=0.5�106 cm−1. When n1D increases above this value,
R3−R2 increases dramatically with n1D because more and
more electrons are available for Coulomb scattering, in sharp
contrast to the decrease of R2−R1 with n1D. As a result, R3
−R2 eventually dominates R2−R1 above n1D�0.8
�106 cm−1. In the absence of roughness scattering, we find
from �b� that the effect of electron-electron scattering �solid
curve� is to enhance the phonon-scattering resistivity �dashed
curve� above the threshold density at n1D=0.5�106 cm−1. A
completely different n1D dependence of the resistance is seen
in �b� for a roughness-free system in contrast with that in the
inset of Fig. 3 for a roughness-dominated system.

As a whole, the resistances in the inset of Fig. 3 and in
Fig. 4�b� �solid curve� both decrease with the electron den-
sity n1D for either very small or very large n1D. In addition,
we see a plateau-like feature in Fig. 3 at the threshold density
n1D=0.5�106 cm−1 due to the enhanced density of states for
roughness scattering when the electron chemical potential
passes through the bottom of the n=1 sublevel in this
roughness-dominated system where the phonon scattering ef-
fect is masked. In a roughness-free system, however, the
sharp rise of the resistance is more pronounced near the
threshold density as seen from Fig. 4�b� due to efficient
emission and absorption of small-momentum-energy acous-
tic phonons for electron-phonon scattering between two
Fermi points with small wave numbers near the bottom of
n=1 sublevel.

V. CONCLUSIONS

In conclusion, we have investigated the effect of the
electron-electron interaction on the resistance of diffusive
electrons in a multisublevel single quantum wire as a func-
tion of the temperature and the density at low temperatures.
The intrasubband electron-electron scattering is shown to
have no effect. However, for systems with multisublevel oc-
cupation, electron-electron scattering is shown to enhance
the resistance significantly. Also, this effect is relatively more
important in high-density systems. We have demonstrated
that this effect can be studied with arbitrary accuracy using a
formally exact solution of the Boltzmann transport equation
in the presence of roughness and phonon scattering.

Some early theoretical studies about the effect of electron-
electron interaction on the transport of hot electrons in a
two-sublevel single quantum wire21 were carried out by em-
ploying an ansatz for the distribution of hot electrons in the
high-field limit. In contrast, the results in our paper are based
on the exact solution of the Boltzmann transport equation in
the low-field limit at low temperatures. Since many numeri-
cal studies using the Boltzmann equation have already been
verified with experimental data, we believe that the exact
solution presented in this paper would provide great help to
experimentalists in analyzing their data for future experi-
ments.

FIG. 4. Scaled resistance differences �R /R0 in �a� and the
scaled resistance R /R0 in �b� as a function of the density n1D.
Roughness scattering is included in �a� but is excluded in �b�. Case
�a� corresponds to the situation studied in Fig. 3 with the same
definitions for R1, R2, R3 but not for R0. Two different cases are
compared to each other in �a� with R0=0.124�h /2e2� and L
=0.1 �m: �1� R2−R1 �dashed curve, effect of phonon scattering�;
�2� R3−R2 �solid curve, effect of electron-electron scattering�. We
have compared two results in �b� for phonon scattering only �dashed
curve� and for combined electron-electron and phonon scattering
�solid curve� with R0=0.667�h /2e2� and L=100 �m.
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The main results in our paper may also be relevant to a
quasi-one-dimensional channel over the surface of liquid
helium,22 to some extent although the physical nature of
electron scattering in two cases is quite different. An early
theoretical study about the effects of electron-ripplon inter-
action and electron scattering by helium atoms in the vapor
phase on the mobility of electrons in the quasi-one-
dimensional channel on the liquid-helium surface23 was re-
ported by using a perturbative approach when the electron-

electron scattering in the system becomes dominant in the
high-density limit.
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