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We investigate theoretically the coherent longitudinal and transversal spin relaxation of photoexcited elec-
trons in quantum wells in quantized magnetic fields. We find the relaxation time for typical quantum well
parameters between 102 and 103 ps. For a realistic random potential the relaxation process depends on the
electron energy and g factor, demonstrating oscillations in the spin polarization accompanying the spin relax-
ation. The dependence of spin relaxation on the applied field, and thus on the corresponding “magnetic” length,
can be used to characterize the spatial scale of disorder in quantum wells.
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I. INTRODUCTION

A magnetic field applied to a two-dimensional �2D� elec-
tron system changes both the orbital and spin dynamics of
the carriers. A crucial aspect of this dynamics is spin relax-
ation, which arises due to spin-orbit �SO� coupling. This cou-
pling is well described in zincblende �001�-grown structures
by a Hamiltonian HSO that is the sum of two terms, a Rashba
Hamiltonian1,2 HR=�R ��xpy −�ypx� /� and a Dresselhaus
Hamiltonian3,4 HD=�D ��xpx−�ypy� /�, where �R and �D

are coupling constants, � are the Pauli matrices, and p�

= �px , py�=−i��� − �e /c�A�. Here e is the electron charge, and
A� is a vector-potential of the external field; HR and HD arise,
respectively, due to the artificial macroscopic asymmetry of
the structure, and due to the microscopic inversion asymme-
try of the zincblende unit cell. The coupling constants �R and
�D typically range from 10−10 to 10−9 eV cm.5

The spin relaxation of conducting electrons is usually de-
scribed using a Dyakonov-Perel6 approach, where it is as-
sumed that the orientation of the spin precession axis
changes randomly through scattering by impurities. In the
absence of an external magnetic field the spin relaxation rate
is �DP��� /��2p2�, with � the momentum relaxation time,
and where � depends on �R and �D. Since spin relaxation
arises due to the random spatial motion of the electron, the
orbital effect of a magnetic field, which can restrict the re-
gion over which an electron can sample the effect of impu-
rities, influences the spin relaxation. At �c��1, the relax-
ation rate decreases by a factor7 of �c

2�2, where �c
= �e�B /mc is the cyclotron frequency for a magnetic field B,
with m being the electron effective mass. In such a strong
field the electron path becomes close to a circle, with scat-
tering effects negligible. On this orbit the mean spin preces-
sion angle vanishes due to the fact that the electron velocity
v��t+� /�c�=−v��t�, and, therefore, the randomness in the
precession is suppressed. For a random SO coupling a non-
quantizing magnetic field can, however, speed up spin relax-
ation and make the relaxation process Gaussian rather than
exponential in its time dependence.8 The B dependence of
the relaxation rate in nonquantizing fields can demonstrate
magnetoquantum oscillations, as shown by self-consistent
Born approximation for 2D electron gas in a short-range po-

tential of impurities.9 Analysis of spin relaxation in weak
magnetic fields allows the extraction of SO coupling param-
eters from experimental data.10

Studies of spin dynamics of itinerant electrons typically
assume that their motion can be described semiclassically.
However, spin dynamics of carriers with quantized lateral
motion is of interest both for understanding of the fundamen-
tal physics of spin transport11 and for applications of nano-
size systems in spintronics. An interesting example of a sys-
tem with quantum lateral motion is 2D electron gas in a
strong magnetic field, where Landau states must be used to
represent the electrons and only a few �or a fraction� of the
Landau levels are occupied. An analogous regime has been
widely discussed for quantum dots, where electrons are con-
fined by an external potential. There the SO coupling mixes
states with opposite spins, making spin-flip transitions ac-
companied by phonon emission possible.12 Here we are in-
terested in itinerant two-dimensional electrons, where early
experimental data have shown the suppression of spin relax-
ation in strong magnetic fields.13 The treatment of 2D elec-
trons in quantizing fields is rather subtle,14 with different
theoretical techniques giving different results even for static
properties such as the density of states. The analytical ap-
proaches require approximations that might be not widely
applicable. The situation becomes even more complicated for
the response functions, such as those describing charge and
spin currents, as well as relaxation processes. An analytical
study by Bastard15 of spin relaxation in the self-consistent
Born approximation, for a short-range random potential and
a small electron g factor, where the Zeeman splitting is small
in comparison with the level broadening, showed that both
spin-orbit coupling and disorder play a role, and allowed an
estimation of the relaxation rate.

Here we perform a numerical study of the problem using
the exact diagonalization technique for a large but finite-size
system, and show the diverse physical mechanisms that con-
tribute to the relaxation process. This approach has proven its
applicability in calculations of the spin-Hall conductivity of
a disordered 2D electron gas,16 where the spectrum and the
full set of eigenstates are required for the calculation.
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II. MODEL OF DISORDER AND SPIN DYNAMICS

We consider a quantum well in a magnetic field parallel to
the growth direction, B=Bẑ. The field forms spin-split Lan-
dau levels, inhomogeneously broadened by the disorder. In
undoped quantum wells the random potential arises due to
the monolayer islands of the parent compounds at the inter-
faces �thickness fluctuations� and due to the content varia-
tions near the interfaces.18–20 The island patterns depend on
the growth conditions. The Hamiltonian for an electron in an
undoped quantum well with disorder is

H =
p�

2

2m
+ 	Bg�� · B�/2 + HSO��,p�� + U��� , �1�

where the random contribution U���=�dV��−Rd�, where Rd

is the position of a defect. As a model, we consider the
Gaussian potential V���=Vr exp�−
2 /Rg

2� with the areal den-
sity of defects N���=�d���−Rd�, and a correlation function
�N�0�N����=Nimp����, where Nimp is the average areal den-
sity of defects. To avoid the uniform shift of the Landau
levels, we assume that Vr= ±Vg varies from site to site, being
either positive or negative such that the mean value �U����
=0. The correlation function of the random potential is
�U�0�U����	�U2�Fc�
�, where21

�U2� =
�

2
NimpRg

2Vg
2, Fc�
� = e−
2/2Rg

2
. �2�

At B=0 the momentum relaxation time in this model is
given by

1

�
= NimpVg

2Rg
m

�3
 2�2Rg
3, � � Rg,

�3/16�2�3, Rg � � ,
� �3�

where �=2� /k is the electron wavelength. The result for the
��Rg case is valid in the Born approximation for scattering
by well-separated impurities;14 in the opposite limit the elec-
tron is moving semiclassically in a smooth potential, where
��−3 depends on the electron energy.22

To describe the magnetic field, we choose the Landau
gauge A= �0,Bx ,0� where the eigenstates �nKs� of the unper-
turbed Hamiltonian p�

2 /2m+	Bg�� ·B� /2 are represented by
the spinors:

�nKs�
� =
eikyy

�Ly

1

�1/4�2nn!lB

exp−
xK

2

2lB
2 �Hn xK

lB
��s, �4�

where �s is the spinor corresponding to one of the states
�s�= �↑ � , �↓ � ,n is the Landau level number, the magnetic
length lB=��c / �e�B, xK	x−XK, XK=−kylB

2 is the center of
the oscillator wave function, ky =−2�K /Ly, K
=0,1 , . . . ,Kmax,Ly is the y-axis size of the system, and Hn is
the nth Hermite polynomial. The corresponding unperturbed
spectrum is E�n ,s�=��c�n+1/2�±g	BB /2. Due to the se-
lection rules for the matrix elements of p� and spin compo-
nents �x and �y, the SO coupling only connects states of
opposite spins from nearest Landau levels.23 This results in a
small shift in the energies of the order of m�� /��2. The ma-
trix elements of the disorder Hamiltonian diagonal over the
spin index are given by

Hrnd�n�K�s�;nKs� =� d2
�̄n�K�s����U����nKs��� , �5�

and couple states in all Landau levels for which �XK−XK��
� lB, and, correspondingly �ky −ky���1/ lB, thus leading to
electron localization both in the x and y directions. As a
result the density of eigenstates with energies Ej has the form
of broadened Landau levels, typically �at B=5 T� with the
width � on the order of or less than 1 meV, at least an order
of magnitude smaller than ��c. The corresponding eigen-
functions are expressed as linear combinations:

�� j� = �
n,K,s

anKs
�j� �nKs� , �6�

with complex coefficients anKs
�j� . Only a few of the amplitudes

anKs
�j� are nonnegligible, since U��� couples only the states

with close momenta ky. Due to the combined effect of disor-
der and SO coupling, the �nK1↑ � and �nK2↓ � states within
one Landau level become coupled as shown in Fig. 1�a�, thus
introducing randomness in the spin precession at the fre-
quency scale � /� and, in turn, spin relaxation.

We consider an electron-hole plasma injected by a light
pulse in an undoped quantum well �Fig. 1�b��. We assume
that the plasma density is small, and neglect all many-body
effects. Alternatively, for a doped quantum well, we assume
the carriers are injected into unoccupied Landau states above
the Fermi level. We concentrate on the spin relaxation of
electrons, since the hole spins relax much faster.24

We assume that the spectral width of the exciting light ��
satisfies the conditions ��������c as shown in Fig. 1�b�.
Therefore, the states ��i

in�t=0�� �index 1� i�Nin numerates
the injected electrons, with their total number being Nin� in
which the electrons are injected can be written as superposi-
tion of the �nKis� states from essentially one Landau level nin
and spin projection sin determined by the light polarization.25

FIG. 1. �a� Schematic plot of the broadened Landau levels and
interlevel transitions for �R=0, �D�0. Arrows label electron spins,
and the index n corresponds to the Landau level number. �b� Sche-
matic plot of the optical transitions between the Landau levels.
Only one spin projection is presented.
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Within this approximation a unitary transformation connects
the full sets of ��i

in�t=0�� and �ninKisin�	��Ki
�t=0�� states.

Thus, in place of averaging the time-dependent spin compo-
nents over ��i

in�t��, we can average over the ��Ki
�t�� as fol-

lows:

����t�� =
1

Nin
�
i=1

Nin

��i
in�t������i

in�t�� =
1

Nin
�
i=1

Nin

��i
in�t = 0�

��eiHt/���e
−iHt/���i

in�t = 0�� =
1

Nin
�
i=1

Nin

��Ki

in �t�

������Ki

in �t�� . �7�

This relaxation is coherent in the sense that the total energy
�H� of the injected electrons is conserved on the time scale
considered here and is not transformed into lattice phonons
or low-energy electron excitations.

To evaluate ����t�� numerically, we have to find the spinor
representation of the ��Ki

in �t��; that is, we must determine the
eigenstates of the Hamiltonian H in Eq. �1�. To do this,
we have chosen a basis of nB=256 states per Landau
level for each spin projection. The total Hilbert space
included NL=6 Landau levels, which we find sufficient
for our choice of the parameters given below, for which
��c��. The coefficients anKs

j considered as the elements of
the eigenvectors are arranged in the following order:
��a0K↑� , �a0K↓� , . . . , �aNL−1K↑� , �aNL−1K↓��, where in every sub-
set K is running from 0 to Kmax.

III. NUMERICAL RESULTS: THE ROLE OF THE g
FACTOR AND THE DISORDER LANDSCAPE

For sample calculation we consider two types of typical
structures. The first is a symmetric quantum well with elec-
trons located in a GaAs layer, with the Dresselhaus SO cou-
pling �D=0.35�10−9 eV cm, m=0.067m0 �m0 is the free
electron mass�, and g=−0.45. The other is an asymmetric
structure with the electrons located in a In0.5Ga0.5As layer,
with17 a Rashba SO coupling �R=0.35�10−9 eV cm, m
=0.05m0, and g=4. We assume that both of them have a
width of 10 nm. For these structures the ratio of effective
masses m�GaAs� /m�In0.5Ga0.5As�=1.35, while the electron g
factors are different approximately by a factor of
�g�In0.5Ga0.5As� /g�GaAs��=8.9. It is the difference in
g-factors that will lead to large quantitative difference be-
tween the spin relaxation in these two structures.

As a realization of the disorder19 we consider a short-
range potential with Vg=3.5 meV for GaAs and Vg
=5.0 meV for In0.5Ga0.5As structure, Rg=3 nm, and Nimp
=1012 cm−2. These parameters can describe the random po-
tential arising due to the monolayer thickness variations in
quantum wells of the width of 10 nm. Since lB�Rg, the
width of the Landau level �=��2�c /�� does not depend on
the level number. We also consider a long-range potential
with Rg=20 nm and the same amplitudes Vg as for the short-
range one. Both these random potentials lead to mobilities of
�5�104 cm2/Vs at concentrations of electrons Nel�5

�1011 cm−2 in both structures. Note that in the case of a
long-range potential Rg� lB, we have �=2��U2�. This spa-
tial scale can be achieved by quantum well fabrication with
growth interruption18 or by remote doping on the quantum
well sides.

The results of numerical calculations for the GaAs quan-
tum well are presented in Figs. 2 and 3 or different initial
spin components ��z�0��=−1 and ��x�0��=1, respectively,
two different types of disorder, and magnetic fields of 4 and
8 T. In these GaAs-based structures we find the relaxation
times on the order of 100 ps, of the same order of magnitude
for out-of-plane ��z�t�� and in-plane ��x�t�� spin compo-
nents. They relax on the same time scale since the same
mechanism, that is the random spin precession, leads to the
relaxation in both spin polarizations. With the increase of the
Landau level number, the electron motion becomes less sen-
sitive to the disorder, and the spin relaxation time increases,
as demonstrated by the results for n=2 in Figs. 2 and 3. This
corresponds well to the experimental results of Sih et al.26

Spin relaxation due to acoustic phonon emission27 occurs at
a much longer time scale and is not considered here. An
interesting effect is the spin precession in the ��z�t�� relax-
ation, clearly seen in our calculations. The spin-orbit interac-
tion couples Zeeman-split Landau levels which are broad-
ened due to disorder, and so the z component of the spin is

FIG. 2. �Color online� �a� ��z�t�� for a short-range �Rg=3 nm�
potential and �b� ��z�t�� for a long-range �Rg=20 nm� potential in
the GaAs quantum well. Solid lines correspond to n=0; the dashed
line in �a� corresponds to n=2, B=4 T. The strength of magnetic
field is shown near the lines.

FIG. 3. ��x�t�� for a short-range potential �Rg=3 nm� in the
GaAs quantum well, with B=4 T. Landau level numbers are shown
near the lines.
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not a constant of motion. For this reason, the initially pre-
pared �z= ±1 states precess with the frequencies in the range
determined by the Zeeman splitting and the Landau level
width, distributed over interval of the width � /� centered at
g	BB /�. The precession amplitude is smeared with time due
to spin relaxation, as seen in our results.

Figure 4 presents the results for In0.5Ga0.5As structure,
where the spin relaxation is much slower. Due to the in-
creased Zeeman splitting the frequency of the spin oscilla-
tions here is considerably larger than that in the GaAs quan-
tum well, and the oscillations become more well defined.
The role of the Zeeman splitting �g�	BB in spin relaxation,
clearly seen when one compares the results for the GaAs and
In0.5Ga0.5As structures, is crucial to the mechanism of the
spin relaxation and can be understood as follows.28 The ran-
dom potential accompanied by SO coupling leads to the
spin-flip transitions. However, only spatially close states
�with a large overlap� with opposite spins can contribute ef-
fectively to the spin relaxation. On the other hand, the spin-
flip process should conserve energy, and, therefore, a lateral
distance �s on which the orbital has to be displaced to find its
spin-flip partner state depends on the Zeeman splitting. To
understand the effect we evaluate the fluctuation of the ex-
pectation value of energy for a state described by wave func-
tion ����:

���U��2� = �� U��1���2��1� − �2��1 + ���d2
1�2�
= 2�U2� � Fc��1 − �2��2��1���2��2�

− �2��2 + ���d2
1d2
2. �8�

This fluctuation can be calculated in two limiting cases as

���U
�2� = 2�U2�� 1 − Fc�
� , lB � Rg,

Rg
2

lB
2 �1 − e−
2/4lB

2
� , lB � Rg, � �9�

where we assumed for an estimate that for the ground orbital
state �2���=exp�−
2 /2lB

2� /2�lB
2 . If �s determined by energy

conservation is less than lB, that is �g�	BB
� �U2�1/2 min�lB /Rg ,Rg / lB�, the relaxation occurs effectively.
In the opposite case, the decay time increases due to a small
spatial overlap of the initial and final states. In other words,
if �g�	BB��, the spin relaxation is suppressed, since the
energy conservation cannot be fulfilled in the spin-flip pro-
cess. In this case the z component of spin relaxes from the
initial value by approximately � / �g�	BB, and then the system
has to pass by emitting acoustic phonons through a phonon
bottleneck27 for the spin to relax it further.

This “spin-flip distance” argument explains the difference
between the spin relaxation for a “long” and “short”-range
potentials shown in Fig. 4. In both cases the amplitude of the
potential fluctuations is the same, but in the case of a long-
range potential the electron must be displaced a longer dis-
tance to find its spin-flip partner state. Thus, the relaxation
rate decreases with the increase of the correlation length Rg,
in agreement with results presented in Fig. 4.

IV. CONCLUSIONS AND POSSIBLE APPLICATIONS

To conclude, we investigated the spin relaxation in quan-
tizing magnetic fields in a disordered 2D electron gas and
found that the result depends on the Landau level number,
and that the process is accompanied by spin oscillations. The
mechanism discussed here is different from the usual
Dyakonov-Perel’ mechanism and is closer in nature to the
Elliot-Yafet mechanism, in which the spin relaxation rate in-
creases with the disorder.4 The relaxation rate depends on the
details of the potential and electron g factor and cannot be
understood solely in terms of the electron mobility.

The results obtained can be used to characterize the dis-
order in undoped quantum wells. Such disorder is typically
probed experimentally by studying the inhomogeneous
broadening of the spectra of excitons, a technique restricted
either to the spatial scale given by the exciton Bohr radius or
by the exciton localization length.20 Neither of these lengths
can be changed externally in a well-controlled way. The ad-
vantage of studying the spin relaxation in a magnetic field is
that it allows probing different spatial scales of disorder by
controllably changing the length lB trough varying the mag-
netic field.
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