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We study the Stokes exciton transfer rate from a narrow quantum wire �QWR� to a parallel wide QWR
separated by a wide barrier and also to a planar array of parallel wide QWRs. The transfer rate is calculated as
a function of the distance d between the narrow QWR and the wide QWR and also the array. The dependence
of the rate on the temperature and the localization radius is studied for free and localized excitons, respectively.
Both the resonant and nonresonant rates are considered. We find that, for energy transfer between two QWRs,
the Förster dipole-dipole transfer dominates the transfer rate at short and intermediate distances. The photon-
exchange transfer prevails only at an extremely long distance where the rate is negligibly small. This behavior
is in contrast with the two-dimensional quantum wells, where the photon-exchange mechanism is dominant
except at a very short distance. However, for the energy transfer to an array of QWRs, the photon-exchange
transfer rate continues to increase as the array size grows to a macroscopic scale due to its slow range
dependence while the dipolar rate saturates quickly with the array size. As a result, the photon-exchange
transfer can become dominant in a system consisting of stacks of QWRs or arrays distributed over a wide
range. The prediction of the theory is consistent with recent data from V-groove GaAs/AlxGa1−xAs double
quantum wires.
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I. INTRODUCTION

Excitons are a useful storage reservoir of light energy and
play an important role in optical devices. Modern semicon-
ductor device structures contain stacked two-dimensional
�2D� layers and one-dimensional �1D� wires for an increased
efficiency. The physics of exciton motion between these con-
fined structures is not yet satisfactorily understood and is of
much practical and academic interest. While exciton transfer
between 2D quantum wells �QWs� have been studied in the
past experimentally1,2 and theoretically,1,3,4 exciton transfer
between 1D quantum wires �QWRs� is attracting attention
only recently5 due to the difficulty of growing these struc-
tures. In this paper, we present a study of the Stokes energy
transfer rate from a narrow QWR �nQWR� to a wide QWR
�wQWR�. This transition has been observed recently be-
tween two V-groove GaAs QWRs.5 The anti-Stokes rate
from a wide well to a narrow well is expected to be much
slower1 for a large energy mismatch because it involves
higher-order inelastic processes and is more difficult to ob-
serve. This rate relies on a different mechanism3 and is be-
yond the scope of the present treatment. We also study en-
ergy transfer from a nQWR to an array of parallel wQWRs
as a function of the array size and the distance between the
nQWR and the array.

According to previous data,1,2 the exciton transfer rate
between widely separated 2D QWs decays slowly with the
distance between the QWs, persisting over a surprisingly
long distance, over many tens of micrometers. This intrigu-
ing behavior could not be explained1–3 by the standard
Förster7 �e.g., dipole-dipole� transfer rate which decays rap-
idly as �1/d4, where d is the center-to-center distance be-
tween the QWs. This behavior was explained recently by the

present author by showing that while the Förster mechanism
dominates the rate at a very short distance ��10 nms�, the
photon-exchange coupling prevails at a longer distance.3

This result arises from the fact that the photon-exchange cou-
pling decays slowly with distance and that photons can reach
a wide area in the target �i.e., final-state� QW, enhancing the
efficiency.8 In the present 1D-1D transfer problem, however,
the target QWR has a small effective cross section due to the
narrow dimension in the direction perpendicular to the plane
containing both wires, resulting in a poor efficiency for the
long-range photon-exchange mechanism compared with the
2D-2D case. For the energy transfer between the nQWR and
an array of wQWRs, however, the photon-exchange transfer
rate is shown to continue to increase slowly as the array size
grows to a macroscopic scale in contrast with the dipole-
dipole rate which is shown to saturate quickly with the in-
creasing array size. As a result, the photon-exchange transfer
becomes important in a system consisting of stacks of QWRs
or arrays distributed over a wide range. For energy transfer
between two parallel QWRs, the prediction of this paper is
consistent with the recent data5 which showed that the rate
decays rapidly as a function of d. The same data,5 however,
show a slow decay of the rate with increasing d for transfer
between 2D QWs in agreement with earlier data.1,2 In the
present paper, we extend our previous work,3 presenting the
essential formalism relevant for the 1D-1D transfer.

The organization of the paper is as follows. In the next
section, we present a basic formalism describing the 1D ex-
citon states and the electron-hole �e-h� pair states. The exci-
ton transfer mechanism through dipole-dipole coupling and
photon-exchange interaction is described in Sec. III. The
transition rate is given in Sec. IV. In Sec. V we discuss the
basic approximations employed for evaluating the rate. The
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transfer rates are numerically evaluated in Sec. VI, where
discussions of the results and a comparison with recent data
are presented. Finally, a brief concluding remark is given in
Sec. VII.

II. BASIC FORMALISM

The two QWRs of interest are shown schematically by the
two cylindrical wires in bold figures in Fig. 1. They are sepa-
rated by a distance d in the z direction and y in the y direc-
tion with a net distance r=�d2+y2. The wires are along the x
direction. Numerical studies for transfer between two QWRs
are carried out for y=0, namely for r=d while the formalism
is given for general y. The rest of the wires in Fig. 1 are
identical to wQWR and form an array parallel to the x-y
plane. Energy transfer from the nQWR to the array structure
will be considered later. The confinement is assumed to be
strongest in the z direction and only the ground sublevels
shown in the bottom inset are relevant in this direction. Ex-
perimentally, the illustrated structure is a rough approxima-
tion to parallel V-groove quantum wires.5 The excitons are
initially in the ground sublevel of the nQWR and transfer to
the ground sublevel of the wQWR, which is much lower in
energy as illustrated in the lower inset of Fig. 1. This non-
resonant transfer is dominantly via e-h pair emission. It is
possible that one of the sublevels of the wQWR in the y
direction may be close to the ground level of the nQWR. In
this case, resonant transfer can be efficient.

The 1s exciton wave function in the jth �j=1,2� QWR is
given by3,6

�j,K� =
v0

�L
�
re,rh

eiKXFj�x,re� − r j�;rh� − r j��acre

† avrh
�0� ,

�1�

where K is the wave number for the center-of-mass �CM�
motion, X=�exe+�hxh is the CM coordinate along the wire,
x=xe−xh is the relative coordinate, r�= �x� ,r��� is the posi-
tion of the electron ��=e� and the hole ��=h�, r j� is the
position of the jth QWR in the direction perpendicular to the
wire, ��=m� /M, and M =me+mh is the total mass. We as-
sume that the indices j=1 and 2 represent the nQWR and the
wQWR, respectively. In Eq. �1�, L is the wire length, v0 is
the unit-cell volume, and �0� signifies the ground state with
an empty conduction band and a filled valence band. The
creation and destruction operators acre

† and acre
�avrh

† and avrh
�

creates and destroys an electron in the conduction �valence�
band at the position re �rh� in the Wannier representation.
The normalization condition of the wave function is given by
�j� ,K� � j ,K�=� j,j��K,K� or equivalently by

� dx� d2re�� d2rh��Fj�x,re�;rh���2 = 1, �2�

as can be shown by converting �r�
→	d3r� /v0. Here, the

overlap between the confinement wave functions of the two
QWRs is neglected.

Excitons can be localized due to disorder such as intro-
duced by interface roughness. In this case, we introduce a
phenomenological �normalized� wave function for the CM
coordinate:10

G�X� = 
 1

��2�1/4

e−X2/2�2
�3�

and obtain

�j,Xa� = v0 �
re,rh

G�X − Xa�Fj�xe − xh,re� − r j�;rh�

− r j��acre

† avrh
�0� �4�

for the wave function localized at X=Xa with a localization
radius �. It follows from Eqs. �1� and �4� that

�j,K�j�,Xa� = � j,j��4��2/L2�1/4e−�2K2/2e−iKXa �5�

in view of Eq. �2�. Note from Eq. �5� that transitions from the
localized state to plane-wave state are restricted by the mo-
mentum uncertainty condition K	�−1.

For Stokes transitions, a direct resonant transition be-
tween the same sublevel from the nQWR state �1,K� to the
wQWR state �2,K� at a much lower energy is not allowed
because energy and momentum cannot be conserved simul-
taneously. On the other hand, phonon-assisted transition via
phonon emission is very slow.3 The most efficient mecha-
nism in this case is the process whereby the exciton in the
initial well breaks up into a free e-h pair in the final well,
releasing the extra energy into the kinetic energy 
k
��2k2 /2� of the e-h relative motion while conserving the
momentum K for the CM motion, where K=ke+kh, k=�ekh
−�hke, and � is the reduced mass. The free e-h pair state

FIG. 1. A schematic diagram of two narrow and wide QWRs
�bold figures� parallel to the x axis. The two wires are separated by
the center-to-center distance d�y� in the z�y� direction. The wires in
the background represent a uniform symmetric planar array of iden-
tical parallel wide wires. The inset at the bottom shows the ground
sublevels of the nQWR �thick horizontal lines� and the wQWR �thin
horizontal lines� in the conduction and valence bands in the z di-
rection. The energy mismatch is given by E12=E1−E2.
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consists of the product of the plane-wave states with ke and
kh:

�j,K,k� =
v0

L
�
re,rh

eiKXe−ikxe�re� − r j��h�rh�

− r j��acre

† avrh
�0� , �6�

where e�re�� and h�rh�� are the confinement wave func-
tions in the wQWR. Note that the total kinetic energy of
this state along the wire can be split into the CM and
relative motion: �2ke

2 /2me+�2kh
2 /2mh=EK+
k, where EK

��2K2 /2M is the CM kinetic energy and is conserved
through the transition. In the wQWR, there may be many
densely spaced sublevels and one of the high-energy sublev-
els may be resonant with the ground sublevel of the nQWR
as mentioned earlier. In this case, direct resonant transition is
important as will be shown later.

III. EXCITON TRANSFER MECHANISM

We consider two exciton transfer mechanisms in this sec-
tion. One is the standard dipole-dipole interaction and the
other is the photon-exchange mechanism mentioned in the
Introduction. Defining the dipolar interaction as7,11

C�x,R�� =
e2

�R3 D1 · D2 − 3�R · D1��R · D2�/R2� , �7�

the matrix element for the dipolar coupling between the
wires is given by3

�2,K��Hdip�1,K� = �K,K�� d2r�� d2r�� C�K,R��F2
*�0,r�� ;r�� �

�F1�0,r�;r�� , �8�

where r�= �y ,z�, r�� = �y� ,z��, R�= �y�−y ,z�+d−z� is the
2D relative position vector perpendicular to the wire, and
C�K ,R��=	exp�iKx�C�x ,R��dx. In Eq. �7�, R= �x ,R�� ,R
= �R�, D j is the transition dipole moment, and � is the bulk
dielectric constant. The quantity C�K ,R�� is obtained from
Eq. �7� and equals

C�K,R�� =
2e2

�R�
2 �D1 · D2 − D1xD2x − 2�R̂� · D1�

��R̂� · D2��K̃K1�K̃� + �R̂� · D1��R̂� · D2�

− D1xD2x�K̃2K0�K̃� − i�D2xR̂� · D1

+ D1xR̂� · D2�K̃2K1�K̃�� , �9�

where R�= �R��, R̂�=R� /R�, K̃=KR�, and Kn�x� is the
nth-order modified Bessel function.

The matrix element for transition from a localized exciton
state in the nQWR to a plane-wave state in the wQWR is
given in view of Eqs. �5� and �8� by

�2,K��Hdip�1,Xa� = �4��2/L2�1/4exp�− �2K�2/2�e−iK�Xa

�� d2r�� d2r�� C�K�,R��F2
*�0,r�� ;r�� �F1�0,r�;r�� .

�10�

The matrix element for the decay of the exciton in the
nQWR into an e-h pair in the wQWR is obtained similarly,
yielding

�2,K�,k��Hdip�1,K� =
�K,K�
�L

� d2r�� d2r�� C�K,R��

� 2eh��r�� �*F1�0,r�;r�� , �11�

where  jeh��r��= je�r�� jh�r�� and  j��r�� is the con-
finement wave function. We also find

�2,K�,k��Hdip�1,Xa� = �4��2/L4�1/4exp�− �2K�2/2�e−iK�Xa

�� d2r�� d2r�� C�K�,R��2eh��r�� �*F1�0,r�;r�� .

�12�

Another coupling mechanism for the exciton transition is
through photon exchange. For interwell transfer between two
2D QWs, this mechanism was found to play a major role
except for a short distance.3 In this paper, we assess the
relative importance of the photon-exchange transfer in 1D
QWRs. The coupling is achieved via two-step processes
whereby the electron recombines with the hole in the nQWR
emitting a resonant or a virtual photon which travels to the
wQWR and excite a valence electron into the conduction
band. The final e-h state in w QWR can be an exciton state or
a free e-h pair state. In the latter case, the e-h pair forms an
exciton rapidly within a time much shorter than the radiative
lifetime of the exciton.

The matrix element for the photon-exchange transfer of
an exciton in the nQWR into an e-h pair in the wQWR can
be calculated following the method given in Ref. 3 and is
given for a plane-wave exciton by

�2,K�,k��Hphot−ex�1,K� =
�eEgD�2n

2� � c�L
Q�K���K,K�, �13�

and a localized exciton by

�2,K�,k��Hphot−ex�1,Xa� = �4��2�1/4 �eEgD�2n

2� � cL
e−iK�Xa

�exp�− �2K�2/2�Q�K�� , �14�

where

Q�K�� =� ��K� − qx�
ei�qzd+qyy�P�q�F1�q���2eh��q��*

q�Eg − � �q − i��
d3q ,

�15�

F j�q�� =� � exp�− iq� · r��Fj�0,r�,r��d2r�, �16�
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� jeh��q�� =� � exp�− iq� · r�� jeh��r��d2r�, �17�

and

P�q� = �
�

ê��q� · D̂1�ê��q� · D̂2� . �18�

Here, q�= �qy ,qz�, D̂ j =D j /Dj, Dj = �D j�, and ê��q� is the po-
larization vector for the photon with mode �, the energy ��q,
the wave vector q, and � is a negligibly small damping pa-
rameter. In Eqs. �13� and �14�, Eg is the band gap and n is the
refractive index, while the quantity y in Eq. �15� is the y
coordinate of the center of the wQWR relative to that of the
nQWR. This notation y is chosen for its simplicity and is not
to be confused with the dummy variable y in Eqs. �16� and
�17�.

Similarly, coupling between plane-wave and localized ex-
citon states in the nQWR and a plane-wave state in the
wQWR through photon exchange is given by

�2,K��Hphot−ex�1,K� =
�eEgD�2n

2� � c
R�K�� �19�

and

�2,K��Hphot−ex�1,Xa� = �4��2/L2�1/4 �eEgD�2n

2� � c
e−iK�Xa

�exp�− �2K�2/2�R�K�� , �20�

respectively. Here,

R�K�� =� ��K� − qx�
ei�qzd+qyy�P�q�F1�q��F2�q��*

q�Eg − � �q − i��
d3q .

�21�

The quantity P�q� can readily be evaluated for the case
D1 �D2, yielding12

P�q� =
q�

2

q2 , �22�

where q� is the component of q perpendicular to D j. For the
case D1�D2, we find12

P�q� = −
�q · D̂1��q · D̂2�

q2 . �23�

IV. TRANSITION RATE

We consider exciton transfer from plane-wave states
�1, i�= �1,K� or localized states �1, i�= �1,Xa� in the ground
sublevel of the nQWR to final states �2, f� in the wQWR. The
analysis presented in this section is applicable to both dipole-
dipole and photon-exchange energy transfer. Defining E12 as
the difference between the sum of the electron and hole sub-
level energies of the initial and the final QWRs as illustrated
in the bottom inset of Fig. 1, E12 is large for transitions
between the ground sublevels in typical asymmetric QWRs.
In this case, inelastic processes are required to dissipate the

extra energy in the nQWR. It turns out that phonon-assisted
processes are not efficient.3 The extra energy is more effi-
ciently dissipated through creation of free e-h pairs in the
wQWR.1,3 This rate equals

Weh =
2�

� � �
K�,k�

��2,K�,k��H�1,i��2��Ei + E12
* − EK� − 
k���

av

,

�24�

where the matrix elements are given by Eqs. �11�–�14�, E12
*

=E12−EnB, EnB is the exciton binding in the nQWR, the tri-
angular brackets signify the thermal average over the initial
energy Ei, and Ei=EK for the plane-wave states. For local-
ized excitons, we assume Ei=0 for the numerical evaluation
later and omit thermally averaging over the initial states. The
latter is determined by the density of states which, in turn, is
determined by the dependence of the exciton energy on � and
the distribution of �. These quantities are not well known.

The k� summation in Eq. �24� can be readily carried out
since the matrix element is independent of k�, yielding

Weh =
�2�L

�2 ��
K�

��2,K�,k��H�1,i��2

�Ei + E12
* − EK�

��Ei + E12
* − EK���

av

,

�25�

where ��x� is a unit step function. Here, k� is maintained in
the notation for the matrix element �2,K� ,k� �H �1, i� to indi-
cate the nature of the final state, although it is independent of
k�. For the plane-wave states i=K, Eq. �25� yields, in view of
K=K�,

Weh =
2�2�L

�2KT
��

��E12
* �

�E12
* �

0

�

exp− �K/KT�2�

���2,K,k��H�1,K��2dK , �26�

where KT=�2MkBT /� is basically the cutoff wave number
and T is the temperature. For localized states we use Eqs.
�11� and �12� and find

Weh =
2�2�L

�2K�
��
�

0

�

exp− �K/K��2�

���2,K,k��H�1,K��2
��Ei + E12

* − EK�
�Ei + E12

* − EK

dK . �27�

Here, the K integration i.e., the K� summation in Eq. �25��
extends effectively to the cuttoff wave number K��1/�.
Note that the dependence of Weh on KT in Eq. �26� is the
same as the dependence of Weh on K� in Eq. �27� in the limit
of large �, where EK�

is negligibly small in the denominator
of Eq. �27�. Namely, the � dependence of Weh in Eq. �27� can
be obtained from the T dependence of Weh in Eq. �26� and
vice versa through the interchange T↔kB

−1�2�−2 /2M or
equivalently � /Å↔2.103�102�mo /MT, where T is in K.

If the final state is in the excited sublevel in wQWR
which is nearly resonant with the ground sublevel of the
nQWR, a direct resonant transfer into final exciton states is
very efficient. The transfer rate is given by3
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Wres =
2

���
K�

��2,K��H�1,i��2�2K��E1i�

�Ei + E12
** − EK��

2 + �2K��E1i�2�
av

, �28�

where E12
**=E12−EnB+EwB is the net energy mismatch and

�2K��E1i� is damping in the wQWR at the initial total energy
E1i�E1−EnB+Ei. Here, E1 �E2� is the sum of the electron
and hole sublevel energies in the nQWR �wQWR�. The ma-
trix element �2,K� �H �1, i� is given by Eqs. �8�, �10�, �19�,
and �20�. In Eq. �28�, we neglect damping in the ground state
of the nQWR compared with that of the excited state of the
wQWR.

For plane-wave states �1, i�= �1,K� with Ei=EK, Eq. �28�
equals

Wres =
4

�KT
��
�

0

�

exp− �K/KT�2���E12
**

+ EK�
��2,K�H�1,K��2�2K�E1i�

E12
**2 + �2K�E1i�2 dK , �29�

where E1i=E1−EnB+EK. For localized states, Eq. �28� yields

Wres = � 2�2�M��E12
** + Ei�

�2K�
�EK

exp− �K/K��2�

���2,K�H�1,K��2�
EK=E12

**+Ei

. �30�

If the initial energy E1i is below the band bottom E2f =E2
−EwB of the final energy of the wQWR �corresponding to
anti-Stokes transfer�, the quantity �2K�E1i� and therefore Wres

vanishes as indicated by the unit step functions in Eqs. �29�
and �30�, requiring an activated energy Ei, yielding small
Wres at low temperatures. On the other hand, the matrix ele-

ment becomes small, ��2,K �H �1,K� ��exp�−K̃��1, for K̃
�1 if E1i is too far above E2f. There is an additional Gauss-
ian cutoff factor KT for the plane-wave states and K� for the
localized states.

V. APPROXIMATIONS

In this section, we introduce approximations in order to
simplify the numerical evaluation for an order of magnitude
estimate of the transfer rate. These approximations can be
improved for a better accuracy but with a longer computation
time. The exciton wave function is determined by the elec-
tron hole �e-h� Coulomb attraction potential and the confine-
ment energy of the electron and the hole in the perpendicular
directions and cannot be solved exactly. We therefore make
the following approximation

Fj�x,re�,rh�� = � j�x� je�re�� jh�rh�� , �31�

where ��r��� is the confinement wave function in a given y
sublevel in the absence of e-h interaction and ��x� is deter-
mined by


−
�2

2�

d2

dx2 + Vjeh�x��� j�x� = E� j�x� , �32�

where � is the reduced mass and Vjeh�x� is the effective e-h
attraction given by9

Vjeh�x� = −
e2

�
� d2re�� d2rh�

� je�re�� jh�rh���2

�x2 + �re� − rh��2
.

�33�

The eigenfunction � j�x� is obtained numerically.
We also assume that the size of the cross sections of the

wires is small compared with the interwire distance d and �g
defined by ��g�Eg with q=�−1. For GaAs QWRs, we esti-
mate �g=353 Å for Eg=1.52 eV and n=3.68. These approxi-

mations yield R�= �0,y ,d�, R�=r��d2+y2, and K̃=Kr,
where y was defined earlier for Q�K� in Eq. �15�. Equation
�9� then reduces to

C�K,r� �
2e2

�r2 �D1yD2y − D1zD2z�K̃K1�K̃� + �D1zD2z

− D1xD2x�K̃2K0�K̃� − i�D1zD2x + D1xD2z�K̃2K1�K̃�� .

�34�

We can also simplify Eqs. �8� and �10�–�12� to

�2,K��Hdip�1,K�

= �K,K�C�K,r��1�0��2
*�0��1eh��0��2eh��0�*,

�35�

�2,K��Hdip�1,Xa� = �4��2/L2�1/4exp�− �2K�2/2�e−iK�Xa

� C�K�,r��1�0��2
*�0��1eh��0��2eh��0�*,

�36�

�2,K�,k��Hdip�1,K� =
�K,K�
�L

C�K,r��1�0��1eh��0��2eh��0�*,

�37�

and

�2,K�,k��Hdip�1,Xa� = �4��2/L4�1/4exp�− �2K�2/2�e−iK�Xa

� C�K�,r��1�0��1eh��0��2eh��0�*,

�38�

respectively, in view of Eq. �17�. In Eq. �38�, � jeh��0�=1 for
an infinitely deep square-well potential or if the difference
between the electron and the hole confinement wave func-
tions are ignored in the wQWR.

Similarly, we also find, for the photon-exchange interac-
tion,

Q�K� = �1�0��1eh��0��2eh��0�*S�K� �39�

for Eqs. �13� and �14� and

R�K� = �1�0��2�0��1eh��0��2eh��0�*S�K� �40�

for Eqs. �19� and �20�, where
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S�K� =� ��K − qx�
ei�qzd+qyy�P�q�

q�Eg − � �q − i��
d3q . �41�

Designating S�K� as Suv�K� for the case D1 �u and D2 �v
in Eq. �18� where u and v are unit vectors which can lie in

any of the x, y, and z directions, the following useful identi-
ties are obtained from Eqs. �22�, �23�, and �41�:

Sxx�K� = 2��
0

� J0�q�r�q�
3 dq�

q3�Eg − � �q − i��
, �42�

Syy�K� = 2��
0

� �q2 − q�
2 y2/r2�J0�q�r� + q��r2 − 2y2�J0��q�r�/r3�q�dq�

q3�Eg − � �q − i��
, �43�

and

Szz�K� = 2��
0

� �K2 + y2q�
2 /r2�J0�q�r� + q��2y2 − r2�J0��q�r�/r3�q�dq�

q3�Eg − � �q − i��
, �44�

where q=�K2+q�
2 , J0�x� is the zeroth-order Bessel function,

and use is made of the relationship xJ0��x�=−J0��x�+xJ0�x��.
Here, the prime means the derivative with respect to the
argument. We also find

„Sxy�K�,Sxz�K�… = 2�iK
�y,d�

r
�

0

� J0��q�r�q�
2 dq�

q3�Eg − � �q − i��

�45�

and

Syz�K� = −
2�yd

r3 �
0

� rq�J0�q�r� + 2J0��q�r��q�
2 dq�

q3�Eg − � �q − i��
.

�46�

VI. NUMERICAL EVALUATIONS AND DISCUSSIONS

We assume harmonic potentials for the confinement wave
functions ��r���. The Hamiltonian in Eq. �32� for motion
in the s=y ,z direction is given by

H� =
���

2

−

�2

� s̃2 + s̃2� , �47�

where s̃=s /�� is the reduced coordinate and ��=�� /��m�.
The four-dimensional integration in Eq. �33� can be simpli-
fied if we assume that the confinement length ��� �but not
the energy ���� is the same for the electron and the hole and
depends only on the direction ����s. This situation occurs
for a deep rectangular potential of width Ls. By equating the
ground sublevel energies from the two models, we estimate
�s�Ls /��. This relationship will be used to indicate the
approximate size of the cross section of the QWR. For the z
direction, only the ground sublevel n=0 is considered while
excited levels are allowed in the y direction for possible reso-
nant transfer. It is convenient for the integrations in Eq. �33�
to rotate the coordinate into the new axes z+=ze+zh, z−=ze
−zh, y+=ye+yh, and y−=ye−yh. The effective e-h potential is

then given, after carrying out the z+ integration, by

Veh�x� =

−
e2

2�2���z
� � � exp�− z−

2/2�z
2��n�ye��n�yh�

�x2 + z−
2 + y−

2
dz−dy+dy−,

�48�

where n=0,1 ,2 , . . . and

�n�y� =
1

2nn ! � ��
exp�− y2/�y

2�Hn�y/�y�2. �49�

Here, Hn�x� is the nth-order Hermite polynomial. The y+

integration can be carried out for n=0 using ye
2+yh

2= �y+
2

+y−
2� /2 in the exponent of the the product �n�ye��n�yh�. For

n�0, the product contains a polynomial of powers of y+ and
y−. The y+ integration can be carried out analytically term by
term, leaving only the z− and y− integrations, which are car-
ried out numerically.

For a numerical evaluation, we use for GaAs QWRs �Ref.
3� �=12.4, D1=D2=5.5 Å, me=0.067m0 where m0 is the
free electron mass and mh=0.16m0.13 The n=0 binding en-
ergies are given by 14.5 and 10.1 meV, respectively, for Lz
=5, Ly =10 nm assumed for the nQWR and Lz=8, Ly
=16 nm assumed for the wQWR.5 For the level n=2 of the
wQWR, we find 6.0 meV for the binding energy. Initially,
we study transfer to a single wQWR at y=0 at a distance r
=d. The effect of the energy transfer to a planar array of
parallel wQWRs will be discussed later.

Figure 2 displays the dipole-dipole transfer rate Weh in
Eq. �26� for an effective energy mismatch E12

* =22.6 meV. In
general, the dipole moments are given by a linear combina-
tion of the components in the x, y, and the z directions. For
the purpose of order of the magnitude estimate, we consider
the following three cases. The dashed, solid, and dashed-
dotted curves correspond, respectively, to the cases where D1
and D2 are �i� both in the x axis, �ii� randomly in the x, y
axes, and �iii� in the x, y, z directions. The top dashed-dotted
curve is roughly parallel to 1 /d4 in the range d�180 Å. The
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asymptotic rate follows 1/d4 or 1 /d5depending on the tem-
perature. The asymptotic behavior originates from the

K̃-dependence of Eq. �34�. Defining dT=1/KT, the rate in Eq.
�26� is proportional to

Weh �
1

r5�
0

�

exp− �dT/r�2K̃2�f�K̃�2dK̃ ,

where f�K̃� is the the quantity inside the square brackets of

Eq. �34�, namely f�K̃�=�r2C�K ,r� /2e2. For dT�r, the main

contribution to the integral arises from K̃	1 in view of
Kn�x�→e−x�� /2x for x�1 and becomes independent of r,
yielding Weh�1/r5=1/d5 for y=0 for all the curves in Fig.
2. This d dependence is expected from a crude dimensional
analysis showing that the dipole-dipole rate has a R−6= �x2

+y2+d2�−3 dependence according to Eq. �7�. Integrating this
quantity over −� �x�� for y=0 yields the above d−5 de-
pendence. For transfer to a 2D QW or a planar array of
parallel the wQWRs, another integration over −� �y��
yields a d−4 dependence. For dT�r on the other hand, the

main contribution arises from K̃	r /dT�1, where f�K̃� is

independent of K̃ for cases 2 and 3 above, yielding Weh
�1/r4=1/d4 for the solid and dashed-dotted curves in Fig. 2.
For the dashed curve, a similar analysis shows that Weh has a
much slower d dependence. We find dT=140 Å at 10 K: The
curves are entering the asymptotic limit Weh�1/d5near the
upper range of d in Fig. 2.

The three thin curves in Fig. 3 show the temperature de-
pendence of the rates studied in Fig. 2 at a distance d
=150 Å. The thick curves show enhanced rates for a much
smaller effective energy mismatch E12

* =E12−EnB=2 meV for
the same parameters otherwise. In this case, the energy dis-

sipated into the relative e-h motion is small, yielding a larger
rate due to the enhanced 1D density of states �with a van
Hove singularity� at a low energy.

Figure 4 displays the dipole-dipole transfer rates Weh of
the localized excitons in Eq. �27� for �=60 Å �thin curves�
and �=200 Å �thick curves� for E12

* =E12−EnB=22.6 meV.
As discussed earlier, the � dependence of the rate here can be
deduced from the T dependence of the rate obtained in Eq.
�26� and studied in Fig. 3 through the fact that the KT depen-
dence of the latter is the same as the K� �=1/�� dependence
of the former for large �. This property is shown more clearly
in the next figure.

Figure 5 shows the dipole-dipole transfer rates Weh of the
localized excitons in Eq. �27� as a function of � for d
=100 Å �thin curves� and d=150 Å �thick curves� for E12

*

=E12−EnB=22.6 meV for comparison with the temperature
dependence of Weh. The near saturation for the upper four
curves above ��300 Å is correlated with the saturation of
the upper four curves in Fig. 3 below 1 K as discussed in
Sec. IV following Eq. �27�. Similarly, the continuous de-
crease of the other two lower dashed curves below �30 K in
Fig. 3 is correlated with the continuous decrease of the two
dashed curves above ��50 Å in Fig. 5.

Figure 6 displays resonant dipole-dipole transfer rates ob-
tained from Eqs. �29� and �30� for the case where e1h1 en-
ergy in the nQWR is nearly resonant with the e3h3 energy in
the wQWR with a net energy mismatch E12

**=1 meV. Here,
n� for the notation enehnh indicates the sublevel index in the
y direction. The rates for localized initial excitons �thick

FIG. 2. Dipole-dipole transfer rates �between two bold QWRs in
Fig. 1 with y=0� of plane-wave excitons through electron-hole pair
creation at 10 K as a function of the center-to-center distance d for
an effective energy mismatch E12

* =E12−EnB=22.6 meV. The dipole
moments lie in the x �wire� direction for the dashed curve, in the x,
y directions for the solid curve, and in the x, y, z directions for the
dashed-dotted curve. Other parameters are given in the text.

FIG. 3. The temperature dependence of the transfer rate studied
in Fig. 2 for an effective energy mismatch E12

* =E12−EnB

=22.6 meV �thin curves� at a center-to-center distance d=150 Å.
The dipole moments lie in the x �wire� direction for the dashed
curve, in the x, y directions for the solid curve, and in the x, y, z
directions for the dashed-dotted curve. Other parameters are given
in the text. The thick curves show enhanced rates for a small effec-
tive energy mismatch E12

* =E12−EnB=2 meV.
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curves� are for �=60 Å, while T=10 K and �=1 meV for
the plane-wave states �thin curves�. The enhancement of the
transfer rate Weh via creation of e-h pairs for the nearly reso-
nant case was discussed earlier for the thick curves in Fig. 3.

The four curves in Fig. 7 show the photon-exchange
transfer rate Weh in Eq. �27� of localized excitons with �
=60 Å for an effective energy mismatch E12

* =22.6 meV for
D1 �D2 �x �dashed curve�, D1 �D2 �y �solid curve�, D1 �D2 �z
�dashed-dotted curve�, and D1 �x ;D2 �z �dotted curve�. The
rates decrease very slowly with d. For example, the dotted

FIG. 4. Dipole-dipole transfer rates of localized excitons
through electron-hole pair creation as a function of the center-to-
center distance d for �=60 Å �thin curves� and �=200 Å �thick
curves� for an effective energy mismatch E12

* =E12−EnB

=22.6 meV. The dipole moments lie in the x �wire� direction for the
dashed curve, in the x ,y directions for the solid curve, and in the x,
y, z directions for the dashed-dotted curve. Other parameters are
given in the text.

FIG. 5. Dipole-dipole transfer rates of localized excitons
through electron-hole pair creation as a function of the localization
radius � for d=100 Å �thin curves� and d=200 Å �thick curves� for
an effective energy mismatch E12

* =E12−EnB=22.6 meV. The dipole
moments lie in the x �wire� direction for the dashed curve, in the x,
y directions for the solid curve, and in the x, y, z directions for the
dashed-dotted curve. Other parameters are given in the text.

FIG. 6. Resonant dipole-dipole transfer rates from e1h1 exciton
state of the nQWR to plane-wave states of e3h3 exciton of the
wQWR for a net energy mismatch E12

**=E12−EnB+EwB=1 meV for
�=60 Å �localized initial excitons: thick curves� and for T=10 K
and �=1 meV �plane-wave initial excitons: thin curves�. The dipole
moments lie in the x �wire� direction for the dashed curve, in the x,
y directions for the solid curve, and in the x, y, z directions for the
dashed-dotted curve. Other parameters are given in the text.

FIG. 7. The photon-exchange transfer rate of localized excitons
through electron-hole pair creation from the nQWR to the wQWR
for E12

* =22.6 meV, �=60 Å, and D1 �D2 �x �dashed curve�,
D1 �D2 �y �solid curve�, D1 �D2 �z �dashed-dotted curve�, and
D1 �x ; D2 �z �dotted curve�.
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curve at the bottom is nearly proportional to d−1. Other
curves reach this behavior at greater values of d. This depen-
dence on d is expected because the photon-exchange transfer
rate between two zero-dimensional systems �i.e., quantum
dots� is given by14 W�R−2= �x2+y2+d2�−1. Integrating over
x yields W�d−1 for y=0. For 2D QWs or a 2D array of
QWRs to be studied below, an additional integration over y
yields a very slow d dependence: W� ln�yo /d�, where yo is
roughly the sample dimension in the y direction or the pho-
ton attenuation length �i.e., mean free path� whichever is the
smaller.3,15 This behavior is demonstrated for a 2D array of
wires in Figs. 8 and 9 to be studied below. The resonant
photon-exchange transfer rate will not be shown because it is
comparatively small. This is due to the fact that even for the
small wave number corresponding to the small plane-wave
exciton energy of E12

**=1 meV, the photon energy is still
large, yielding a large intermediate-state energy in the de-
nominator of Eq. �41� and thereby a small rate. This is in
contrast with Weh where the denominator can be resonant,
yielding a larger rate.

Figure 8 shows the total transition rate from the nQWR to
a planar array of parallel wQWRs at a distance d=150 Å as
a function of the number Nw of wQWRs for the same param-
eters employed for Fig. 7. The wQWRs are uniformly sepa-
rated by a center-to-center distance 100 Å symmetrically
with respect to the center QWR at y=0 studied in Fig. 7. The
dashed, solid, and dotted curves in Figs. 8 and 9 represent
the cases D1 �D2 �z, D1 �D2 �y, and D1 �D2 �x, respectively. It
is clear from Fig. 8 that the total rate keeps increasing loga-
rithmically, demonstrating the long-range and macroscopic
nature of the photon-exchange transfer. Figure 9 shows the
slow logarithmic d dependence of the total transition rate for

the same array of Nw=2001 wQWRs. It is interesting to note
here that the power-law behavior in Fig. 7 for transfer to a
single QWR is altered into a logarithmic d dependence, dem-
onstrating the dominant influence of the distant QWRs in the
array and the macroscopic nature of the photon-exchange
transfer. The results demonstrated above for the array are
consistent with the earlier predictions of the results for
2D-2D transfer.3

In contrast with the above behavior of photon-exchange
energy transfer, the transfer rate through dipolar interaction
saturates very quickly with the array size as shown in Fig. 10
for free excitons �a� and localized excitons with �=60 Å �b�.
Here, the perpendicular distance between the nQWR and the
array is d=150 Å. Other parameters are the same as given
for Fig. 2 and Figs. 4–6. The thick and thin curves represent
resonant transfer and transfer via e-h pair creation, respec-
tively. The style of the curves has the same meaning as in
Fig. 2. The curves saturate near Nw=11 reflecting the short-
ranged nature of the dipolar interaction. Figure 11 displays
the total transfer rate through e-h pair creation as a function
of the perpendicular distance d for an array of Nw=11
wQWRs for plane wave �thick curves� and localized �thin
curves�. The rate reaches a d−4 dependence for all the curves
at d�500 Å as anticipated. Note that the dipolar transfer rate
here becomes smaller than the photon-exchange transfer rate
shown in Fig. 9 at a large distance roughly beyond d
�160–200 Å. For transfer between 2D GaAs QWs, this
crossover occurs at a much shorter distance d�80 Å.3

Recently, Karlsson et al.5 observed energy transfer be-
tween two GaAs V-groove QWRs with thicknesses Lz
=5.4 nm �nQWR� and Lz=8.2 nm �wQWR�. They found ef-
ficient transfer for samples with a center barrier thickness
Lb=5.5 nm and Lb=8.5 nm but not for Lb=13 nm and Lb

FIG. 8. The total photon-exchange transfer rate of localized ex-
citons through electron-hole pair creation from the nQWR to a uni-
form array of Nw parallel wQWRs at a perpendicular distance d
=150 Å as a function of Nw for E12

* =22.6 meV, �=60 Å, and
D1 �D2 �x �dotted curve�, D1 �D2 �y �solid curve�, and D1 �D2 �z
�dashed curve�. The center-to-center separation of the w QWRs is
100 Å.

FIG. 9. The total photon-exchange transfer rate of localized ex-
citons through electron-hole pair creation from the nQWR to a uni-
form array of Nw=2001 parallel wQWRs as a function of the per-
pendicular distance d for E12

* =22.6 meV, �=60 Å, and D1 �D2 �x
�dotted curve�, D1 �D2 �y �solid curve�, and D1 �D2 �z �dashed
curve�. The center-to-center separation of the wQWRs is 100 Å.
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=20 nm, indicating that there is no significant energy transfer
beyond d�15.3 nm during the lifetime of the exciton. On
the other hand, for transfer between two 2D QWs, very effi-
cient transfer was observed for Lb=13 nm. Some transfer
was observed even for Lb=20 nm. While the d-dependence
of the rate and the absolute rates are not known, the above
1D-1D result is consistent with the dipolar mechanism of
energy transfer but not with the photon-exchange mecha-
nism. Our results in Figs. 2–4 show a lower bound for the
transfer time of a few tens of nanoseconds for transfer be-
tween the two ground sublevels at a distance d=150 Å,
much larger than the exciton lifetime of about 0.4 ns mea-
sured for a single QWR previously.13 The above estimated
time is somewhat larger than that estimated earlier for
2D-2D transfer between two GaAs QWs with somewhat dif-
ferent parameters.3 Interestingly, however, the e1h1 transi-
tion energy in the nQWR is nearly resonant with the e3h3
energy of the wQWR in their sample, where the PL �photo-
luminescence� and PLE �photoluminescence excitation�
show initially localized excitons.5 The resonant energy trans-
fer time displayed for this case in Fig. 6 is of the order of a
few nanoseconds and may possibly explain the data. There is
a caveat, however, that a small net energy mismatch E12

**

=1 meV which is much larger than the inhomogeneous line-
width was employed for the large resonant rate. This may be
justified in view of the fact that the inhomogeneous broad-
ening arises from the macroscopic disorder while E12

** is in-
fluenced only by a locally correlated disorder between neigh-
boring QWRs.

VII. CONCLUSIONS

We have calculated the Stokes exciton transfer rate from a
narrow QWR to a wide QWR. Energy transfer through
dipole-dipole and photon-exchange coupling was examined.
The rate decrease as 1/d4 for intermediate d and 1/d5 in the
asymptotic limit with the distance d for dipolar transfer. For
photon-exchange transfer, the rate decreases as 1/d in the
asymptotic limit. The photon-exchange rate is negligibly
small compared with the dipolar rate inside a practical range
and dominates the latter only at an extremely long distance
where the rates are negligible.

We have also calculated the transfer rate from a narrow
QWR to a uniform array of identical parallel wide QWRs as
a function of the size of the array and the perpendicular
distance d between the narrow QWR and the array. For
dipole-dipole transfer, the total transfer rate saturates quickly
as the array size grows due to its short range and becomes
independent of the array size. Here, the saturated transfer
rate decreases as 1/d4 with d. On the other hand, the transfer
rate increases continuously logarithmically with the size of
the array in the asymptotic limit for photon-exchange trans-
fer due to its slow dependence on the range. It also decreases
logarithmically with the distance d in the asymptotic limit.
The slow range dependence of the transfer rate makes the
photon-exchange transfer important in a system consisting of
stacks of QWRs and their arrays distributed over a wide
range, although the rate between two isolated QWRs is
small. The importance of the photon-exchange transfer is
also known for energy transfer of Frenkel excitons between
optically active impurities in insulators.16

Unfortunately, the cited data for transfer between two
single QWRs �Ref. 5� show only the quantum efficiency and
do not show absolute numerical rates nor their range depen-

FIG. 10. The total dipolar transfer rate of plane-wave �a� and
localized �b� excitons from the nQWR to a uniform symmetric array
of Nw parallel wQWRs as a function of Nw for E12

* =22.6 meV �thin
curves� and E12

* =�=1 meV �thick curves� at a perpendicular dis-
tance d=150 Å. The center-to-center separation of the wQWRs is
100 Å. The thick curves represent resonant transfer and the thin
curves indicate transfer through e-h pair creation. The dipole mo-
ments lie in the x �wire� direction for the dashed curve, in the x, y
directions for the solid curve, and in the x, y, z directions for the
dashed-dotted curve. Other parameters are given in the text.

FIG. 11. The total dipolar transfer rate through e-h pair creation
for plane-wave �thick curves� and localized �thin curves� excitons
from the nQWR to a uniform array of Nw=11 parallel wQWRs as a
function of the perpendicular distance d for E12

* =22.6 meV. The
center-to-center separation of the wQWRs is 100 Å. The dipole
moments lie in the x �wire� direction for the dashed curve, in the x,
y directions for the solid curve, and in the x, y, z directions for the
dashed-dotted curve. Other parameters are given in the text.
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dence to compare them directly with the present theoretical
predictions. However, the observed transfer efficiency de-
creases rapidly with the distance d between the two QWRs
and was not observable beyond d=20 nm in a striking con-
trast with the case of 2D-2D transfer, where significant trans-
fer is maintained over a range of tens of nanometers1,2 due to
the photon-exchange coupling.3 The observed rapid range
dependence is consistent with our finding. Assuming that sig-
nificant energy transfer occurs roughly during the lifetime of
excitons and that the lifetime is of the order of a nanosecond
or shorter, it appears that resonant dipole-dipole transfer rates
from e1h1 exciton state of the nQWR to e3h3 exciton of the
wQWR best explains the cited data although the theoretical
rates may be smaller than the data by about an order of
magnitude. Further systematic measurements of the absolute
transfer rates and their range dependencies are necessary for
a more direct comparison between the theory and the data for
the 1D-1D transfer and the transfer from a 1D QWR to an
array of 1D QWRs.

The numerical results presented here are expected to be-
come more accurate as the distance between the nQWR and
the wQWR becomes much greater than the size of the cross
section of the wires. Other key approximations employed in
this paper are the effective mass approximation for the hole

by neglecting valence band mixing and also the separation of
the electron-hole confinement functions in Eq. �31�. These
approximations affect the exciton binding energy, which en-
ter the 1D density-of-states factor, namely the square root in
the denominator of Eq. �26� as well as the resonance factor in
the denominator of Eq. �29�. The numerical value of the
binding energy can be sensitive for the special situation
where the binding energies are comparable to the energy
mismatch E12 to cause resonances for the above quantities.
Also, improvement of the exciton wave function in Eq. �31�
via variational wave function will bring the electron and the
hole closer together, resulting in the increased transfer rate.
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