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We report on a theoretical investigation of plasmon excitations in a quasi-two-dimensional electron gas in
the presence of a spin-orbit �SO� interaction induced by the Rashba effect. We derive and discuss the dispersion
relations for both intra-SO and inter-SO charge-density excitations within the framework of the Bohm-Pines
random-phase approximation. The zero-field �or Rashba� spin splitting gives rise to three branches of plasmon
excitations, even when only the lowest electric subband is occupied. However, not all three plasmon branches
survive the Landau damping as is discussed in detail. It is found that, in the long-wavelength limit, the two
branches of inter-SO plasmons are optic-like, propagate with negative group velocity, and remain stronger
functions of the Rashba parameter than their intra-SO counterpart. We discuss the dependence of the plasmon
energy on the propagation vector, the two-dimensional charge density, and the effective Rashba wave vector.
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I. INTRODUCTION

The continued tremendous amount of research interest fo-
cused on miniaturization �of size and dimensions�, leading to
such manmade systems as quantum wells, wires, and dots,1

has in recent years evolved into the study of narrow-gap
semiconductors, most notably InAs, and the important role
they play in the rapidly evolving field of spintronics.2 Spin-
tronics is based on the concept of exploiting the spin degree
of freedom of the carriers to develop novel features and func-
tionalities for solid-state devices. As a nonmagnetic element
in hybrid devices, these semiconductor materials are ex-
pected to help control the electron spin states just as the
electron charge is controlled in conventional electronic de-
vices. One key idea of such devices is that the spin-orbit
interaction �SOI� in narrow-gap semiconductors causes the
spins of the carriers to precess. This was conceived by Datta
and Das in a seminal paper,3 which describes how the exter-
nal gate electrode can be used to manipulate the SOI pro-
vided that the latter is dependent on the interface electric
field, the so-called Rashba effect.4

In the present paper, we investigate the electron spin dy-
namics in In1−xGaxAs/In1−xAlxAs quantum wells within the
lowest occupied �electric� subband in the framework of the
Bohm-Pines random-phase approximation �RPA�. It is now
well known, both theoretically5 and experimentally,6 that in
such narrow-gap semiconductors there is energy splitting be-
tween spin-up and spin-down electrons even when there is
no magnetic field �while preserving the Kramers degen-
eracy�. Also, it is now generally accepted that the SOI in this
“zero-field spin splitting” is governed by the Rashba Hamil-
tonian, which increases linearly with the electron wave
vector.2 One of the motivations behind this work is that the
Rashba Hamiltonian turns out to yield, via intra-SO and
inter-SO transistions, plasmon frequencies in the terahertz
regime in which many promising new devices, such as
modulators,7 detectors,8 and quantum lasers,9 operate. As

such, it seems worthwhile to explore the electron spin dy-
namics as a possible route towards novel applications in the
terahertz regime.10–12

Quite recently there have been reported a few works that
deal with the Rashba effect on the intrasubband plasmon
dispersion in the two-dimensional electron gas �2DEG�.13–15

Reference 13 reported approximate �in the long-wavelength
limit� plasmon dispersion using the Green-function method,
with no physical explanation whether or not the three plas-
mon branches survive the Landau damping. Reference 14
reports a single plasmon branch and intra-SO and inter-SO
single-particle regions using �admittedly� a different dielec-
tric function. Reference 14 emphasizes that the only plasmon
branch reported there suffers from Landau damping inside
the upper �inter-SO� single-particle region. This is a miscon-
ception and misinterpretation of well-known aspects related
with the Landau damping of a certain plasmon mode. This is
because the existence of this upper single-particle region is
equivalent to the intersubband single-particle excitation
�SPE� region in a, say, two-subband model �in the absence of
any SOI�, and it is well known that in that case the intrasub-
band plasmon only suffers from the Landau damping as and
when it merges with the respective SPE region; it does not
suffer from the Landau damping whether or not it crosses the
intersubband SPE region, more so because the intrasubband
and intersubband plasmons �and their respective SPE re-
gions� are, by definition, two different modes of excitation
bearing different mechanisms, particularly when the confin-
ing potential is symmetric and hence there is no coupling
between the two, just as is the case studied in Ref. 14. To be
more explicit, one can notice that the only �intra-SO� plas-
mon branch shown in Ref. 14 goes through the upper �inter-
SO� SPE region quite unperturbed. Reference 15 is, to our
knowledge, the latest effort dedicated to study the plasmon
dispersion in a 2DEG with SOI in the linear response for-
malism. It is interesting to note that all these three works13–15

remain somewhat inconsistent �with each other� with respect
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to the number and propagation characteristics of the plasmon
branches existing in a 2DEG with a spin-orbit interaction.
This work, where we present the full RPA formalism as well
as a detailed numerical analysis of the plasmon dispersion in
a 2DEG with Rashba SOI, will clarify issues relevant to the
collective excitations, single-particle excitations, and the
Landau damping.

The rest of the paper is organized as follows. In Sec. II we
present our mathematical formalism for the two-dimensional
electron gas in the presence of the SOI and derive briefly the
required nonlocal, dynamic dielectric function within the
RPA. Section III is devoted to discuss our numerical results
for the plasmon excitations for the several case studies. We
conclude our finding with a discussion in Sec. IV.

II. MATHEMATICAL FORMALISM

For a typical two-dimensional electron gas in the x-y
plane in narrow-gap semiconductors, such as
In1−xGaxAs/In1−xAlxAs quantum wells, the single-electron
Hamiltonian including the lowest-order of the spin-orbit in-
teraction can be expressed as

H =
p̂2

2m* +
�

�
��̂ � p̂�z + Vc�z� , �1�

where � is the Rashba parameter, which describes the
strength of the SOI, �̂���x ,�y ,�z� stands for the Pauli spin
matrices, p̂ is the momentum operator, and the rest of the
symbols have their usual meanings. We assume the electrons
to be confined in a zero-thickness x-y plane due to a rela-
tively stronger confinement potential Vc�z�. This is expected
to be a reasonably good approximation for low electron den-
sities �at low temperatures� when only the lowest 2D sub-
band in a quantum well is occupied by electrons. Such a
system is characterized by the eigenfunctions

���x� =
1
�2

eik·r�n�z�� 1

�	
� , �2�

where r �k� is a 2D vector in the direct �reciprocal� space,
�= ±1 refers to the spin-up and spin-down states, and
	= �ky − ikx� /k, and the eigenenergies are

Ek
� =

�2

2m* �k2 + 2�k�k� + 
n, �3�

where k�=�m* /�2 is the effective Rashba wave vector. Note
that the normalization factor in Eq. �2� is such that the area
of the 2DEG S=1. In Eq. �3�, 
n is the energy of the nth
subband. The important characteristic of this dispersion
relation is that the spins are degenerate at k=0 and the spin
splitting increases linearly with k. This is clearly demon-
strated in Fig. 1 which shows the plot of Eq. �3�, with

n=0.

We start with a general expression for the single-particle
density-density response function �0�¯� �Ref. 1�:

�0�x,x�;�� = 	
ij

f�
i� − f�
 j�

i − 
 j + ��*�i

*�x��� j�x��� j
*�x��i�x� .

�4�

For all practical purposes, this equation takes the following
form �x�
r ,z� ,�:

�0�x,x�;�� = 	
���

������
*�x������x�����

* �x����x� , �5�

where ��

k ,n� ,�� is a composite index and ���� is defined
as

��,�� � �nn�
��� =

f�
nk
� � − f�
n�k�

�� �


nk
� − 
n�k�

�� + ��*
, �6�

where �*=�+ i� and small but nonzero � represents the
adiabatic switching of the Coulomb interactions in the re-
mote past. Next, we write Eqs. �2� symbolically as follows:

���x� = �k�r��n�z����� , �7�

where

FIG. 1. Spin-orbit induced subbands of an isotropic 2DEG �Eq.
�3��. 
F

r is the reduced Fermi energy, and k+
r and k−

r are the reduced
wave vectors for the upper �s= +1� and lower �s=−1� branches,
respectively. k+

r −k−
r =2k�

r ; T=0 K. The value of E±�k� reaches a
minimum on a circle, which is a loop of extrema. The radius of this
circle is k�, and we have E�=�= ±�k� /2.
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�k�r� =
1
�2

eik·r and ���� = � 1

�	
� . �8�

As such, we cast Eq. �5� in the following convenient form:

�0�x,x�;�� = 	
���

	
nn�

	
kk�

�nn�
����k,k��eiq·�r�−r�

� �n
*�z���n��z���n�

* �z��n�z���
*������

*
��.

�9�

Here q=k�−k is the 2D momentum transfer in the x-y plane.
Since the translational invariance does persist in the 2D
plane, we can Fourier-transform this equation with respect to
r. For this purpose, we multiply both sides of this equation
by e−iq�·�r�−r� and integrate over r�, resulting in

�0�q,�;z,z�� = 	
���

	
nn�

	
k

�nn�
����k,k� = k + q�

� �n
*�z���n��z���n�

* �z��n�z���
*������

*
��.

�10�

The induced particle density is defined in terms of Kubo’s
correlation function by

nin�q,�;z� =� dz��0�q,�;z,z��V�q,�;z�� , �11�

where V=Vex+Vin is the total potential, with Vex �Vin� as the
external �induced� potential. The induced potential is further
defined by

Vin�q,�;z� =� dz�Vee�q,z − z��nin�q,�;z�� , �12�

where Vee�¯� is the 2D Fourier transform of the binary Cou-
lombic interactions and is given by

Vee�q,z − z�� =
2�e2


0q
e−qz−z�, �13�

where 
0 is the background dielectric constant of the medium
in which the 2DEG is embedded. Solving Eqs. �10�–�12�
together yields

Vin�q,�;z� = Vq 	
n���

n�
	
k

�nn�
����k,k��

�� dz�e−qz−z��n�
* �z���n�z��

��n�Vex + Vinn�������
*

��, �14�

where Vq=2�e2 /
0q. Let us now take the matrix elements of
both sides between the states m��� and m����. The result is

�m��Vinm���� = Vq 	
n���

n�
	
k

�nn�
����k,k��Fmm�nn��q�

� �n�Vn�������
*

������
*

��, �15�

where the function Fmm�nn��q� is defined by

Fmm�nn��q� =� dz� dz��m
* �z��m��z�e−qz−z��n�

* �z���n�z�� .

�16�

We can cast Eq. �15� in the form

��Vex��� = 	
���

��������� − Vq	
k�

����N���������V��� ,

�17�

where

N������ = Fnn�mm�M�������,

with

M������� = ��
*������

*
��� �18�

and ��n�, ���n���, ��m��, and ���m���. Since the
external and total potentials are related such that

Vex�z� =� dz�
�z,z��V�z�� , �19�

we can deduce from Eq. �17� that the generalized nonlocal,
dynamic dielectric function is given by


������ = �������� − Vq	
k

����N������. �20�

The matrix 
̃ in Eq. �20� is symbolically written as follows:


̃�q,�� = �

++++ 
+++− 
++−+ 
++−−


+−++ 
+−+− 
+−−+ 
+−−−


−+++ 
−++− 
−+−+ 
−+−−


−−++ 
−−+− 
−−−+ 
−−−−

� . �21�

We thus need to evaluate first all such M������� with
� ,�� ,�� ,��= ±1. This is relegated to Appendix A for the
sake of continuity.

Before we proceed further, it is important to specify that
we are strictly concerned in this work with the case of a
narrow quantum well where only the lowest �electric� sub-
band is occupied and we ignore any excited subband. That
implies that we are virtually confined to a purely 2DEG at
very low temperature. This would then mean that the sub-
band indices n=n�=m=m�=0 and hence the z coordinate
drops out of consideration and hence Fnn�mm��q�=1 and
N������→M�������. This then allows us to cast Eq. �20� in
the following form:


������� = ��������� − Vq	
k

����M�������. �22�

It is a simple matter to prove that here �see Appendix A�
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M������� =�
+

1

2
�1 + A� , if � = �� and �� = ��,

+
1

2
�1 − A� , if � � �� and �� � ��,

+
1

2
iB , if � = �� and �� � ��,

−
1

2
iB , if � � �� and �� = ��.

�
�23�

Given the fact that

	
k

����B = 0, �24�

the matrix in Eq. �21� now assumes the following form:


̃�q,�� = �
1 − 
++ 0 0 
++

0 1 − 
+− 
+− 0

0 
−+ 1 − 
−+ 0


−− 0 0 1 − 
−−

� , �25�

where 
±±= �Vq /2�	k�1+A��±± refers to the intra-SO transi-
tions and 
±�= �Vq /2�	k�1−A��±� to the inter-SO transi-
tions. As usual, the modes of the plasmon excitations are
obtained by equating the determinant of the dielectric func-
tion matrix to zero. The result is that


̃ = �1 − 
++ − 
−−��1 − 
+− − 
−+� = 0 �26�

furnishes the intra-SO �inter-SO� plasmons by equating the
first �second� factor to zero in this equation. Notice that Eq.
�26� is the exact expression obtained within the RPA, which
demonstrates how the plasmons in a 2DEG can be achieved
via electronic transistions in different spin channels. Since
the inverse of the nonlocal, dynamic dielectric function
serves many useful purposes, we give in Appendix B the
quantity 
̃−1�q ,��.

We made some analytical diagnosis of Eq. �26� in the
long-wavelength limit �i.e., q→0� at low temperature �T
→0�. We obtain

� = �p�1 −
�− − �+

�0
�1/2

�27�

for the intra-SO plasmons and

� =
�p

2

2�0
ln�� − �−

� + �−

� + �+

� − �+
� �28�

for the inter-SO plasmons. Here �p= �2�nee
2q /
0m*�1/2 is

the 2D screened plasmon frequency in the absence of the
SOI, �0=8�ne� /m*, �±=4���n± /�, and the 2D charge
density ne=n++n−. Note that the second term inside the
square brackets in Eq. �27� is exactly equal to k�

2 / �2�ne�,
where k� can be written such that k�=��n−−��n+. The elec-
tron density in different “spin channels,” given by

n± =
ne

2
�

k�

2�
kF, �29�

is obtained by imposing the condition of electron number
conservation and reflects the different Fermi momenta for
each branch in Fig. 1. Here the Fermi wave vector kF

=�2�ne−k�
2 . In addition, two “spin channels” are character-

ized by different effective Fermi vectors kF
± = �kF�k��. In

what follows, we solve exactly Eq. �26�. We will see below
that the exact inter-SO modes result in two explicit solutions,
in agreement with Eq. �28�, so that the SOI gives rise to three
different collective �plasmon� modes for a given momentum
transfer q.

III. ILLUSTRATIVE EXAMPLES OF PLASMON
EXCITATIONS

This section is devoted to discuss our illustrative numeri-
cal examples of the plasmon excitations in a 2DEG in the
presence of the spin-orbit interactions, computed at T=0 K.
We do so by examining the influence of several parameters
involved in the analytical results. These are, for instance, the
Rashba parameter �, the 2D charge density ne, and the
propagation vector q.

Figure 2 illustrates the electron density distribution as a
function of the Rashba parameter � �the left panel� and the
total 2D electron density ne �right panel�. As is expected,6 the
electron distribution is different in different spin channels. It
is clear from this figure that the electron density is greater in

FIG. 2. Electron distribution in different spin channels as a func-
tion of the Rashba parameter � �left panel� and the 2D charge
density ne �right panel�.
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spin-down channel �n−� because it has larger Fermi momen-
tum.

Figure 3 depicts the energy dispersion of the intra-SO
��0� and inter-SO ��±� plasmons as a function of the �nor-
malized� momentum transfer q /kF for the given value of the
Rashba parameter ��=4.0�10−11 eV m� and the 2D charge
density �ne=5.0�1011 cm−2�. As one can notice, the Rashba
SOI gives rise to three plasmon branches �bold curves�—one
intra-SO ��0� and two inter-SO ��±� modes. The intra-SO
plasmon branch that starts from the origin goes through the
inter-SO SPE region quite unperturbed and will only decay
into the intra-SO SPE region at short wavelength. Thus the
lower �intra-SO� plasmon branch does not suffer from any
Landau damping due to crossing the inter-SO SPE region.
The upper, opticlike �inter-SO� plasmons start from the non-
zero energy at the small �but finite� wave vector with nega-
tive group velocity—with the upper one ��−� emerging from
above the inter-SO SPE and the lower one ��+� from just
above the lower branch of the SPE region. While the lower
plasmon mode ��+� remains within the respective SPE
throughout, the upper one ��−� merges with the SPE at
q�0.067kF. This clearly leads us to infer that except for the
upper opticlike mode that remains a true plasmon in the
range 0�q /kF�0.067, both inter-SO plasmon modes suffer

from the Landau damping due to their merger with the re-
spective SPE region. Thus lower intra-SO plasmon and the
upper inter-SO plasmon in the range 0�q /kF�0.067 are the
only true plasmon modes in the 2DEG with Rashba SOI and
with only the lowest occupied subband. The upper �inter-SO�
single-particle excitation spectrum attains a finite width even
at the small �but nonzero� wave vector due to the nonzero
Rashba parameter �. For �=0, there exists neither the
inter-SO plasmons nor the upper single-particle excitation
region, just as is expected.

It is worth mentioning that we also performed similar
computations as illustrated in Fig. 3, but for a different set of
Rashba parameters ��=1.6�10−11 eV m� and the 2D charge
density �ne=1.0�1011 cm−2�, within the same range of the
momentum transfer q /kF. It was observed that while the col-
lective and single-particle excitations obey the similar propa-
gation trend as in Fig. 3, the energy of both types of excita-
tions decrease �by a factor of 5� to lie in the range specified
by 0��� �meV� �4. The dominant parameter that brings
about such an effect of reducing the energy of plasmon ex-
citations seems to be the 2D charge density ne rather than the
Rashba parameter �.

Figure 4 shows the plasmon frequency as a function of the
�normalized� effective Rashba wave vector �k� /kF� for the
given 2D electron density �ne� and the momentum transfer q.
What becomes evident from this figure is that the spin split-
ting of the inter-SO, opticlike plasmons is degenerate at very

FIG. 3. The 2D plasmon energy as a function of the momentum
transfer, q /kF. The bold curves are the intra-SO ��0� and inter-SO
��±� plasmons. We call attention to the intra-SO �dark shaded re-
gion� and inter-SO �light shaded region� single-particle excitations,
which define the limits of the survival of the respective plasmons
�bold curves�. The material parameters are as listed inside the
picture.

FIG. 4. The plasmon excitation energy as a function of �normal-
ized� effective Rashba wave vector �k� /kF�. The 2D charge density
ne=3�1011 cm−2 and the momentum transfer q=0.01kF. Notice the
logarithmic scale on both axes.
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low value of � and increases almost linearly with increasing
�. At higher values of k�, the spin-down plasmon ��−� en-
ergy continues to increase while the spin-up plasmon ��+�
energy attains a maximum and then decreases rapidly to a
small but nonzero value. The intra-SO plasmon ��0� energy
is seen to be almost constant over a wide range of k� except
at a very high value where it starts decreasing gradually. In
this sense, we remark that the inter-SO plasmons are stronger
functions of � than their intra-SO counterpart. It is easy to

show that ��0���p�1−
k�

2

4�ne
�, for k�

2 �2�ne, as is the case
here �see Eq. �27��. It is noteworthy that this figure demon-
strates how the plasmon energy of both intra-SO and
inter-SO modes varies as a function of the Rashba parametr
���, irrespective of the fact that not all of these plasmons
survive the Landau damping in the whole range of �-q
space.

IV. CONCLUDING REMARKS

In summary, the 2D �intra-SO� plasmons in the presence
of SOI can significantly differ from the usual 2D plasmons
��p� in the absence of SOI. It has been demonstrated that a
2DEG with SOI can give rise, via intra-SO and inter-SO
electronic transitions, to three plasmon branches with fre-
quencies in the THz regime �1 THz�4 meV� �see, e.g., Fig.
3�. The physical picture behind the existence of two inter-SO
plasmons seems to be the fact that the � transitions differ
from the � ones. The inter-SO plasmons are seen to propa-
gate with negative group velocity throughout. However, it is
most important to note that major parts of the opticlike,
inter-SO plasmons remain Landau damped since they propa-
gate within the respective single-particle excitation region.
The intra-SO plasmon branch does not suffer from any Lan-
dau damping due to crossing the inter-SO SPE region; it will
only decay into the respective single-particle regime at very
short wavelength. The inter-SO plasmons ��±� are seen to
observe a stronger dependence on the Rashba parameter �
and the 2D charge density ne than their intra-SO ��0� coun-
terpart. We hope the theoretical predictions in this paper will
soon be verified through either inelastic light �or Raman� or
inelastic electron scattering experiments. Currently, we have
been investigating the effect of the SOI on plasmon excita-
tions in a quasi-2DEG in the presence of a perpendicular
magnetic field and in a quasi-1DEG both with and without
an applied magnetic field and the results will be reported
shortly.

ACKNOWLEDGMENTS

The work of M.S.K. was partially suported by CONACyT
Grant No. SEP-2003-C02-42761. S.E.U. acknowledges sup-
port of NSF-IMC Grant No. 0336431.

APPENDIX A: THE FACTORS M�������

The various factors M������� are evaluated and listed as
follows:

4M++++ = 4M++−− = 4M−−++ = 4M−−−− = �1 + A�2 + B2,

�A1�

4M+++− = 4M++−+ = 4M−−+− = 4M−−−+ = 2iB , �A2�

4M+−+− = 4M+−−+ = 4M−++− = 4M−+−+ = �1 − A�2 + B2,

�A3�

4M+−++ = 4M+−−− = 4M−+++ = 4M−+−− = − 2iB , �A4�

where A= �k+q cos �� / k� and B=q sin � / k�. Here � is the
angle between k and q.

APPENDIX B: THE INVERSE OF �̃„q,�… DERIVED IN
EQ. (25)

A systematic calculation yields the inverse dielectric func-
tion given by,


̃−1�q,�� = �
1 + 
++

* 0 0 
++
*

0 1 + 
+−
* 
+−

* 0

0 
−+
* 1 + 
−+

* 0


−−
* 0 0 1 + 
−−

*
� ,

�B1�

where


++
* =


++

1 − 
++ − 
−−
, �B2�


−−
* =


−−

1 − 
++ − 
−−
, �B3�


+−
* =


+−

1 − 
+− − 
−+
, �B4�


−+
* =


−+

1 − 
+− − 
−+
. �B5�
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