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In this paper we study electronic transport through a triple quantum dot molecule attached in parallel to leads
in presence of a magnetic flux. We have obtained analytical expressions of the linear conductance and density
of states for the molecule in equilibrium at zero temperature. As a consequence of quantum interference, the
conductance exhibits one Breit-Wigner and two Fano resonances, which positions and widths are controlled by
the magnetic field. Every two flux quanta, there is an inversion of roles of the bonding and antibonding states.
For particular values of the magnetic flux and dot-lead couplings, one or even both Fano resonances collapse
and bound states in the continuum �BICs� are formed. We examine the line broadenings of the molecular states
as a function of the Aharonov-Bohm phase around the condition for the formation of BICs, finding resonances
which keep extremely narrow against variations of the magnetic field. Moreover, we analyze a molecule of N
quantum dots in the absence of magnetic field, showing that certain symmetries lead to a determinate quantity
of simultaneous BICs.
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I. INTRODUCTION

Electron transport through quantum dot configurations has
been a subject of permanent interest in the last years. Since
quantum dots electrons are confined in all three spatial di-
mensions, they are also called “artificial atoms”,1 and two or
more quantum dots can be coupled to form “artificial mol-
ecules”. Tunneling through a diatomic artificial molecule in a
configuration in series has been extensively studied, both
theoretically and experimentally.2–5 In Refs. 6 and 7 Waugh
et al. reported the observation of peak splitting in the con-
ductance through double and triple quantum dot molecules.
The formation of band structures in finite one-dimensional
arrays of quantum dots has been also discussed.8,9

A distinctive feature of electron tunneling through quan-
tum dots is the retention of the quantum phase coherence.
For this reason, multiple connected geometries involving
quantum dots exhibit quantum interference phenomena, such
as the Fano effect,10–12 which arises from the interference
between a discrete state and the continuum.13 Several works
have been concerned with the study of transmission through
a parallel-coupled double quantum dot molecule embedded
in an Aharonov-Bohm interferometer.15–19 This is character-
ized by the formation of a tunable Fano resonance in the
conductance spectrum. This resonance is associated to a
long-lived molecular state, the position and lifetime of which
are controlled by the magnetic field. For some particular val-
ues of the magnetic flux, that molecular state decouples com-
pletely from the leads,17 becoming a “bound state in the con-
tinuum” �BIC�. Such a resonant state with infinite lifetime
was called “ghost Fano resonance” in Ref. 20.

The existence of bound states embedded in the continuum
was earlier proposed by von Neumann and Wigner for cer-
tain spatially oscillating attractive potentials for a one-
particle Schrödinger equation.21 Much later, Stillinger and
Herrick generalized the von Neumann and Wigner work and
analyzed a two-electron problem, where BICs were formed

despite the interaction between electrons.22 The occurrence
of BICs was discussed in a system of coupled Coulombic
channels and, in particular, in an Hydrogen atom in a uni-
form magnetic field.23 The authors interpreted the formation
of these states as result of interference between resonances of
different channels.

Bound states in the continuum have also shown to be
present in electronic transport in mesoscopic structures.
There are theoretical works showing the formation of these
states in a four-terminal junction24 and in a ballistic channel
with intersections.25 Experimental evidence of BICs was re-
ported by Capasso et al.26 in semiconductor heterostructures
grown by molecular beam epitaxy. Bound states in the con-
tinuum have been discussed little in the context of quantum
dots. In Ref. 27, the ballistic transport through a quantum dot
was studied and the possibility of a classical analogous of
BICs was demonstrated. These states have also been found in
a curved waveguide with an embedded quantum dot28 and
they arise in transport through a double quantum dot in series
with two relevant levels in each dot.29

In this paper, we study electron transport through a paral-
lel triple quantum dot molecule embedded in an Aharonov-
Bohm interferometer connected symmetrically to leads, and
we focus in the formation of bound states in the continuum.
It is assumed the system is in equilibrium at zero tempera-
ture, and electron-electron interactions are neglected. We find
that by choosing appropriately the dot-lead tunneling cou-
plings, up to two of the three molecular states may simulta-
neously decouple of the leads, becoming BICs. We analyze
the role played by the magnetic flux in the participation of
the molecular states in transmission, and in particular in the
survival of the bound states in the continuum. We observe
that different regimes of transmission can be reached by
varying the magnetic field. With a period of two flux quanta,
the roles of the antibonding and bonding states are inter-
changed in the conductance spectrum. On the other hand,
either one or two BICs are periodically formed as the mag-
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netic flux is varied, and the broadenings of these states result
extremely robust to variations of the flux over a wide range.
This robustness is not present in the double molecule.10 Fi-
nally, we make a brief analysis of an array of N quantum
dots, with N arbitrary, showing that certain symmetries guar-
antee the formation of a determined number of BICs. We
give detailed examples of the cases with N=4 and 5.

The paper is organized as follows. In Sec. II we introduce
the Hamiltonian of the system, and we develop the equation
of motion approach for the Green’s functions, in order to
obtain expressions for the total density of states and linear
conductance at zero temperature. We also examine the con-
ditions for the formation of BICs. In Sec. III we present the
results for the conductance and density of states for two dif-
ferent set of parameters. We also analyze the line broaden-
ings of the molecular states as a function of the Aharonov-
Bohm phase. We discuss the N quantum dot molecule in Sec.
IV, and in Sec. V we give our concluding remarks.

II. MODEL

We consider three single-level quantum dots forming a
triple quantum dot molecule coupled in parallel to two leads,
as shown in Fig. 1. The system is modeled by a noninteract-
ing Anderson Hamiltonian, which can be written as

H = Hm + Hl + HI, �1�

where Hm describes the dynamics of the isolate molecule

Hm = �
i=1

3

�idi
†di − t�d1

†d2 + d2
†d1� − t�d2

†d3 + d3
†d2� , �2�

where �i is the level energy of dot i, di �di
†� annihilates

�creates� an electron in dot i, and t is the interdot tunneling
coupling. Hl is the Hamiltonian for the noninteracting elec-
trons in the left and right leads

Hl = �
k�L,R

�kck
†ck, �3�

where ck �ck
†� is the annihilation �creation� operator of an

electron of quantum number k and energy �k in the contact L
or R. The term HI accounts for the tunneling between dots
and leads

HI = �
i=1

3

�
k�L

Vi
Ldi

†ck + H.c. + �
i=1

3

�
k�R

Vi
Rdi

†ck + H.c., �4�

with Vi
L�R� the tunneling matrix element connecting the ith

dot with the left �right� lead, assumed independent of k. For
simplicity, we assume that the magnitudes of these matrix
elements are such as �V1

L � = �V1
R � �V1, �V2

L � = �V2
R � �V2, and

�V3
L � = �V3

R � �V3. In the presence of a magnetic field, and in
the symmetric gauge, the tunnel matrix elements can be writ-
ten in the form

V1
L = V1e−i�/4, V1

R = V1ei�/4,

V2
L = V2

R = V2,

V3
L = V3ei�/4, V3

R = V3e−i�/4, �5�

with �=2�� /�0, the Aharonov-Bohm phase, where �0
=h /e is the flux quantum.

The linear conductance at zero temperature is given by
the Landauer formula

G =
2e2

h
T��F� , �6�

where T��� is the total transmission. To obtain G explicitly
we use the equation of motion approach for the Green’s
functions.32 The transmission can be expressed in terms of
the retarded and advanced Green’s functions Gr/a��� as

T��� = tr�Ga����RGr����L� , �7�

where Gr��� is defined by

Gij
r �t� = − i��t���di�t�,dj

†�0��	, i, j = 1,2,3, �8�

with ��t� the step function. Ga��� is given by Gij
a = 
G ji

r �*,
and �L,R are matrices describing the coupling between the
quantum dots and the left and right leads, the matrix ele-
ments of which are

�ij
L�R� = 2��

k

Vik
L�R�
Vjk

L�R��*��� − �k�, i, j = 1,2,3. �9�

With the use of Eq. �5�, �L,R can be written as

�L,R = �	11 e
i�/4	12 e
i�/2	13

e±i�/4	21 	22 e
i�/4	23

e±i�/2	31 e±i�/4	32 	33
 , �10�

with 	ij ��ij
L =�ij

R, where �ij
L,R are obtained from Eq. �9� for

zero magnetic flux.
The electronic properties of the configuration can be stud-

ied from the total density of states. This quantity is given by

���� = �
i=1

3

�i��� = −
1

�
�
i=1

3

Im Gii
r ���, i = 1,2,3, �11�

where Gr��� is the retarded Green’s function.
Hereafter we assume �1=�2=�3��0. We make the fol-

lowing transformation of the quantum-dot operators:

FIG. 1. Triple quantum dot molecule coupled in parallel to
leads.
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d̄1 =
1

2
�d1 + �2d2 + d3� , d̄2 =

1
�2

�d1 − d3� ,

d̄3 =
1

2
�d1 − �2d2 + d3� , �12�

so that the Hamiltonian of the isolated molecule becomes
diagonal

H̄m = ��0 + �2t�d̄1
†d̄1 + �0d̄2

†d̄2 + ��0 − �2t�d̄3
†d̄3, �13�

and the Hamiltonian describing the coupling between the
molecule and the leads takes the form

H̄I = �
i=1

3

�
k�L

V̄i
Ld̄i

†ck + H.c. + �
i=1

3

�
k�R

V̄i
Rd̄i

†ck + H.c., �14�

where

V̄1
L,R =

1

2
�V1

L,R + �2V2
L,R + V3

L,R� ,

V̄2
L,R =

1
�2

�V1
L,R − V3

L,R� ,

V̄3
L,R =

1

2
�V1

L,R − �2V2
L,R + V3

L,R� . �15�

Equations �5� and �15� give us interesting insight into the
transmission properties of the molecule. It is straightforward
to see that for some specific values of the magnetic flux and
the dot-lead matrix elements, the coupling between one or

more molecular states with the leads may vanish, giving rise
to the formation of a BIC. In particular, if V1=V3,

V̄1
L,R = 2V1cos

�

4
+ �2V2,

V̄2
L,R = 
 i�2V1sin

�

4
,

V̄3
L,R = 2V1cos

�

4
− �2V2. �16�

So that when �=4n� �n integer�, the matrix elements be-

tween the molecular state 2 and the left and right leads V̄2
L,R

cancel and such a state becomes a BIC. If it also occurs that

V1=V2, and n is an odd multiple of �, V̄2
L,R�0 but either

V̄1
L,R or V̄3

L,R vanish, occurring again a bound state in the
continuum. On the other hand, we can see of Eq. �16� that if
V1=V3 and V2=�2V1, two BICs are simultaneously formed
when �=4n�: one in the state 2 ��=�0�, and the other either
in state 1 ��=�0−�2t� or 3 ��=�0+�2t�, depending on the
parity of n. In a parallel double quantum dot molecule, a
simpler condition gives rise to one BIC, which is formed
whenever � is an even multiple of � �that is, �=n�0, n
integer�.17,20 Notice that bound states in the continuum occur
for many different combinations of dot-lead couplings and
Aharonov-Bohm phases, but, for simplicity, we will restrict
our attention to the particular cases: A. V1=V2=V3�V and
B. V1=V3�V and V2=�2V. The equation of motion method

in the molecular basis ��1̄	 , �2̄	 , �3̄	� gives for the retarded
Green’s function in both cases

Ḡr��� =
1

���2t + � + i�̄33/2 0 − i�̄13/2

0 �/�� + i�̄22/2� 0

− i�̄31/2 0 − �2t + � + i�̄11/2
 , �17�

where

� =
�̄13�̄31

4
+ �− �2t + � + i

�̄11

2
���2t + � + i

�̄33

2
� , �18�

with �̄ij = �̄ij
L + �̄ij

R �i , j=1,3�, where the matrices �̄L and �̄R describe the tunneling between the molecular states and the left and
right leads, respectively.

III. CONDUCTANCE AND DENSITY OF STATES

A. V1=V2=V3

When V1=V2=V3�V, the conductance takes the form
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G��� =
2e2

h

	2��� + 2t cos
�

4
�2

− 2�2t2 − �2�cos
�

2
�2

��2 + 	2�1 − cos
�

2
�2���2t2 − �2�2 + 	2�4t cos

�

4
+ ��2 + cos

�

2
��2� , �19�

where 	��ij
L =�ij

R, for all i , j=1,2 ,3. Figure 2 shows the
conductance as a function of the Fermi energy for different
values of �. In general, three resonances are observed around
the energies of the molecular states. In Fig. 2�a�, where �
=0, the cancellation of the resonance around �=0 accounts
for the existence of the BIC produced when �=4�n �n inte-
ger�. The same figure shows G��� for �=� /5, where the
resonance corresponding to �=0 is well resolved. For this
value of magnetic flux, as well as for arbitrary values of �,
the conductance displays two Fano antiresonances, at ener-
gies

� =

− �2t��2cos
�

4
± �1 + cos ��

1 + 2cos
�

2

,

as follows from Eq. �19�. There are some special cases in
which the conductance shows only one antiresonance,
namely, when cos �=−1 
i.e., when �= �2n+1��, with n in-
teger�, and also when cos�� /2�=−1/2 
that is, �=2��2n
−2/3�, n integer�, where one of the antiresonances goes to
infinity and the other keeps in a finite energy. We notice in
Figs. 2�b� and 2�c� �dashed line� that the resonance associ-
ated to the bonding state remains very narrow for a wide
range of values of �, approximately from �=−3� /2 to �
=3� /2, with a periodicity 8�. In the particular case when
�=2��4n+1/2� �n integer�, for instance in the solid line in

�c�, the resonance is absent, so that the bonding state is a

BIC. This is consistent with Eqs. �16�, where V̄3
L and V̄3

R

vanish for these values of �, leaving such a state decoupled
of the leads. In the same figure we included the curve for
�=1.2� �dash line�, to show the presence of that resonance
again. In �d�, where �=2� ��=�0�, the conductance is to-
tally symmetric with respect to �=0. These features repeat
whenever � is an odd integer of 2�. When � is greater than
2� the conductance spectrum suffers a reflection respect to
�=0, and every 4� �or two flux quanta� the roles of the
bonding and antibonding states are interchanged. Bound
states in the continuum are formed in the antibonding state
when �=2��4n+3/2� �n integer�.

Let us now examine the total density of states in the dif-
ferent regimes. This has the form

�T =
	

�� 8t�cos
�

4
+ �2t2 + �2��2 + cos

�

2
�

�2t2 − �2�2 + 	2�4t cos
�

4
+ ��2 + cos

�

2
��2

+

2sin2 �

4

�2 + 4	2 sin4�

4
� . �20�

Figure 3 shows �T��� for the same parameters of Fig. 2. In
the curves �a� and �c�, where �=0 and �=�, respectively,

FIG. 2. Dimensionless conductance versus Fermi energy, in
units of 	, for V1=V2=V3=V, t=2, �a� �=0 �solid line� and �
=� /5 �dash line�, �b� �=3� /4, �c� �=� �solid line�, and �
=6� /5 �dash line� �d� �=2�, for �0=0.

FIG. 3. Density of state versus Fermi energy, in units of 	, for
V1=V2=V3=V, t=2, �a� �=0, �b� �=3� /4, �c� �=�, and �d� �
=2�, and �0=0
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the delta functions corresponding to the BICs are observed,
superimposed to the peaks associated to the other two mo-
lecular states with finite widths.

In the approximate range 2�4n−3/4���
2�4n+3/4�� �n integer� the total density of states can
be approximated by the sum of three Lorentzians at the
energies �−=−t�8�2t2+4	2cos�� /4�
2+cos�� /2��� / �8t2

+	2
2+cos�� /2���, 0, and �2t

�T �
C

�
� �−

�−
2 + �� − �−�2 +

�+

�+
2 + �� − �2t�2� +

1

�

�0

�0
2 + �2 ,

�21�

where

�− = 2�2t2	

− 4 cos
�

4
+ �2�2 + cos

�

2
�

8t2 + 	2�2 + cos
�

2
�2 , �22�

�0 = 2	 sin2�

4
, �23�

�+ = 	

4 cos
�

4
+ �2�2 + cos

�

2
�

2�2
, �24�

and

C =
1

2
+

�2 cos
�

4

2 + cos
�

2

. �25�

Figure 4 shows the broadenings of the molecular states
�−, �0, and �+ �in units of 	� as a function of �, for t=2,
within the range of validity of the approximations �24�. The
top curve gives an account for the formation of a BIC when
� is an odd integer of �, and shows that the corresponding
molecular state keeps very slightly coupled to the leads for a

wide range of the Aharanov-Bohm phase. In all the interval,
�− keeps smaller than a 7% of the level broadening of a
single dot, and in the interval ��−1/2 ,�+1/2� it does not
exceed a 1%. The middle figure shows that the molecular
state of intermediate energy ��=0� is a BIC when �=0. The
width of this molecular state keeps smaller than 1 for all �
� �−� ,�� and is more sensitive to variations of � than the
one formed in the bonding energy �top figure�. However, it is
worth to noticing that this long-lived state presents for all
phases in �−4� /3 ,4� /3� larger lifetimes than the long-lived
state arising in the parallel-coupled double quantum dot mol-
ecule symmetrically connected to leads �where �
=2	 sin2� /2�.17 The behavior of the broadening of the short-
lived state is displayed in the bottom plot. This reaches its
maximum value �shortest lifetime� when �=0, where �+
�2.91.

B. V1=V3 ,V2=�2V

Interesting features in the electronic transmission take
place when the dot-lead couplings have the form V1=V3=V
and V2=�2V. Here the linear conductance reduces to

G =
2e2

h

4	2��t + �2� cos
�

4
�2

− t2cos
�

2
�2

��2 + 	2�1 − cos
�

2
�2���2t2 − �2�2 + 	2�4�2t cos

�

4
+ ��3 + cos

�

2
��2� , �26�

where 	� =�ij
L =�ij

R, for i , j=1,3. Figure 5 shows the con-
ductance for different values of the Aharonov-Bohm phase.
For �=0 
Fig. 5�a�� this exhibits a single resonance around
the antibonding energy, so that the two other molecular states
are bound states in the continuum. This also follows Eqs.

�16�, since V̄2
L,R as well as V̄3

L,R cancel whenever �=8n� �n
integer�. Also, it can be seen that the roles of the bonding and
antibonding states are interchanged every 4�, and that the
antibonding and the molecular state of intermediate energy
both collapse to BICs when �=4��2n−1� �n integer�. For

FIG. 4. Broadenings of the molecular states �−, �0, and �+ as a
function of �, for V1=V2=V3=V and t=2.
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arbitrary values of the Aharonov-Bohm phase the spectrum
presents three resonances, and a number of Fano antireso-
nances that oscillates between two and zero. From Eq. �26�
we note that the conductance is zero at

� =
− �2t
1 ± �cos��/2��

2 cos �/4
, �27�

where we see that when �4n−1����� �4n+1�� �n integer�
there are two antiresonances, as shown by Fig. 5�b� where
�=3� /4. When �=n� �n odd� only one point of zero con-
ductance exists, as observed in �c�. For �4n−3����� �4n
−1�� �n integer� the numerator of Eq. �26� is complex and
the conductance does not exhibit antiresonances 
Figs. 5�c�,
dashed line, and 5�d��. In Fig. 5�d� G��� is symmetrical
around �=0, and has the form

G =
2e2

h

16	2t4

�4	2 + �2�
4t4 − 4�t + 	��t − 	��2 + �4�
,

which corresponds exactly to the conductance of a triple
quantum dot molecule connected in series.9 It is interesting
to note that if the dots are not coupled directly, that is, t=0,
the transmission is suppressed for all energies �perfect reflec-
tor�. An analogous result is found in two parallel quantum
dots in presence of a magnetic field.14 This situation never
occurs in the triple molecule when the dot-lead couplings are
equal.

The total density of states is given by

�T��� =
	

�� 8�2t� cos
�

4
+ �2t2 + �2��3 + cos

�

2
�

�2t2 − �2�2 + 	2�4�2t cos
�

4
+ ��3 + cos

�

2
��2

+

2 sin2 �

4

�2 + 4	2sin4 �

4
� . �28�

In the range 2�4n−3/8���2�4n+3/8�� �n integer�,
�T can be approximated by a sum of Lorentzians of the form
Eq. �21�, where �−=−4�2t�2t2+	2cos�� /4�
3+cos�� /2��� /
�8t2+	2
3+cos�� /2��2�

C =

4 cos4 �

4

3 + cos
�

2

�29�

and the broadenings are given by

�− = 8	

t2sin4 �

8

2t2 + 	2�1 + cos2 �

4
�2 , �30�

�0 = 2	 sin2 �

4
, �31�

�+ = 4	 cos4 �

8
. �32�

Figure 6 shows �T for the same parameters of Fig. 5. In
Fig. 6�a�, where �=0, the density of states is the superposi-
tion of two Dirac delta’s localized at �=�− and �=0 �cor-
responding to the BICs� plus a Lorentzian at �=�+ with

FIG. 5. Dimensionless conductance versus Fermi energy, in
units of 	, for V1=V3=V, V2=�2V, t=2, �a� �=0 �solid line� and
�=� /5 �dash line�, �b� �=3� /4, �c� �=� �solid line�, and �
=6� /5 �dash line�, �d� �=2�, and �0=0.

FIG. 6. Density of state versus Fermi energy, in units of 	, for
V1=V3=V, V2=�2V, t=2, �a� �=0, �b� �=3� /4, �c� �=�, and �d�
�=2�, for �0=0.
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width 4	. When �=2�, as in �d�, the density of states cor-
respond to that of a triple molecule connected in series.

Figure 7 displays the broadenings �−, �0, and �+ as a
function of �, for t=2, in the range of validity of Eqs. �32�.
The top plot shows the BIC formed in the bonding state
when �=0 and the robustness of such a long-lived state
against variations of the magnetic field. Notice that �− re-
mains smaller than 0.02 in all the plotted range of �, and that
is very close to zero in a wide interval around �=0. For
instance, for �� �−� /3 ,� /3�, �− keeps smaller than 8
�10−4, that is, less than 0.08% of the level broadening of a
single quantum dot. The broadening �0 �which coincides
with �0 in the previous setting� is more sensitive to varia-
tions of the magnetic field than �−, as shown in the middle
figure.

The robustness of the molecular states for the triple quan-
tum dot molecule can be understood physically as follows: In
the triple molecule the phases acquired by the electron in
covering some of the paths, namely, those containing the
central quantum dot, are smaller than those gained when the
electron travels though paths containing the outer dots. For
instance, along the central path the electron does not accu-
mulate any phase. This information is contained in the effec-
tive couplings of the molecular states with the leads, and
therefore their dependence on the Aharonov-Bohm phase is
less sensitive in comparison to the double quantum dot case.

We interpret the formation of BICs in this system in the
same sense of Ref. 23, that is, as a result of the quantum
interference between resonances of different channels
through the multiple connected quantum dots. The levels of
the quantum dots are hybridized through the common leads,
forming these states of infinite lifetimes. In a more realistic
model on transmission through the quantum dot molecule
one should take into account the electron-electron interac-
tion. In recent works some authors have found results that
can be interpreted as BICs that survive to the interaction
effects. For instance, Ding et al.30 study a parallel double
quantum dot in the Kondo regime by using the finite-U slave
boson technique, and found a �-peak structure in the density

of state for the energies inside the band, signal of a bound
state in the continuum. On the other hand, Busser et al.31

study the transport properties of multilevel quantum dots in
the Kondo regime and report the formation of localized
states. However, we think that the above results are not con-
clusive and further research is necessary to know the effect
of the electron-electron interaction on the formation of BICs.

IV. LARGER MOLECULES

It is natural to ask about the existence of bound states in
the continuum in molecules of N quantum dots, with N arbi-
trary. As seen for the double20 and triple parallel-coupled
molecules, the existence of a magnetic field is not essential
for the formation of BICs, but just needed is a certain rela-
tion of symmetry between the couplings between dots and
leads for these to take place. In fact, the maximum number of
simultaneous bound states may occur when the magnetic flux
is zero. So, a first approach to the problem of a parallel-
coupled molecule of N quantum dots can be obtained by
assuming that there is no field present.

The j-th component of the eigenfunction ��n	 of a linear
chain consisting of N identical quantum dots with energies �0
and tunnel coupling between dots t is given by

� j,n =� 2

N + 1
sin

jn�

N + 1
, j = 1,2, . . . ,N �33�

and the corresponding eigenenergy is

En = �0 − 2t cos
n�

N + 1
. �34�

The Hamiltonian describing the molecule-leads interaction is

Hi = �
i=1

N

�
k�L

�Vidi
†ck + H . c . � + �

i=1

N

�
k�R

�Vidi
†ck + H . c . � ,

�35�

where we have assumed that Vi
L=Vi

R�Vi, for all i
=1,2 , . . . ,N. To search for conditions for the formation of
BICs, we look at the couplings of the molecular states with

the leads, V̄n �n=1,2 , . . . ,N�. These can be obtained by the
transformation

V̄ = PV , �36�

where V̄ and V are column vectors with elements V̄n and Vn
�n=1,2 , . . . ,N�, respectively, and P is the matrix composed
of eigenvectors ��n	 �n=1,2 , . . . ,N�, which components are
given by Eq. �33�. Namely,

FIG. 7. Broadenings of the molecular states �−, �0, and �+ as a
function of �, for V1=V3=V, V2=�2V, and t=2.
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P =� 2

N + 1�
sin

�

N + 1
sin

2�

N + 1
sin

3�

N + 1
¯ sin

N�

N + 1

sin
2�

N + 1
sin

4�

N + 1
sin

6�

N + 1
¯ sin

2N�

N + 1

� � � � �

sin
N�

N + 1
sin

2N�

N + 1
sin

3N�

N + 1
¯ sin

N2�

N + 1

 . �37�

It is direct to show that the matrix elements of P have the
following properties:

Pi,j = Pi,N−j+1 i odd, �38�

Pi,j = − Pi,N−j+1 i even, �39�

Pi,�N+1�/2 = 0, N odd and i even. �40�

These relations, together with Eq. �36�, allow us to get infor-
mation on some symmetries leading to the formation of
BICs. For instance, if there is up-down symmetry, that is

Vi = VN−i+1, i = 1,2, . . . ,N ,

then by the condition �39�

V̄j = 0, for all j even.

Thus, if N is even, N /2 bound states in the continuum are
ensured. In turn, if N is odd, both conditions �39� and �40�
are simultaneously required for the formation of �N−1� /2
bound states in the continuum.

We illustrate the above analysis by considering in detail
the cases N=4 and N=5. We get conditions for the formation
of additional BICs in each example. For the molecule of four
quantum dots, Eq. �36� reduces to

V̄1 = �+�V2 + V3� + �−�V1 + V4� ,

V̄2 = �−�V2 − V3� + �+�V1 − V4� ,

V̄3 = − �−�V2 + V3� + �+�V1 + V4� ,

V̄4 = − �+�V2 − V3� + �−�V1 − V4� , �41�

where �±= �1/2��1±1/�5. We see that if V1=V4 and V2

=V3 both V̄2 and V̄4 are canceled, thus occurring two BICs.

We notice that if also �+V2= 
�−V1, either V̄1 or V̄3 van-
ishes, having three of the four molecular states decoupled
from the continuum.

For a molecule of five quantum dots we have

V̄1 =
1

2
�V2 + V4 +

�3

3
�V1 + 2V3 + V5�� , �42�

V̄2 =
1

2
�V1 + V2 − V4 − V5� ,

V̄3 =
�3

3
�V1 − V3 + V5� ,

V̄4 =
1

2
�V1 − V2 + V4 − V5� ,

V̄5 =
1

2
�− �V2 + V4� +

�3

3
�V1 + 2V3 + V5�� . �43�

Because of condition �40� neither V̄2 nor V̄4 depends on V3.
This, together with V1=V5 and V2=V4 lead to the occurrence
BICs in the molecular states 2 and 3. Up to two new bound
states may arise if the following conditions are met: V3

=2V1 suppresses V̄3 and this together with V2= 
V1 cancel

either V̄1 or V̄5.

V. CONCLUSIONS

We have investigated electron transport through a
parallel-coupled triple quantum dot molecule in the presence
of a magnetic field. The conductance spectrum exhibits a
Breit-Wigner and two Fano resonances, the positions and
widths of which are controlled by the magnetic field. Every
two flux quanta ��=4��, the roles of the bonding and anti-
bonding states are interchanged. We have examined the de-
pendence and broadenings of the molecular states as a func-
tion of the magnetic flux for two different sets of parameters,
finding that several regimes of transmission are possible, in-
cluding the formation of extremely narrow resonances and
bound states in the continuum. We have shown that by ma-
nipulating the symmetries of the system, up to two simulta-
neous BICs can be formed. We restricted our analysis to
systems with up-down and left-right symmetries. In Ref. 20
it is shown that the breaking of the first of those symmetries
hinders the formation of BICs, but states of very long life-
times still occur. With respect to the left-right symmetry, this
is not essential in the existence of BICs, as demonstrated in
Ref. 17 for the double quantum dot molecule. We extended
the study to molecules of N quantum dots in the absence of
magnetic field, finding that the up-down symmetry ensures
the occurrence of N /2 BICs for N even, and of �N−1� /2 for
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N odd. Additional conditions are required for the existence of
a larger number of simultaneous bound states in the con-
tinuum, as shown for molecules of four and five dots. In both
cases up to N−1 BICs may exist at the same time, N being
the number of dots.

The possibility of having molecular states decoupled from
the leads, and the fact that these states are controllable by an
external magnetic field and gate potentials, are interesting
features of the studied system which might be useful to clas-
sical information theory. Two orthogonal stable states of the
molecule, that is, two simultaneous BICs, could be used as
microscopic units for storing information �classical bits�.
Storage of quantum information requires a complete stable
plane in the Hilbert space of the molecule.33 Quantum dot

molecules seem to be suitable systems to study BICs experi-
mentally, because of the possibility of controlling param-
eters. In fact, other quantum interference phenomena have
been demonstrated in this kind of systems, such as Fano12

and Aharonov-Bohm34 effects.
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