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We study spin dynamics for two electrons confined to a double quantum dot under the influence of an
oscillating exchange interaction. This leads to driven Rabi oscillations between the �↑ ↓ � state and the �↓ ↑ �
state of the two-electron system. The width of the Rabi resonance is proportional to the amplitude of the
oscillating exchange. A measurement of the Rabi resonance allows one to narrow the distribution of nuclear
spin states and thereby to prolong the spin decoherence time. Further, we study decoherence of the two-
electron states due to the hyperfine interaction and give requirements on the parameters of the system in order
to initialize in the �↑ ↓ � state and to perform a �SWAP operation with unit fidelity.
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I. INTRODUCTION

One of the important proposals for quantum information
processing in solid-state systems is the spin-qubit proposal
for quantum computing with electron spins in quantum dots.1

Much effort has been put into the realization of this proposal,
leading to exciting theoretical2 and experimental
achievements.3–9 Still many challenges remain, such as de-
coherence and the implementation of single-qubit gates.

A major obstacle to quantum computation with the
quantum-dot spin qubit is decoherence due to the coupling of
the qubit to its environment. The hyperfine interaction be-
tween the electron spin and the nuclear spins present in all
III-V semiconductors10 leads to the strongest decoherence
effect.9,11–18 Experiments8,9,19,20 have yielded values for the
free-induction spin dephasing time T2

* that are consistent with
T2

*��N /A�10 ns �Refs. 14–16� for N=106 and A
=90 �eV in GaAs, where N is the number of nuclei within
one quantum dot Bohr radius and A characterizes the hyper-
fine coupling strength.21 This is to be contrasted with poten-
tial spin-echo envelope decay, which may be much
larger.22–24 With a two-qubit switching time of �s�50 ps
�Ref.11� this only allows �102 gate operations within T2

*,
which falls short �by a factor of 10 to 102� of current require-
ments for efficient quantum error correction.25

There are several ways to overcome the problem of
hyperfine-induced decoherence, of which measurement and
thus projection of the nuclear spin state seems to be the most
promising.17 Other methods include polarization11,16,17,26 of
the nuclear spins and spin-echo techniques.9,17,23 However, in
order to extend the decay time by an order of magnitude
through polarization of the nuclear spins, a polarization of
above 99% is required,17 but the best result so far reached is
only �60% in quantum dots.3,19 With spin-echo techniques,
gate operations still must be performed within the single-spin
free-induction decay time, which requires faster gate opera-
tions. A projective measurement of the nuclear spin state
leads to an extension of the free-induction decay time for the
spin. This extension is only limited by the ability to do a
strong measurement since the longitudinal nuclear spin in a
quantum dot is expected to survive up to the spin diffusion
time, which is on the order of seconds for nuclear spins
surrounding donors in GaAs.27

The implementation of quantum computation schemes re-
quires coherent control of the qubits. Rabi oscillations be-

tween the two qubit states are an important signature of co-
herence, and thus observation of controlled Rabi oscillations
is an important intermediate step in the experimental imple-
mentation of quantum information processors. Despite recent
experimental achievements,3,9 there has still been no experi-
mental observation of driven Rabi oscillations for a system
of two quantum-dot spin qubits. What has been observed is
electron spin resonance via g-tensor modulation in a bulk
semiconductor.28

In the quantum-dot spin qubit proposal, two-qubit gates
are realized through tuning of the exchange coupling J be-
tween the two spins.1,11 The splitting between singlet and
triplet states of the two-electron system is given by the ex-
change coupling J, and in devices such as those in Refs. 9
and 8, J can be controlled through gate voltages. Petta et al.9

have recently managed to implement the �SWAP gate in their
setup. However, in order to implement single-qubit gates,
control over local magnetic fields or g-factors is required.11

As we will show in Sec. II, an oscillating exchange J�t�
induces Rabi oscillations between the states �↑ ↓ � and �↓ ↑ �
of two electron spins �one electron in each dot�. The ampli-
tude of these oscillations is resonant on the splitting between
�↑ ↓ � and �↓ ↑ � and the width of this resonance is propor-
tional to the amplitude j of the oscillating component of
J�t�=J0+ j cos��t�, where � is the driving frequency. Since
the splitting depends on the state of the nuclear system, a
measurement of the resonance is also a measurement of the
state of the nuclear spins and thus provides a way to narrow
the quantum distribution of the nuclear spin states. This nar-
rowing of the spin state is one possible solution to suppress
hyperfine-induced decoherence in quantum-dot spin qubits.17

It has been proposed to measure the nuclear spin polarization
using a phase estimation method.29 In the ideal case, phase
estimation yields one bit of information about the nuclear
spin system for each perfectly measured electron. Optical
methods have also been proposed.30 The all-electrical
method we present here can be applied with current technol-
ogy.

The rest of this paper is organized as follows. In Sec. II
we show that an oscillating exchange leads to driven Rabi
oscillations and we calculate the resonance linewidth. In Sec.
III we propose a method to narrow the distribution of the
nuclear spin states. In Sec. IV we consider decoherence in-
duced through the hyperfine interaction for a static exchange
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coupling J. We use these results in Sec. V to analyze under
which conditions we reach unit fidelity for the initialization
to the state �↑ ↓ � and a �SWAP operation.1 Section VI con-
tains a summary of our results.

II. OSCILLATING EXCHANGE AND ESR

In this section we show that under suitable conditions an
oscillating exchange interaction may be used to induce Rabi
oscillations in a system of two electrons confined to a double
quantum dot like those in Refs. 6–9.

We denote by hi= �hi
x ,hi

y ,hi
z�, i=1,2, the collective quan-

tum nuclear spin operator, the “Overhauser operator,” in dot
one and two, respectively, and write �hz= 1

2 �h1
z −h2

z�. The col-
lective quantum nuclear spin operator hi is defined as hi
=�kAk

i Ik, where Ik is the nuclear spin operator for a nucleus
of total spin I at lattice site k, and the hyperfine coupling
constants are given by Ak

i =vA ��0
i �rk��2, where v is the vol-

ume of a unit cell containing one nuclear spin, A character-
izes the hyperfine coupling strength, and �0

i �rk� is the single-
particle envelope wave function of the electron evaluated at
site k. Further, �O�rms= ��I �O2 ��I�1/2 is the root-mean-square
expectation value of the operator O with respect to the
nuclear spin state ��I�. We assume that the Zeeman splitting
�z=g�BB induced by a uniform applied magnetic field B
= �0,0 ,B�, B	0, is much larger than ��h�rms and �hi�rms.
Under these conditions, the relevant spin Hamiltonian be-
comes block diagonal with blocks labeled by the total elec-
tron spin projection along the magnetic field Sz. In the sub-
space of Sz=0, the Hamiltonian can be written as �
=1�
�Ref. 18�

H0 =
J

2
�1 + �z� + �hz�x + �bz�x. �1�

Here, J is the Heisenberg exchange coupling between elec-
tron spins on the two dots and �bz is the inhomogeneity
of an externally applied classical static magnetic field which
we add in addition to the treatment in Ref. 18. Further,
�= ��x ,�y ,�z� is the vector of Pauli matrices in the basis
of Sz=0 singlet �S� and triplet �T0� ��S�→ ��z=−1� , �T0�→ ��z

= +1��. It has been proposed to use two pseudospin states
such as �S� and �T0� as a logical qubit.31

We assume a time-dependent exchange of the form

J = J�t� = J0 + j cos��t� . �2�

The operator �hz commutes with the Hamiltonian at all
times. Thus, if the nuclear spin system is in an eigenstate �n�
of �hz with �hz �n�=�hn

z �n�, we have H ���=Hn ��e� � �n�,
where in Hn the operator �hz has been replaced by �hn

z and
��e� is the electron spin part of the wave function. In order to
bring Hn to a form that is very similar to the standard ESR
�electron spin resonance� Hamiltonian32 	HESR=− 1

2�z�z

− 1
2�xcos��t��x
, we perform a unitary transformation U1

=exp�−i �
4 �y� which is just a rotation about the y axis in a

Bloch-sphere picture. Also introducing n=2��hn
z +�bz�, the

above Hamiltonian becomes

H̃n = U1HnU1
† =

J0

2
�x +

j

2
cos��t��x −

1

2
n�z. �3�

The Pauli matrices are now given in the new basis of �↓ ↑ �
= ��z=1�= �+ � and �↑ ↓ �= ��z=−1�= �−�. For J0=0, this is just
the standard ESR Hamiltonian. We have evaluated pseu-
dospin dynamics under this Hamiltonian in a rotating-wave
approximation close to resonance for j�n. When we treat
the J0 term as a perturbation and calculate the transition
probability between unperturbed eigenstates of the Hamil-
tonian, we find that it is proportional to J0

2 /n
2 and we may

thus neglect this term close to resonance and if J0�n.
Hence, we are left with the standard ESR Hamiltonian,
which leads to Rabi oscillations. Initializing the two-electron
system in the state �↓ ↑ �= �+ � �which can be done as pro-
posed in Sec. V�, we obtain for the expectation value of �z�t�

��z�t��n = �n� � �+ ��z�t�� + � � �n�

=
�n − ��2 + �j/2�2cos���t�

�n − ��2 + �j/2�2 , �4�

�� = 2��n − ��2 + �j/2�2, �5�

j � n, J0 � n, �n − �� � n. �6�

For �=n, the system undergoes coherent Rabi oscillations
between the states �+ � and �−� with a frequency of j. Aver-
aged over time, the expectation value of �z is

���z�n� = lim
T→�

1

T
�

0

T

��z�t��ndt =
�n − ��2

�n − ��2 + �j/2�2 . �7�

In order to measure the time-averaged value ���z�n�, the mea-
surement time must be much larger than the period of Rabi
oscillations ��1/ j on resonance�. 1− ���z�n� has a Lorentzian
line shape with a full width at half-maximum �FWHM� of j.
Most importantly, the resonance frequency depends on the
nuclear spin eigenstate through n=2��hn

z +�bz� and thus a
measurement of the resonance will determine �hn

z .

A. Superposition of nuclear spin eigenstates

Before a measurement on the nuclear spin system is per-
formed, there is no reason for the nuclear spin system to be
in an eigenstate of �hz, but it is most likely in some generic
superposition of these eigenstates. Thus, we now investigate
how the resonance changes if we consider the nuclear spin
system to be in a superposition of eigenstates of the collec-
tive nuclear spin operator �hz.

At t=0 we fix the electron system in the state �↓ ↑ �= �+ �
while the nuclear spin system is in an arbitrary state: ��0�
=�e�0� � �I�0� with

�e�0� = � + ��+ � , �8�

�I�0� = �
i

pi��I
i���I

i�, ��I
i� = �

n

an
i �n� , �9�

where the an
i satisfy the normalization condition �n �an

i �2=1
and �ipi=1. Here, �I�n�=�ipi �an

i �2 are the diagonal elements
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of the nuclear spin density operator. The Hamiltonian H0
commutes with �hz and thus we find

��z�t�� = �
n

�I�n���z�t��n, �10�

which defines the overbar.
We assume that for a large number of nuclear spins

N�1 which are in a superposition of �hz eigenstates �n�,
�I�n� describes a continuous Gaussian distribution of �hn

z

values, with mean �hz and variance �2= ��hz−�hz�2. In the
limit of large N, the approach to a Gaussian distribution for a
sufficiently randomized nuclear system is guaranteed by the
central limit theorem.17 We perform the continuum limit ac-
cording to

�
n

�I�n�f�n� →� dx�I;x̄,��x�f�x� , �11�

�I;x̄,��x� =
1

�2��
exp�−

�x − x̄�2

2�2  , �12�

where x=�hn
z , x̄=�hz, and �2=x2− x̄2. The only effect of �bz

is to shift the mean value of the Overhauser field inhomoge-
neity to x0= x̄+�bz, whereas the width is left unchanged:
�0=�. According to this description, we obtain

��z�t�� = �
−�

�

dx�I;x0,�0
�x�	f�x� + g�x,t�
 , �13�

f�x� =
�2x − ��2

�2x − ��2 + �j/2�2 , �14�

g�x,t� =
�j/2�2cos	2��2x − ��2 + �j/2�2t


�2x − ��2 + �j/2�2 . �15�

The second term 	Eq. �15�
 vanishes when it is averaged over
time and we find

1 − ���z�� =
1

2�0
�2�

�
−�

�

dx

�exp�−
�x − 2x0�2

8�0
2  �j/2�2

�x − ��2 + �j/2�2 . �16�

This integral �a convolution of a Lorentzian and Gaussian� is
the well-known Voigt function,33 and the resulting line shape
is the so-called “Voigt profile.” The Voigt function may be
expressed as ��̃= j+4ix0−2i��

���z�� = 1 −
j

4�0
��

2
Re�exp� �̃2

32�0
2erfc� �̃

4�2�0
� ,

�17�

where erfc�z� is the complementary error function. In the
regime where �0� j, we may approximate the Lorentzian in
the convolution 	Eq. �16�
 by its value at x=2x0 and obtain

���z�� �
�2x0 − ��2

�2x0 − ��2 + �j/2�2 , �0 � j . �18�

In this case, the resulting resonance has the same FWHM as
the Lorentzian, viz. j. On the other hand, if �0� j, we may
approximate the Gaussian with its value at x=� and thus
obtain

���z�� � 1 −
j

4�0
��

2
exp�−

�2x0 − ��2

8�0
2 , �0 � j .

�19�

In this regime, the width is twice the width �0 of the Gauss-
ian distribution of the nuclear spin states. In order to make a
statement about the width of the Voigt profile in general we
look at the peak-to-peak separation �V of the first derivative
of the Voigt profile. For a Gaussian with a standard deviation
of 2�0, we find �G=4�0 for the peak-to-peak separation of
the derivative, and for a Lorentzian with FWHM of j we
have �L= j /�3. A Padé approximant for �V in terms of �L
and �G yields34

�V =
�G

2 + a1�G�L + a2�L
2

�G + a2�L
, �20�

where a1=0.9085, a2=0.4621. This approximation is accu-
rate to better than 0.01�V for all values of �L ,�G.34 A similar
formula may also be given for the half-width at half-
maximum �HWHM� of the Voigt profile.35

III. STATE NARROWING

The general idea behind state narrowing is that the evolu-
tion of the two-electron system is dependent on the nuclear
spin state and thus knowing the evolution of the two-electron
system determines the nuclear spin state. Thus, in this sec-
tion we describe how the Gaussian superposition �I;�0,x0

�x�
of collective nuclear spin eigenstates �n� can be narrowed
through a sequence of measurements performed on a double
quantum dot on a time scale much less than the time scale of
variation of �hz and for j��0. We first give a general de-
scription of how a complete measurement of the line shape
of the Rabi resonance narrows the Gaussian superposition.
Such a complete measurement of the line shape consists of
many single measurements of the operator �z. In Sec. III A
we present a detailed analysis of such a complete measure-
ment and in Sec. III B we discuss different measurement
schemes.

The operator �hz was defined in Sec. II and it describes
the difference in the z components of total nuclear field in
each of the two dots. The total nuclear field is the result of
N�106 single nuclear spins and thus the eigenvalues of �hz

will be highly degenerate. In the limit of large N, the spec-
trum of �hz is quasicontinuous and the probability density of
eigenvalues of �hz is given by a Gaussian distribution, as
described in Sec. II A. For such a Gaussian superposition of
nuclear spin eigenstates, the line shape of the Rabi resonance
is given by a Voigt profile, as described in Sec. II A. This
Voigt profile can be seen as a superposition of Lorentzian
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line shapes, where each Lorentzian results from a nuclear
spin eigenvalue �hn

z and is centered around n=2��hn
z

+�bz�. In the Voigt profile, these Lorentzian line shapes are
weighted according to the amplitude of the corresponding
eigenvalue �hn

z in the Gaussian-distributed superposition.
Through a perfect complete measurement of the Rabi-
resonance line shape, the superposition of Lorentzian line
shapes collapses and we are left with one single Lorentzian
�see Fig. 1�. This Lorentzian corresponds to one single eigen-
value of �hz and thus the Gaussian distribution has been
narrowed to zero width; the nuclear spin system is in a state
with fixed eigenvalue �hn

z .
In principle, we would need to do infinitely many single

measurements in order to completely measure the line shape
of the Rabi resonance with perfect accuracy, since each point
on this resonance curve is a �time-averaged� expectation
value of the quantum-mechanical operator �z. Still, we may
perform a finite number M of single measurements �see Sec.
III A� for each of a set of driving frequencies � and thus
obtain the series of expectation values for different � up to
some error. This error depends on M. There will then in
general be more than one Lorentzian that can be fit �within
error� to these expectation values and thus we would not
narrow to zero width. We would still have a distribution of
nuclear spin eigenstates, but one with smaller width than
before the measurements.

For such a narrowing through measurement to be success-
ful, the amplitude j of the oscillating exchange J�t� which
determines the width of the Lorentzian line shapes should be

smaller than the width �0 of the Gaussian distribution. Oth-
erwise, the Rabi resonance would be dominated by the
Lorentzian 	see Eq. �18�
 and the method would not result in
narrowing of the nuclear spin distribution. The general re-
quirements on the system parameters to narrow the distribu-
tion of nuclear spin eigenvalues are

j,J0,�0 � x0, j � �0. �21�

We note that, unlike in standard ESR, power absorption is
not measured here, but instead the expectation value of the
pseudospin �z, for instance via a quantum point contact
�QPC� nearby one quantum dot �for a detailed description of
the measurement process via such a QPC, we refer the inter-
ested reader to Ref. 36�. To determine the expectation value
of the pseudospin �z, many single measurements of the pseu-
dospin are necessary and we thus proceed to give a detailed
description of the state narrowing by considering the effect
of these single measurements on the nuclear spin state.

A. Description of state narrowing by consecutive pseudospin
measurements

In this subsection, we describe in detail how a single mea-
surement of the pseudospin �z of the two-electron system
affects the nuclear spin system. Further, we give a general
formula for the diagonal elements of the nuclear spin system
density operator in the continuum limit after M measure-
ments. The sequence of M measurements is referred to as a
“complete measurement.”

At t=0, the two-electron system is initialized to the state
�+ �= �↓ ↑ � and we assume that the electron and the nuclear
system are initially factorized. Thus, the total system at t
=0 is described generally by the following density operator:

��0� = �e�0� � �I�0� = � + ��+ � � �
i

pi��I
i���I

i� , �22�

with nuclear spin state ��I
i�=�nan

i �n�. The diagonal elements
of the nuclear spin density operator at t=0 are given by
�I�n�=�I�n ,0�=�ipi �an

i �2 and in the continuum limit we ob-
tain the probability density �I;x̄,��x� for the eigenvalues �hn

z

=x as given in Eq. �12�. At time tm, a measurement of
the two-electron system 	at driving frequency �, where � is
defined in Eq. �2�
 is performed with two possible outcomes
�+ � and �−�. The diagonal elements of the nuclear spin den-
sity operator after the measurement are given by �see Appen-
dix B�

�I
�1,±��n,tm� =

�I�n,0�
P±�tm�

1

2
	1 ± ��z�tm��n
 , �23�

where ��z�t��n is given by Eq. �4� and the probabilities P±�tm�
to measure �± � are

P±�tm� = �
i

�
n

1

2
	1 ± ��z�tm��n
pi�an

i �2. �24�

In the case where a measurement is performed with a low
time resolution37 �t, i.e., if �t�1/ j, the density operator
after the measurement is the time average over the time in-
terval �t and the cosine term in ��z�tm��n averages out �note

FIG. 1. �a� This figure illustrates the projection obtained through
an ideal complete measurement of the Rabi-resonance line shape.
All the different Lorentzian resonances corresponding to different
nuclear spin eigenstates add up to a Gaussian line shape. �b�
Through a perfect complete measurement of the line shape of the
Rabi resonance, which involves many single measurements of �z,
the superposition collapses and we are left with one single Lorent-
zian centered around 2x0�=n, which in general is different from
2x0.
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that in the case of a measurement with low time resolution,
tm is arbitrary, as long as �t is chosen to be large enough�.
For the rest of this subsection, we thus assume38 that mea-
surements are performed with low time resolution �t�1/ j.
Further, we perform the continuum limit and obtain for the
probability density of eigenvalues, i.e., the diagonal part of
the density operator in the continuum limit 	with x=�hn

z

+�bz and �I�x���I;x0,�0
�x�, see Eq. �12�
,

�I
�1,+,���x� = �I�x�	1 − L��x�


1

P�
+ , �25�

�I
�1,−,���x� = �I�x�L��x�

1

P�
− , �26�

where the probabilities for measuring �+ � or �−� are given by

P�
+ = �

−�

�

dx�I�x�	1 − L��x�
 , �27�

P�
− = �

−�

�

dx�I�x�L��x� , �28�

with

L��x� =
1

2

�j/4�2

�x −
�

2
2

+ �j/4�2

. �29�

After the first measurement, the two-electron system is
reinitialized to the state �+ � if necessary and a second mea-
surement is performed. Since the initial density matrix fac-
tors out in the above results, it is clear how to generalize Eqs.
�25� and �26� to the case where M consecutive measurements
�without randomization of the nuclear spin system in be-
tween measurements� are performed: every time �+ � is mea-
sured, the diagonal elements �I�x� of the nuclear density ma-
trix are multiplied by 1−L��x� and every time �−� is
measured, �I�x� is multiplied by L��x�. Thus, we obtain the

diagonal elements �I
�M,�−,���x� of the nuclear density matrix

after M measurements, of which �− times the measurement
outcome was �−� 	and �M −�−� times �+ �
,

�I
�M,�−,���x� =

�I�x�
Q��M,�−�

W��M,�−;x� . �30�

Here, W��M ,�− ;x� and the normalization factor Q��M ,�−�
are given by

W��M,�−;x� = L��x��−
	1 − L��x�
M−�−

, �31�

Q��M,�−� = �
−�

�

dx�I�x�W��M,�−;x� . �32�

The normalization factor Q��M ,�−� is related to P�
± through

P�
− =Q��1,1�, P�

+ =Q��1,0�. In the case where measurements
are performed at mf different frequencies, Eq. �30� general-
izes to

�I
��Mi�,��i

−�,��i���x� = �I�x��
i=1

mf W�i
�Mi,�i

−;x�

Q�i
�Mi,�i

−�
. �33�

The probability density �I
��Mi�,��i

−�,��i���x� after M measure-
ments performed at mf different driving frequencies depends
on the frequencies ��i�= ��1 , . . . ,�mf

�, the number of mea-
surements at each frequency �Mi�= �M1 , . . . ,Mmf

�, and the
number of times �−� was measured at each frequency ��i

−�
= ��1

− , . . . ,�mf

− �. Equation �33� gives the distribution of
nuclear spin eigenvalues for any sequence of M measure-
ments, i.e., without randomization of the nuclear spin system
in between measurements.

B. Measurement schemes

In this subsection, we describe different measurement
schemes. One main characteristic of the schemes is whether
we have unconditional evolution of the nuclear spin density
matrix between measurements �one waits for the nuclear spin
system to rerandomize between subsequent measurements�,
or whether we have conditional evolution, i.e., the nuclear
spin system is assumed to be static between measurements.

1. Unconditional scheme

The simplest scheme is to measure only once at one single
driving frequency �. If the outcome is �−�, the nuclear spin
distribution after the measurement is given by Eq. �26�; the
FWHM �2�0

�2 ln 2�2�0� of the initial distribution will
have been narrowed by a factor �j /4�0 �the nuclear spin
distribution will approximately be a Lorentzian with FWHM
of j /2�. For j��0 and �=2x0, the probability P�

− to measure
�−� in the first measurement is P�=2x0

− � j /6�0 	the exact for-
mula is given in Eq. �28�
. If the measurement outcome is
�−�, we stop measuring. Otherwise, we wait for the system to
rerandomize �in contrast to the conditional schemes� and per-
form another measurement. This is repeated until �−� is mea-
sured for the first time. On average one needs to perform
M��6�0 / j measurements in order to narrow by a factor of
�j /4�0 �we write M� because this number of measurements
should not be confused with the number of measurements M
used above in the case of measurements performed without
rerandomization in between�. If the driving frequency � is
far from the center x0 of the initial Gaussian distribution, the
number of required measurements increases by a factor of
exp	�x0−� /2�2 /2�0

2
. This always leads to a narrowed dis-
tribution which is centered around � /2. Thus, with this
scheme it is possible to choose the center of the nuclear spin
distribution after the measurement. This unconditional mea-
surement scheme is the one that should be easiest to imple-
ment in an experiment since one only needs to measure once
at one single frequency. However, if measurements at several
different frequencies can be performed, a systematic narrow-
ing of the distribution can be implemented, as we show next.

2. Adaptive conditional scheme

The probability of measuring �−� in a measurement is de-
termined by the overlap of the Lorentzian L��x� and the
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probability density of eigenvalues �I
�M,�−,���x� 	for the first

measurement this probability is P�
−, which is given in Eq.

�28�
. Then, if we have the outcome �−� for a measurement at

driving frequency �, �I
�M,�−,���x� as a function of x becomes

peaked around � /2 	since L��x� is centered around x=� /2
,
the overlap of the Lorentzian L��x� and �I

�M,�−,���x� in-
creases, and therefore the probability to measure �−� in a
subsequent measurement also grows. If, on the other hand,
we have outcome �+ �, the term 1−L��x� causes a dip in

�I
�M,�−,���x� at x=� /2, the overlap of the Lorentzian L��x�

and �I
�M,�−,���x� decreases, and thus the probability to mea-

sure�−� in a subsequent measurement with the same driving
frequency � also decreases. Since it is the measurement out-
come �−� that primarily leads to narrowing, the measurement
scheme should maximize the probability to measure �−�. This
can be achieved by changing the driving frequency � always
in such a way that before each measurement L��x� and the

nuclear spin distribution �I
�M,�−,���x� have their maximum at

the same x, i.e., set � /2=xmax, where xmax is the x for which

�I
�M,�−,���x� has a maximum. Thanks to the adaptive driving

frequency �, the probability P�
− to measure �−� is �j /6�0 in

each measurement until �−� is measured for the first time.
Without adapting, i.e., when measuring always at the same
driving frequency �, P�

− decreases, as explained above �as
long as we do not measure �−��. After measuring �−� for the
first time, the probability P�

− to measure �−� increases. Every
time the measurement outcome is �−�, the distribution

�I
�M,�−,���x� is multiplied by L��x� and becomes narrower

	since L��x��−
has a FWHM of �j /2��21/�−

−1
. However,

the measurement outcome �+ �, for which �I
�M,�−,���x� is mul-

tiplied by 1−L��x�, is still more likely and leads to a small
widening of the distribution. Our simulations of this mea-
surement scheme do, however, show that after �−� has been
measured several times, the nuclear spin distribution is nar-
rowed by more than a factor j /4�0.

This adaptive scheme was first proposed in an optical
setup by Stepanenko et al. in Ref. 30. This scheme requires
that xmax can be calculated �or read from a table� between
subsequent measurements and that the driving frequency �
can be tuned with a precision that is better than the width of
the nuclear spin distribution before each measurement. For
this adaptive scheme �and other conditional schemes� to
work, it is important that the nuclear spin system does not
randomize during the course of the complete measurement,
i.e., the complete measurement must be carried out within a
time that is shorter than the time scale for nuclear spin dy-
namics. We thus assume that the nuclear spin system �viz.,
�hz� has no internal dynamics between the single measure-
ments of �z�t�, but only changes due to the measurements
performed on the two-electron system, i.e., due to single
measurements of �z�t�. We expect �hz to vary on the time
scale of nuclear spin diffusion out of the dot, which is on the
order of seconds for nuclear spins surrounding donor impu-
rities in GaAs.27 However, there may be other sources of
nuclear spin dynamics �see also Appendix A�.

In Fig. 2, we show a typical39 sequence of nuclear spin
distributions for the adaptive scheme with a total number of

measurements M =100 and j /�0=1/10. We see 	Fig. 2�a�

that up to M =50 the measurement outcome is never �−� and
thus each measurement “burns a hole” into the distribution
where it previously had its maximum. In the 51st measure-
ment 	Fig. 2�b�
 the outcome is �−�, which narrows the dis-
tribution by a factor of �j /4�0. Adapting the driving fre-
quency � to this peak, i.e., setting � /2=xmax in subsequent
measurements, leads to further narrowing, i.e., to a total nar-
rowing by more than a factor j /4�0 	Fig. 2�c�
. In this ex-
ample, we have �−=22 after M =100 measurements and the
final FWHM is ��0 /100, i.e., the distribution has been nar-
rowed by a factor �j /10�0. In Fig. 2�d�, the probabilityP− to
measure �−� before each measurement is shown. After the
first time �−� is measured, P− jumps up and after several
more times �−� was measured, it saturates close to 1/2. P− is
a good signature of the distribution’s width. As the width of
the distribution goes to zero, P− approaches 1/2. This adap-
tive conditional scheme is more intricate than the uncondi-
tional scheme, but allows one to narrow by more than a
factor j /4�0.

3. Other conditional schemes

Other possible measurement schemes involve measure-
ments at several frequencies, as in the adaptive scheme. One

FIG. 2. In this figure, we show a typical39 sequence of the res-

caled probability density of eigenvalues ��x�=�I
��Mi�,��i

−�,��i���x� /

max	�I
��Mi�,��i

−�,��i���x�
 for the adaptive conditional scheme. Here,

�I
��Mi�,��i

−�,��i���x� is given in Eq. �33�. We have x=�hn
z +�bz, j /�0

=1/10 and in �a�–�c� the initial Gaussian distribution �with FWHM
2�0

�2 ln 2�2�0� is plotted for reference. �a� Up to M =50 mea-
surements the outcome is never �−� and thus each measurement
“burns a hole” into the distribution where it previously had its
maximum. �b� In the 51st measurement the outcome is �−�, which
leads to a narrowed distribution of nuclear spin eigenvalues �peak
centered at �0.5� with a FWHM that is reduced by a factor
�j /4�0. �c� Adapting the driving frequency � to this peak, i.e.,
setting � /2=xmax in subsequent measurements, leads to further nar-
rowing every time �−� is measured. In this example, the final
FWHM is ��0 /100, i.e., the distribution has been narrowed by a
factor �j /10�0. �d� The probability P− to measure �−� jumps up
after the 51st measurement, and after �−� is measured several more
times, this probability saturates close to 1/2.
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may either choose a fixed number of frequencies within one
or two �0 and measure several times at each frequency �with-
out randomization between the measurements� or sweep the
frequency, i.e., measure only once at each frequency but vary
the frequency only in small steps. Based on numerical simu-
lations of these schemes, we find that the typical number of
measurements to narrow by a factor of j /�0 is greater than in
the adaptive or the unconditional �single-frequency�
schemes.

4. Time-domain measurement scheme

We note that when a complete measurement of one of the
correlators discussed in Sec. IV is performed with perfect
resolution in time and perfect accuracy, this would also de-
termine the state of the nuclear spin system and thus narrow
the distribution of nuclear spin states. This is because the
frequency of the oscillating correlators is given by
�J2+4��hn

z�2 and thus measuring the frequency of the cor-
relator determines the eigenvalue �hn

z of the nuclear spin
system. However, it may be possible to perform a weak mea-
surement of the decay of the correlators and thus also to see
the prolongation of the decay after applying a narrowing
scheme. To understand in detail the effect of measurements
in the time domain, further study is required. Narrowing
through measurement of the correlators is a time-domain
measurement. In contrast, the narrowing schemes we have
proposed above are frequency-domain measurements. If the
frequency resolution is better than the time resolution, our
method would most likely be more suitable.

IV. CORRELATION FUNCTIONS IN THE Sz=0 SUBSPACE

In this section, we investigate the Hamiltonian H0 of Eq.
�1� with static exchange coupling J. Using this Hamiltonian,
we wish to calculate correlation functions for several observ-
ables in the subspace of zero total spin in the z direction. In
our previous work18 we calculated the time evolution of a
particular correlator involving the states �S� and �T0�. How-
ever, there are four additional independent correlators in-
volving the x and y components of pseudospin which require
a separate calculation. Quite surprisingly, it will turn out that
these correlators have different decay behavior in time. The
correlators we calculate here show the decoherence proper-
ties of the pseudospin states under the influence of the hy-
perfine interaction. There may be additional sources of deco-
herence which we do not consider here, such as orbital
dephasing, corrections to the effective Hamiltonian,18 the
coupling of the QPC to the dot spins,40 etc. The results of
this section will help to give requirements on the parameters
of the system in order to initialize in the state �↑ ↓ � and to
assess the fidelity of a �SWAP operation with static J �see
Sec. V�.

Diagonalizing H0 gives the following eigenvalues and
eigenvectors:

En
± =

J

2
±

1

2
�J2 + n

2, �34�

�En
±� =

�n/2��S� + En
±�T0�

��En
±�2 + �n/2�2

� �n� , �35�

where again �n� is an eigenstate of the operator �hz with
�hz �n�=�hn

z �n�. At t=0, we fix the electron system in an
arbitrary superposition of �T0� and �S�,

��e�t = 0�� = �A�, �A� = cos
�A

2
�S� + ei�Asin

�A

2
�T0� .

�36�

The nuclear spin system is again in a general state �see Sec.
II A�. As will be shown in Sec. V, it is possible, in principle,
to initialize to an arbitrary state in the subspace spanned by
�T0� and �S�. The probability to find the electron spins in a
state �B� at t	0 is given by the correlation function

CBA�t� = �
n

�I�n���n� � �B�e−iH0t�A� � �n��2, �37�

where �I�n�=�ipi �an
i �2. The correlation function has the fol-

lowing symmetry: CBA�t�=CAB�−t�, and if �B� and �D� are
orthogonal states we have CBA�t�=1−CDA�t�. Further, we
may decompose CBA�t� into the sum of a time-independent
term CBA

n and an interference term CBA
int �t�,

CBA�t� = CBA
n + CBA

int �t� , �38�

where the overbar is defined in Eq. �10�.
We have further CBA

n =CBA��hn
z�=CBA�x�. Performing the

continuum limit as described in Eq. �11�, we obtain for the
correlation function

CBA�t� = �
−�

�

dx�I;�0,x0
�x�	CBA�x� + CBA

int �x,t�
 �39�

=CBA
� + CBA

int �t� . �40�

Here, CBA
� is the asymptotic value of the correlator CBA�t� for

t→�.
We have calculated correlation functions for the following

states: �S�→ ��z=−1�, �T0�→ ��z= +1�, �X�→ ��x= +1�
= 1

�2
��T0�+ �S�� , �Y�→ ��y = +1�= 1

�2
��T0�+ i �S��. The frequency

in the interference term is always given by s�x�=�J2+4x2. In
Table I, we list the integrands according to the notation in
Eq. �39�. From the Heisenberg equation of motion we find
d�x

dt =−J�y, which leads to relations for the correlators. In the
notation used in Table I we obtain

dCXX

dt =−J�CYX− 1
2

�, which
is satisfied by the results shown in Table I. Similar relations
can be derived for the other correlators and used to check the
results in Table I. We see that CXX�t� is a linear combination
of other correlators: CXX�t�=CYY�t�+CT0S�t�. For CT0X and
CT0Y the interference term is an odd function in x. Thus, the
time dependence vanishes for x0=0 and we have CT0X

=CT0Y =1/2 for all t. In general, the integral in Eq. �39� is
difficult to solve exactly. Thus, we concentrate on several
interesting limits. We illustrate this for the case of CYX�t� and
give results for the other correlators. We have
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CYX�t� =
1

2
+ Im	C̃YX

int 
 , �41�

C̃YX
int = �

−�

�

�I;�0,x0
�x�

J

2s�x�
eis�x�t. �42�

In the regime of �x0 � ��0, the main contribution to the inte-
gral comes from a narrow region around x0 and we may
approximate J

2s�x� � J
2�0

, where �0=s�x0� and in the fre-

quency term s�x���0+
4x0

�0
�x−x0�+¯. For this to be a good

approximation, we require 2J2

�0
3 �x−x0�2t�1. We use �x−x0�2

��0
2 and thus obtain for the correlator and the range of va-

lidity in this limit

CYX
int �t� =

J

2�0
exp�− 1

2� t

t0�
2�sin��0t� , �43�

t0� =
�0

4�x0��0
, �0 = �J2 + 4x0

2, �44�

�x0� � �0, t �
�J2 + 4x0

2�3/2

2J2�0
2 . �45�

The results for the other correlators are �with the same range
of validity�

CT0S
int �t� = −

2x0
2

�0
2 exp�− 1

2� t

t0�
2�cos��0t� , �46�

CT0X
int �t� = −

Jx0

�0
2 exp�− 1

2� t

t0�
2�cos��0t� , �47�

CT0Y
int �t� =

x0

�0
exp�− 1

2� t

t0�
2�sin��0t� , �48�

CYY
int �t� =

1

2
exp�− 1

2� t

t0�
2�cos��0t� . �49�

In this limit we obtain a Gaussian decay for all correlators on
a time scale t0�=

�0

4�x0��0
which grows with the absolute value of

the exchange coupling �J� and with 1/�0. The long-time satu-
ration value is 1 /2 for CYX. For some of the other correlators
we find nontrivial parameter-dependent saturation values. In
the limit of �x0 � ��0, we obtain these correlators by the same
approximation as for the interference term, i.e., we set
CBA�x�=CBA�x0� and obtain

CT0S
� =

2x0
2

J2 + 4x0
2 , �x0� � �0, �50�

CT0X
� =

1

2
+

Jx0

J2 + 4x0
2 , �x0� � �0, �51�

CT0Y
� = CYX

� = CYY
� =

1

2
. �52�

For large J the saturation value is quadratic in x0 /J for CT0S

and linear for CT0X. The saturation value for CT0S goes to
zero for �J � � �x0� and for CT0X approaches 1/2. CT0X

� reaches

extrema equal to 1
2 + 1

4sgn�Jx0� for �J � =2 �x0�.
Next we consider Eq. �39� for �J � �max��x0 � ,�0� and find

s�x� = �J2 + 4x2 � �J� +
2x2

�J�
, �53�

J

2s�x�
=

J

2�J2 + 4x2
� sgn�J��1

2
−

x2

J2 . �54�

For Eq. �53� we have the additional requirement that t
�

�J�3

2 max�x0
4,�0

4� . Under these approximations we find the follow-

ing result:

C̃YX
int �t� = sgn�J��1

2
��t� −

�0
2

J2 �3�t� −
x0

2

J2�5�t�
�exp�i�J�t −

x0
2

2�0
2 	1 − �2�t�
 , �55�

TABLE I. Functions CBA�x� and CBA
int �x , t� according to the no-

tation of Eq. �39� for different correlators 	with s�x�=�J2+4x2
.
CXX�t� is a linear combination of other correlators.

CBA�t� CBA�x� CBA
int �x , t�

CT0S�t�
2x2

s�x�2 −
2x2

s�x�2 cos	s�x�t


CT0X�t�
1

2
+

Jx

s�x�2 −
Jx

s�x�2 cos	s�x�t


CT0Y�t�
1

2

x

s�x�
sin	s�x�t


CYX�t�
1

2

J

2s�x�
sin	s�x�t


CYY�t�
1

2

1

2
cos	s�x�t


CXX�t�
1

2
+

2x2

s�x�2

J2

2s�x�2 cos	s�x�t
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��t� = �1 − i
t

t0�
−1/2

, t0� =
�J�

4�0
2 , �J� � max��x0�,�0� ,

t �
�J�3

2 max�x0
4,�0

4�
. �56�

At short times we expand �2�t��1+ i t
t0�

− � t
t0�

�2. Keeping only
lowest order in t / t0� in the prefactor and second order in the
frequency term, we obtain

CYX
int �t� = sgn�J�

1

2
exp�− 1

2� t

t0�
2�sin��0�t� , �57�

t0� �
�J�

4�x0��0
, �0� = �J� +

2�x0
2 + �0

2�
�J�

, �58�

t � t0� =
�J�

4�0
2 , �J� � max��x0�,�0� . �59�

The �x0 � ��0 limit of this result agrees with the �J �
� �x0� limit of Eq. �43�. Again, we have a Gaussian decay on
the same time scale t0� as in Eq. �43� ��0=�J2+4x0

2��J� for
�J � � �x0��. One interesting feature of this correlator is the fact
that there is a change of phase by � when the sign of the
exchange coupling J changes. This feature offers the possi-
bility of measuring J even for small values of J through a
measurement of this correlator. We also list the other corr-
elators in this regime,

CT0S
int �t� = −

2�x0
2 + �0

2�
J2 exp�− 1

2� t

t0�
2�cos��0�t� , �60�

CT0X
int �t� = −

x0

J
exp�− 1

2� t

t0�
2�cos��0�t� , �61�

CT0Y
int �t� =

x0

�J�
exp�− 1

2� t

t0�
2�sin��0�t� , �62�

CYY
int �t� =

1

2
exp�− 1

2� t

t0�
2�cos��0�t� . �63�

Finally, we are also interested in the behavior for large t.
Thus, we expand Eq. �55� for large times ��t� t0��
�ei�/4�t0� / t and obtain

CYX
int �t� � sgn�J�e−x0

2/2�0
2

��J�sin��J�t +
�

4


4�0t1/2 , �64�

t � t0� =
�J�

4�0
2 , �J� � max��x0�,�0� . �65�

For the other correlators we find

CT0S
int �t� � − e−x0

2/2�0
2
cos��J�t +

3�

4


4�0
��J�t3/2

, �66�

CT0X
int �t� � − sgn�J�e−x0

2/2�0
2
x0

��J�cos��J�t +
3�

4


8�0
3t3/2 , �67�

CT0Y
int �t� � e−x0

2/2�0
2
x0

��J�sin��J�t +
3�

4


8�0
3t3/2 , �68�

CYY
int �t� � e−x0

2/2�0
2

��J�cos��J�t +
�

4


4�0t1/2 . �69�

Thus, the transverse components of the pseudospin have
a slower decay ��t−1/2� than the longitudinal component
��t−3/2�. This results from the fact that the Hamiltonian only
has fluctuations along one direction.

V. ANALYSIS OF �SWAP

In this section, we analyze the �SWAP gate using the cor-
relation functions derived in the previous section, i.e., we
analyze the �SWAP gate taking into account the hyperfine-
induced decoherence. The �SWAP gate and single-qubit op-
erations can be used to perform the quantum XOR gate
�CNOT� which, in combination with single-qubit operations,
is sufficient for universal quantum computation.1,41 In Ref. 9,
implementation of �SWAP has been demonstrated. However,
in these experiments there was a contrast reduction of
�40%. Here we show that taking into account hyperfine
induced decoherence, still near-unit fidelity can be obtained
for this operation.

The Hamiltonian of Eq. �1� induces unitary time evolution
on the states of the system: ���t��=U�t� ���0�� with U�t�
=T exp	−i�0

t H�t��dt�
. We assume that J and x0 can be
switched adiabatically42 on a time scale that is much shorter
than the time required for the gate operation and thus the
time evolution operator at time �s has the form

Us = exp�− i�sH� . �70�

In a Bloch-sphere picture, this operator induces a rotation
about an axis in the plane spanned by eigenstates of �x and
�z, �X�= �↑ ↓ � and �S�= ��↑ ↓ �− �↓ ↑ �� /�2.31 The axis of rota-
tion is determined by the parameters J and x0. Through such
an operation any state may be rotated into any other state on
the Bloch sphere. Thus, it is possible to rotate from �S� to any
initial state in the subspace of Sz=0 by a single operation.
This is important since initialization to the singlet is feasible
by preparing a ground-state singlet with both electrons on the
same dot and then changing the bias.9 We now investigate
initialization to the state �X� taking into account hyperfine-
induced decoherence. The scheme we propose here is differ-
ent from the one used in Ref. 9, where adiabatic passage
from the singlet to the �↑ ↓ � state is used. Our scheme re-
quires control of x0. We assume the system to be in the
singlet state �S� at t=0 and then switch J and x0 such that
J=−2x0 and �x0 � ��0. In a Bloch-sphere picture, this corre-
sponds to a rotation about an axis that halves the angle be-
tween �S� and �X�. Since CXS�t�=CSX�−t�=1−CT0X�−t� we
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have, for the above choice of parameters, according to Eqs.
�47� and �51�

CXS�t� =
1

2
+

1

4
	1 − cos��2�J�t�e−1/2�t/t0��2


 , �71�

J = − 2x0, �x0� � �0, �72�

t0� =
1

�2�0

, t �
�J2 + 4x0

2�3/2

2J2x0
2 . �73�

This correlator reaches its maximum for �2 �J � t=�, i.e., at
�s= �

�2�J� . The time scale for the Gaussian decay is t�= 1
�2�0

. To
approach unit fidelity, therefore, we require �J � ��0, which
is the case in the range of validity of the above correlator
since �x0 � ��0 and J and x0 are of the same order. At t=�s we
switch J to zero, and since �X� � �n� is an eigenstate of the
remaining Hamiltonian, the system remains in this product
state, untouched by decoherence induced via the nuclear
spins. This scheme thus provides a way to initialize the
double quantum dot system to the state �X�= 1

�2
��T0�+ �S��

= �↑ ↓ �, where arrows denote the z component of the electron
spin in each dot. In the same way, it is also possible to
initialize in the state �−X�= ��x=−1�= 1

�2
��T0�− �S��= �↓ ↑ � by

switching to J=2x0.
It was already proposed in Ref. 1 to implement the �SWAP

gate by pulsing the exchange interaction J between the two
dots. Here we give a detailed analysis of the �SWAP gate
taking into account hyperfine-induced decoherence.

The SWAP operation acts on the basis of the two-electron
system as �↓ ↓ �→ �↓ ↓ � , �↓ ↑ �→ �↑ ↓ � , �↑ ↓ �→ �↓ ↑ � , �↑ ↑ �
→ �↑ ↑ �. The SWAP is an operation that acts only on the sub-
space of Sz=0 and leaves the states �↑ ↑ � and �↓ ↓ � un-
changed. In the system we consider, this is naturally imple-
mented through the large Zeeman splitting that separates
�↑ ↑ � and �↓ ↓ � from the singlet and the Sz=0 triplet. In order
to analyze the SWAP in the Sz=0 subspace, we consider the
regime of �J � �max�x0 ,�0�. The correlator C−X,X�t� gives the
probability of being in the state �−X�= �↓ ↑ � for a system
initialized in �X�= �↑ ↓ �. Due to the symmetry relations for
the correlation functions, we have C−X,X�t�=1−CXX�t�=1
−CYY�t�−CT0S�t� and thus find 	using Eqs. �60� and �63� and

neglecting terms of order ��0
2+x0

2� /J2


C−X,X�t� = 1 − CXX�t� �
1

2
−

1

2
exp�− 1

2� t

t0�
2�cos��J�t� , �74�

t0� =
�J�

4�0�x0�
, �J� � max��x0�,�0�, t � t0� =

�J�
4�0

2 . �75�

We obtain the maximum value for this correlator when �s

= �
�J� . The Gaussian has a decay time of t0�= �J�

4�0�x0� , so for x0

→0 the Gaussian decay is negligible and we obtain unit
fidelity for this SWAP operation �↑ ↓ �→ �↓ ↑ � up to a global
phase factor �which is not visible in the correlator�.

From the SWAP operation it is only a small step toward the
�SWAP, which we obtain when we let the system evolve with
the same parameter values but for only half the time. Starting
in the state �X�, we obtain �Y� after applying a �SWAP. For

large �J�, we find for the correlator CYX in the limit x0→0,

CYX�t� =
1

2
+ sgn�J�

1

2
exp�− 1

2� t

t0�
2�sin��J�t� , �76�

t0� =
�J�

4�0�x0�
, �J� � max��x0�,�0�, t � t0� =

�J�
4�0

2 . �77�

Here again the time scale of the Gaussian decay is �J�
4�0�x0� and

approaches infinity for x0→0. The time during which we
have to operate with these values of the parameters J and x0

is now �s= �
2�J� . Our calculations show that for the time during

which J is pulsed high there is a regime in which unit fidelity
may be approached. The reduced visibility in the
experiment9 may be due to several reasons, such as reduced
visibility in the readout of �↓ ↑ � or the initialization of �↑ ↓ �.

VI. CONCLUSION

We have developed a method that uses the measurement
of a Rabi resonance in the quantum-dot spin qubit to narrow
the distribution of the nuclear spin states. This method relies
on Rabi oscillations induced via an oscillation of the singlet-
triplet splitting J in the subspace Sz=0 of two electrons in a
double quantum dot forming a two-qubit system. Further, we
have calculated several correlators in the Sz=0 subspace for
static J and found that the transverse components of pseu-
dospin have a slower decay than the longitudinal one. We
have also discussed the implementation and fidelity of the
�SWAP gate in this system and the initialization to the �↑ ↓ �,
�↓ ↑ � states.
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APPENDIX A: DRIFT IN �hz

In addition to spin diffusion, driven by the nuclear dipole-
dipole interaction, there may also be a change in �hz due to
corrections to the projected effective Hamiltonian considered
here �see Ref. 18, Appendix B for details�. After tracing out
the electron pseudospin in state �S, these correction terms
give rise to an electron-mediated nuclear spin-spin interac-
tion which, in general, takes the form of an anisotropic
�XYZ� Heisenberg interaction

Hnn = TrS��SH� = �
i,j,�=�x,y,z�

Jij
�Ii

�Ij
�. �A1�

Here, the indices i and j run over all nuclear spin sites.
We use the corrections to leading order in the inverse

Zeeman splitting 1/�z ��z=g�BB� given in Ref. 18. This
gives the typical value of the exchange constants �Jij

� �
�A2 /N2�z. Assuming an unpolarized nuclear spin state, each
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nuclear spin will therefore precess in an effective mean field
generated by all other spins in the dot of typical magnitude

heff � �N�Jij
�� � A2/N3/2�z. �A2�

This effective field will result in precession of the nuclear
spins about an arbitrary angle �and hence may change the
value of �hz� on a time scale

�p � N3/2�z/A
2 � 10−2 s, �A3�

where we have assumed N=106 nuclear spins within the
quantum dot, and �z /g�B=A /g�B�3.5 T for the time esti-
mate. This is only a worst-case estimate, which neglects the
effects, e.g., of a Knight-shift gradient �due to strong con-
finement of the electron�, which may further weaken the dy-
namical effect discussed here. We expect the dipolar nuclear
spin diffusion time to be the limiting time scale for nuclear
spin dynamics, in light of experiments on diffusion near do-
nor impurities in GaAs.27 If the effect giving rise to �p in Eq.
�A3� were significant, it could be further suppressed by
choosing a larger quantum dot size or stronger magnetic
field, thus allowing many electron spin measurements on the
time scale of variation of �hz.

APPENDIX B: MEASUREMENT

In this appendix, we describe how a single measurement
of the two-electron system affects the nuclear spin state. We
give the analytical expression for the diagonal elements of
the nuclear spin density operator after a measurement.

At t=0, the system is described by the following density
operator:

��0� = �e�0� � �I�0� = � + ��+ � � �
i

pi��I
i���I

i� , �B1�

with nuclear spin state ��I
i�=�nan

i �n�. The Hamiltonian H0 of
Eq. �1� acts on the nuclear spin system as H0 �n�=Hn �n�,
where in Hn the operator �hz has been replaced by �hn

z �be-
cause �hz �n�=�hn

z �n��. Since 	H0 ,�hz
=0, only the diagonal
elements of the nuclear density operator �I �in the basis of
�hz� enter in matrix elements for operators acting only on the
two-electron system. As described in Sec. II A, these diago-
nal elements �I�n�=�I�n ,0�= �n �Tre���0�� �n� describe a con-
tinuous Gaussian distribution in the continuum limit. The
trace over the electron system is defined as Tre��t�=
�+���t� � + �+ �−���t� �−� and for �I�n ,0� we have

�I�n,0� = �
i

pi�an
i �2. �B2�

The time evolution operators U�t� and Un�t� are defined

through iU̇�t�=H0�t�U�t� and iU̇n�t�=Hn�t�Un�t� and thus the
density operator ��0� evolves under the Hamiltonian H0 as

��t� = U�t���0�U†�t�

= U�t���e�0� � �
i

�
n,l

pian
i al

i*�n����l�U†�t�

= �
n,l

�Un�t��e�0�Ul
†�t� � �

i

pian
i al

i*�n����l� . �B3�

At time tm, a measurement in the basis of �+ � and �−� is
performed on one single two-electron system coupled to
nuclear spins. Since the outcome of this measurement is
known, the state of the system after the measurement is43

�the result depends on whether �+ � or �−� was measured�

��1,±��tm� =
� ± ��± ���tm�� ± ��± �

P±�tm�

= �
n,l

�� ± ����± �Un�tm��e�0�Ul
†�tm�� ± ����± �

� �
i

pian
i al

i*�n����l� 1

P±�tm�
, �B4�

with

P±�tm� = TrITre�� ± ����± ���tm�� = �
i

�
n

1

2
	1 ± ��z�tm��n
pi�an

i �2,

�B5�

where TrIA=�n�n �A �n� and ��z�t��n is given in Eq. �4�. Here,
P±�tm� is the probability to measure �± � at time tm. We are
mainly interested in the diagonal elements of the nuclear
density operator �I after the measurement,

�I
�1,±��n,tm� = �n�Tre�

�1,±��tm��n�

=
�I�n,0�
P±�tm�

�± �Un�tm��e�0�Un
†�tm�� ± �

=
�I�n,0�
P±�tm�

1

2
	1 ± ��z�tm��n
 . �B6�

Using Eq. �4�, we find

�I
�1,+��n,tm� =

�I�n,0�
P+�tm�

1

2
� 2�n − ��2

�n − ��2 + �j/2�2

+
�j/2�2	1 + cos���tm�


�n − ��2 + �j/2�2  �B7�

and

�I
�1,−��n,tm� =

�I�n,0�
P−�tm�

1

2

�j/2�2	1 − cos���tm�

�n − ��2 + �j/2�2 , �B8�

where �� is given in Eq. �5� and depends on the eigenvalue
�hn

z of the nuclear spin eigenstate through n.
Parenthetically, we note that in the case �not described in

this paper� in which the measurement is performed on an
ensemble of many different double quantum dots, the state of
the ensemble after the measurement is44

�ens
�1� �tm� = �

n,l
	� + ����+ �Un�tm��e�0�Ul

†�tm�� + ����+ �

+ �− ����− �Un�tm��e�0�Ul
†�tm�� + ����+ �


� �
i

pian
i al

i*�n����l� , �B9�

and the nuclear spin distribution has not changed. If a com-
plete measurement of the Rabi-resonance line shape were
performed on an ensemble of double dots, the result would
be the Voigt profile described in Sec. II A.
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