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We analyze the spin expectation values for injected spin-polarized electrons �spin vectors� in a �001�-grown
Rashba-Dresselhaus two-dimensional electron gas �2DEG�. We generalize the calculation for point spin injec-
tion in semi-infinite 2DEGs to finite-size spin injection in bounded 2DEGs. Using the obtained spin vector
formula, significance of the channel direction for the Datta-Das transistor is illustrated. Numerical results
indicate that the influence due to the finite-size injection is moderate, while the channel boundary reflection
may bring unexpected changes. Both effects are concluded to decrease when the spin-orbit coupling strength is
strong. Hence �110� is a robust channel direction and is therefore the best candidate for the design of the
Datta-Das transistor.
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The Datta-Das spin-field-effect transistor �spin-FET�,1
stimulating plenty of theoretical and experimental works in
semiconductor spintronics,2 has not yet been realized. Con-
cluded difficulties are basically:3 �i� effective controllability
of the Rashba spin-orbit4 �SO� coupling strength �, �ii� long
spin-relaxation time in two-dimensional electron gas �2DEG�
systems, �iii� uniformity of �, and �iv� a more efficient spin
injection rate. So far, the two former conditions have been
basically satisfied in experiments,5,6 while the latter two re-
main to be solved.

In the original proposal of the Datta-Das spin-FET, the
structure inversion asymmetry �the Rashba SO term� is re-
quired to dominate over the bulk inversion asymmetry �the
Dresselhaus SO term,7 with coupling strength �� therein.
However, the coupling strengths of the Rashba and Dressel-
haus terms have been, in fact, found to be of the same order
in certain types of quantum wells.8,9 Therefore, the influence
due to the Dresselhaus term has become another issue in
spintronics. For example, Łusakowski et al. had shown that
the conductance of the Datta-Das spin-FET depends signifi-
cantly on the crystallographic direction of the channel in the
presence of the Dresselhaus term.10 A more complete work
done by Winkler is the investigation of the spin splitting due
to the effective magnetic field generated by the structure in-
version asymmetry and the bulk inversion asymmetry.11,12

Recently, our previous work following Winkler even de-
rived the analytical formulae of the electron spin precession
in the 2DEG with both the Rashba and Dresselhaus terms
involved.13 The formulae obtained in Ref. 13 also implies the
significance of the 2DEG channel direction, and is therefore
in correspondence with Łusakowski’s result. However, the
assumption of spin injection via an ideal point contact and
the neglect of boundary effects in the 2DEG channel need to
be further investigated. In this paper, we mainly extend our
previous work13 to include spin injection via finite-size
source contacts and to take the boundary effect into account.
The former consideration is found to provide an average ef-
fect and the change thus induced is moderate, while the latter
may bring drastic influences. Both effects are concluded to
be strong �weak� in weak �strong� SO-coupling channels. In

the case of ���0, electrons encounter the strongest spin-
splitting along the �110� direction,14 which is therefore con-
cluded to be a robust channel direction as a good choice of
the Datta-Das spin-FET. Throughout this paper, we work
within the single-particle picture using a standard quantum
mechanical approach, in particular, the time-independent
Schrödinger picture, and assume zero temperature in the
clean limit.

Before considering the finite-size injection contact and the
boundary effect in the 2DEG channel, we first generalize the
formulae obtained in Ref. 13, which mainly describes the
in-plane behavior of the electron spin, injected from an
inplane-magnetized ferromagnet into the 2DEG, via an ideal
point contact. Referring to their results as �S�r

� with the su-
perscript denoting that the injected spin is inplane polarized
while the subscript is for expectation done on r= �r ,��, we
are now considering the more general case, namely, spin in-
jection with arbitrary polarization. The spinor corresponding
to the electron spin injected on ri is therefore given by15

�s�ri
� �e−i�s cos��s /2� , +sin��s /2��T, and we are thus seeking

the spin vector �S�r= �� /2���� �r with �� being the Pauli ma-
trices. Also, we present the calculation of ��z�r to complete
the description of the spatial behavior of the spin vector.
Using the same method introduced in Ref. 13, we obtain,
choosing ri=0,

��� �r = 	− cos �s cos � sin 	��r� + sin �s��x�r
�

− cos �s sin � sin 	��r� + sin �s��y�r
�

cos �s cos 	��r� + sin �s��z�r
� 
 �1�

with ��x�r
� and ��y�r

� given by Eq. �5� of Ref. 13, ��z�r
�

=cos��−�s�sin 	�, ��arg��� cos �+� sin ��+ i�� sin �
+� cos ���, and 	��r�=2m*r��2+�2+2�� sin�2�� /�2 with
m* the electron effective mass, for the point spin injection
case in the absence of boundary effects. Clearly, Eq. �1�
recovers the previous results in Ref. 13 when putting
�s=
 /2.

Next we consider a spin-polarized source connected to the
2DEG channel, either from the side or from the top, via a
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finite-size contact. Assume that each electron is equally
likely to be injected via all the possible injection points,
which may be everywhere on the contact except the positions
close to the atoms. Let us assume that the possible injection
points are located on exactly the center of each primitive
unit cell of the contact crystal for the top injection. In the
case of side injection, the contact region becomes a line
and the injection points are reduced to the middle points
of each neighboring pair of atoms. Note that despite a
displacement, the distribution of the injection points are
equivalent to the lattice points of the contact. Labeling the
positions of the injection points as ri, the state ket describing
the injected electron detected on r may be superposed
by �s�r= �1/r�s �s�r�i�s�ri→r with �s�ri→r given by13

�s�ri→r=�=±1 exp�−i�	��r−ri� /2���� ;� �s�ri
��� ;��, where

��� ;�� is the eigenspinor of the Rashba-Dresselhaus system,
� being the angle of the wave vector. The subscript ri→r is
to remind one that the spin is injected on ri and detected on
r after straight evolution. Note that this formulation can also
include the problem of imperfect spin-polarized injection,
i.e., to deal with a multidomain ferromagnetic source
contact.

Now we deal with the channel boundary. The effect of the
lateral confinement in the channel was previously regarded
as to provide a large energy gap between two neighboring
subbands to avoid intersubband mixing in the transverse
direction.1,16,17 Contrary to this suggested quasi-one-
dimensional channel, we study a fully two-dimensional
channel and put emphasis on the electron wave property, i.e.,
both longitudinal and transverse directions are not strongly
quantized, so that the spatial parts of the electron wave func-
tion in both directions are described by plane waves �under
the effective mass Hamiltonian�. Based on this viewpoint, we
assume that each spin-polarized electron injected on ri may
spatially evolve to the detection point r through not only the
straight but also the reflected paths. Treating the lateral
boundaries as hard walls, we write the corresponding state
ket as

�s�ri→r
ref =

1

ri→r
ref �s�s�ri→r

ref 
n=0

�

�s�ri→r
�n� , �2�

where �s�ri→r
�n� is the spatially evolved state ket from ri to r

after n times of reflection by the channel boundary. To avoid
complicating the problem, we will pick terms up to n=1 in
the numerical results for the spin vectors under the influence
of boundary effects. Note that the source and drain contacts
are assumed to be ohmic, and hence we neglect the reflec-
tions in the longitudinal direction.

Note that to obtain the reflected waves is somewhat
tricky. For example, the n=1 term with ri→r�→r
path, where r� is the position vector where the
reflection occurs, can be obtained by �s�ri→r�→r

=� exp�−i�	��r−r�� /2���� ;�r−r� �s�ri→r���� ;�r−r�� with
�s�ri→r�=� exp�−i�	��r�−ri� /2���� ;�r�−ri

�s�ri
��� ;�r�−ri

� ,
�r being the argument of the vector r. When considering
finite-size injection, the total state ket characterizing the in-

jected electron is expressed as �s�r= �1/ r�s �s�r�i�s�ri→r
ref with

�s�ri→r
ref given by Eq. �2�.
Now we present the calculated spin vectors inside the

2DEG channel with certain cases of spin injection. We inves-
tigate InGaAs 2DEG channels, setting the Rashba coupling
parameter18 �=0.3 eV Å with electron effective mass
m*=0.03 me, in the spin transistor geometry, i.e., injected
spin-polarization parallel to the channel direction. The
Dresselhaus coupling parameter is chosen as �=0.09 eV Å,
which is deduced from ���kz

2� with a typical value for the
coefficient8,19 �25 eV Å3, assuming an infinite quantum
well in the z direction with a well width 50 Å.

We begin with the single-point spin injection case for dif-
ferent channel directions without boundary effects. Three
0.4 �m�0.267 �m 2DEG channels along �100�, �110�, and

�11̄0� are examined, and the spin is injected on the middle
point of the left end. Using Eq. �1�, we sketch the spin vec-
tors inside the three channels in Figs. 1�a�–1�c�. Different
spin patterns shown in the three cases indicate that the
z-rotational symmetry is broken due to the presence of the
Dresselhaus term. Thus the influence due to the bulk
inversion-asymmetry is clear, even in this Rashba dominat-
ing 2DEG. As suggested in our previous work,13 channel
directions should be chosen along �1±10� since the Rashba
and Dresselhaus terms generate a k-dependent effective mag-
netic field, which is perpendicular to the electron propagation
only along these two directions. Such a uniqueness of these
two axes we have just shown also agrees with Averkiev’s
conclusion that �1±10� are the principle axes of the spin
relaxation rate tensor.20

We now consider finite-size spin injection. The width of
the contact is set 2 /3 times the channel width, and perfect
polarization of the source contact in the spin transistor ge-
ometry is assumed. The spin vectors are plotted in Figs.
1�d�–1�i�, where the middle and right columns are in the
absence and in the presence of the boundary effect, respec-

FIG. 1. �Color online� Spin vectors in 0.4 �m�0.267 �m
InGaAs 2DEG channels using �a�–�c� point spin injection and �d�–
�i� finite-size spin injection, with the source contacts �indicated by
dark dots or dark thick lines in each panel� all polarized parallel to
the channel directions. Channel boundary effect is considered in
�g�–�i�. Color shading is determined by �Sz� with red �dark�
→negative and yellow �bright�→positive.
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tively. Compared to the single-point injection shown in Figs.
1�a�–1�c�, the variation due to the finite-size spin injection
seems tiny in the case without the boundary effect �Figs.
1�d�–1�f��, and the assumption of single-point injection may
thus work well in this case. When the boundary effect is
taken into account, the spin vectors are drastically changed
�Figs. 1�g�–1�i��. Comparing Figs. 1�d�–1�f� with 1�g�–1�i�,
respectively, one can roughly conclude that the influence due
to the boundary effect is stronger �weaker� in weaker �stron-
ger� SO-coupling channels, recalling that this spin-splitting

is strongest along �110� whereas that along �11̄0� is weakest
when ���0. In fact, this is also true for the influence due to
the finite-size injection, as will be clearer later.

To specify the change due to the finite-size spin injection
and the channel boundary effect, we analyze �Sx� along the
straight paths in the middle of each channel, as shown in Fig.
2. Without boundary effect, the effect of the finite-size injec-
tion merely reduces the spin precession lengths near the
source contacts, and the corresponding reduction seems

clearest and vaguest in the weakest ��11̄0�� and strongest
��110�� SO-coupling channels, respectively. This behavior
becomes even clearer when the boundary effect is present.
Comparing black dashed �finite-size injection� with gray
solid lines �point injection�, the difference seems, again,

clearest �vaguest� in the �11̄0� ��110�� channel. When focus-
ing individually on the effect of the boundary reflection,
similar behavior is observed. Taking the single-point injec-
tion cases �black and gray solid lines in Fig. 2� for illustra-
tion, the change due to the boundary effect appears again the

most drastic in the case of �11̄0�, where the spin precession
behavior is almost destroyed.

Moreover, such interference effect may grow with the in-
crease of the channel width. Figure 3 shows �Sz� under the
influence of the boundary effect and under the same condi-
tions with Fig. 2, except the varying channel widths. Clearly,
we see that the interference effect grows fastest with the

increase of the channel width in the �11̄0� channel, while the
most slowly in the �110� channel, implying its robustness.
Also, the precession behavior is destroyed when the channel
width is wide enough. This conclusion that when one con-
siders wider �narrower� channels, the influence of the bound-
ary effect becomes stronger �weaker�, also agrees with the

previous suggestions of using a quasi-one-dimensional chan-
nel for enhancing the performance of the Datta-Das
transistor,16 and also the slowdown of the D’yakonov-Perel’
spin relaxation rate in narrow channels.21

We finally make a simple connection to the ballistic spin
transport, solving for the transmission problem in a
ferromagnet-2DEG-ferromagnet double junction structure,
constructed by Matsuyama et al.,22 who considered only the
Rashba term in the 2DEG channel. As shown in Fig. 4�a�, we
analyze the in-plane components of the spin vectors in a
150 nm�1.0 �m Rashba-type 2DEG �for consistency with
their work�, using the method of single-point injection.

From the time-independent Schrödinger equation, one can
obtain the corresponding transmission probabilities, which
are found to depend on �i� the Fermi velocity mismatch be-
tween the ferromagnet and 2DEG regions and �ii� the spinor
overlap between the incoming and outgoing states. Of par-
ticular interest is that the transmission probabilities �and, in
fact, also the reflection probabilities� are proportional to this
spinor overlap. Put in another way, the electron dislikes
changing its spin direction when crossing the boundary be-

FIG. 2. The x-component �Sx� in units of � /2 along the straight

path in the middle of a �a� �100�, �b� �110�, and �c� �11̄0� channel.
Legend: black solid and gray dashed lines depict single-point and
finite-size injection cases, respectively, without the boundary effect;
gray solid and black dashed lines depict single-point and finite-size
injection cases, respectively, in the presence of the boundary effect.

FIG. 3. The z-component �Sz� in units of � /2 along the straight

path in the middle of a �a� �100�, �b� �110�, and �c� �11̄0� channel
with different channel widths. The legends in each panel label the
corresponding channel widths in units of �m.

FIG. 4. �a� Spin vectors inside a Rashba-type 2DEG channel of
the spin-FET. Electron spins are injected via the middle point of the
source contact. �b� and �c� plot ��S� ·m�2 as a function of the carrier
density ns of the 2DEG, determined on the middle point at the end
of the channel in the absence and in the presence of the boundary
effect, respectively. The ranging of the carrier density ns correspond
to �=0−0.22 eV Å.

DATTA-DAS TRANSISTOR: SIGNIFICANCE OF¼ PHYSICAL REVIEW B 73, 205301 �2006�

205301-3



tween the ferromagnet and 2DEG regions. In this sense, one
can clearly see why the oblique injections contribute an “un-
desired background” to the transmission probability, and
hence the conductance,22 by noting that the spin vectors at
the right end of the channel in Fig. 4�a� are nonuniform.
Assuming that the drain contact is polarized parallel to the
channel direction, then only the spin vectors pointing to right
on the 2DEG-drain interface give a positive contribution to
the conductance. Since only the normally injected spins in
this Rashba channel encounter the precession axis parallel to
the 2DEG-drain interface, giving rise to the maximum oscil-
lating amplitude when varying the �, the oscillation behavior
of the total conductance obtained by summing all the trans-
mission amplitudes from all the transmission modes �Land-
auer formula� will eventually be averaged down.

Focusing on the normal injection �center path in the chan-
nel of Fig. 4�a��, the spin vectors indeed precess upright
down the way to the drain, as the original design of the
Datta-Das spin-FET.1 Using the relation22 ns��2, we plot
��S� ·m�2 ��S� is determined at right end of the channel, and
m is the unit vector of the channel direction�, which is re-
sponsible for the transmission probabilities T±,±, as a func-
tion of the carrier density ns in Figs. 4�b� and 4�c�. In the
absence the boundary effect �Fig. 4�b��, the squared projec-
tion ��S� ·m�2 is isotropic and shows no dependence on the
crystallographic direction, when the Dresselhaus term is not
involved. Despite the rapid oscillations caused by the Fabry-
Perot interference between the source-2DEG and 2DEG-
drain boundaries, we obtain a satisfactory curve �black solid
line in Fig. 4�b��, in good agreement with Ref. 22 �see Figs.
10�c�-10�f� therein�. We again stress the importance of
choosing the channel direction for the Datta-Das transistor
with ��0, by noting that the precession behavior of the
injected spin is sensitive to the channel direction �the other
three lines in Fig. 4�b��. When the boundary effect is in-
volved �Fig. 4�c��, the spin precession behavior is totally
changed, even the robust �110� channel. This is because the

channel width is too wide, allowing a much more severe
influence caused by the boundary reflection, as we have dis-
cussed previously.

In conclusion, we have calculated the spin vectors inside
the 2DEG channel of the Datta-Das transistor to demonstrate
the significance of the channel direction and to investigate
the size-dependence of source contacts and the channel
boundary effects. The analytical spin vector formulae for the
point spin injection13 are also generalized to the arbitrary
polarization of spin injection cases. Numerical results have
shown that the influence due to the finite-size injection is
moderate, while the channel boundary reflection may bring
unexpected changes.

We emphasize here the two-dimensional wave property of
the electron in typical InGaAs 2DEGs. From degenerate per-
turbation theory, one is led to the criterion1,16 W��2 /�m*,
within which the channel can be regarded as quasi-one-
dimensional, when assuming hard wall lateral confinement
and considering only the Rashba term. For the Rashba-
Dresselhaus 2DEGs with, e.g., �=0.3 eV Å, �=0.09 eV Å,
and m*=0.03 me, the total coupling strength ranges from

0.21 eV Å �the �11̄0� direction� to 0.39 eV Å �the �110� di-
rection�. The criterion for the quasi-one-dimensional channel

will require W�65 nm �121 nm� for the �110� ��11̄0�� case.
Therefore, typical InGaAs 2DEGs with channel widths of the
order of or larger than these lengths will require a two-
dimensional description for the electron waves, and the pos-
sible boundary effects are thus unavoidable.

Our results may be taken as a warning indicating another
difficulty inherent in the design of the Datta-Das spin-FET:
the interference due to the channel boundaries. However, we
conclude that the �110� direction is shown to be robust under
the influence of finite-size spin injection and the boundary
reflection, for �001�-grown zincblend-based 2DEGs.
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