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Employing a nonequilibrium Green’s-function approach, we examine the effects of long-range hole-impurity
scattering on spin-Hall current in p-type bulk semiconductors within the framework of the self-consistent Born
approximation. We find that, contrary to the null effect of short-range scattering on spin-Hall current, long-
range collisions do produce a nonvanishing contribution to the spin-Hall current, which is independent of
impurity density in the diffusive regime and relates only to hole states near the Fermi surface. The sign of this
contribution is opposite to that of the previously predicted disorder-independent spin-Hall current, leading to a
sign change of the total spin-Hall current as hole density varies. Furthermore, we also make clear that the
disorder-independent spin-Hall effect is a result of an interband polarization directly induced by the dc electric
field with contributions from all hole states in the Fermi sea.
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I. INTRODUCTION

Recently, there have been extensive studies of the physics
of the spin-orbit �SO� interaction in condensed matter. The
most intriguing phenomenon induced by SO coupling is the
spin-Hall effect �SHE�: when a dc electric field is applied,
the SO interaction may result in a net nonvanishing spin
current flow along the transverse direction. The SHE is clas-
sified into two types according to its origin, an extrinsic spin-
orbit Hamiltonian term induced by carrier-impurity scatter-
ing potentials1,2 and an intrinsic spin-orbit Hamiltonian term
arising from free carrier kinetics.3,4 The intrinsic spin-Hall
effect was originally thought to be independent of carrier-
impurity scattering. Experimentally, the SHE was observed
in a n-type bulk semiconductor5 and in a two-dimensional
�2D� heavy-hole system.6

However, further studies have indicated that the spin-Hall
effect associated with the intrinsic mechanism can be
strongly affected by carrier-impurity scattering �disorder�.7–22

�To avoid confusion, we use the term “intrinsic SHE” to refer
to the total spin-Hall effect arising from the SO coupling
terms of the Hamiltonian that do not explicitly involve scat-
tering; ultimately, this is corrected by scattering, but the part
that is unaffected by scattering will be termed the intrinsic
“disorder-independent” SHE.� In diffusive 2D semiconduc-
tors, there always exists a contribution to the intrinsic spin-
Hall current which arises from spin-conserving electron-
impurity scattering, but it is independent of impurity density
within the diffusive regime. For 2D electron systems with
Rashba SO coupling, this disorder-related spin-Hall current
leads to the vanishing of the total intrinsic spin-Hall current,
irrespective of the specific form of the scattering potential, of
the collisional broadening, and of temperature.17 In 2D
Rashba heavy-hole systems, disorder affects the intrinsic
SHE in a different fashion: contributions from short-range
collisions to the SHE vanish,18 while long-range electron-
impurity scattering produces a nonvanishing disorder-related
spin-Hall current, whose sign changes with variation of the
hole density.19,20

To date, the effect of disorder on the intrinsic spin-Hall
current in p-type bulk semiconductors has been studied rela-

tively little. Employing a Kubo formula, Murakami found a
null disorder effect on the intrinsic SHE for short-range hole-
impurity collisions.21 The crossover of the SHE from the
diffusive to the hopping regime has been investigated by
modeling finite-size samples �with a maximum of 50�50
�50 lattice sites� by Chen et al.22 In this paper, we employ a
nonequilibrium Green’s function approach to study the effect
of more realistic long-range hole-impurity scattering on the
intrinsic spin-Hall current in a diffusive p-type bulk semi-
conductor. We find that, in such a system, the contribution of
hole-impurity collisions to the intrinsic spin-Hall current is
finite and it is independent of impurity density within the
diffusive regime. Moreover, this disorder contribution has its
sign opposite to that of the disorder-independent one, leading
to a sign change of the total spin-Hall current as the hole
density varies. Furthermore, we make clear that the disorder-
independent spin-Hall effect arises from an interband polar-
ization process directly induced by the dc electric field and it
involves all hole states below the Fermi surface. In contrast
to this, the disorder contribution to the intrinsic SHE origi-
nates from a disorder-mediated polarization between two
hole bands and is associated only with hole states in the
vicinity of the Fermi surface. Also, we numerically examine
the hole-density dependencies of the spin-Hall conductivity
and mobility.

This paper is organized as follows. In Sec. II, we derive
the kinetic equation for the nonequilibrium distribution func-
tion and discuss the origins of the disorder-independent and
disorder-related spin-Hall currents. In Sec. III, we perform a
numerical calculation to investigate the effect of long-range
hole-impurity scattering on the spin-Hall current. Finally, we
review our results in Sec. IV.

II. FORMALISM

A. Kinetic equation

It is well known that for semiconductors with diamond
structure �e.g., Si, Ge� or zinc-blende structure �e.g., GaAs�,
the tops of the valence bands usually are split into fourfold
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degenerate S=3/2 and twofold degenerate S=1/2 states due
to the spin-orbit interaction �S denotes the total angular mo-
mentum of the atomic orbital�. Near the top of the S=3/2
valence bands, the electronic structure can be described by a
simplified Luttinger Hamiltonian,23

ȟ0�p� =
1

2m
���1 +

5

2
�2�p2 − 2�2�p · S�2� , �1�

where p��px , py , pz���p sin �p cos �p , p sin �p sin �p ,
p cos �p� is the three-dimensional �3D� hole momentum, m is
the free electron mass, S��Sx ,Sy ,Sz� are the spin-3 /2 ma-
trices, and �1 and �2 are the material constants. �As in pre-
vious studies,3,21,22,24 we simplified by setting �3=�2 in the
original Luttinger Hamiltonian presented in Ref. 23�.

By a local unitary spinor transformation, Up=exp
�−iSz�p�exp�−iSy�p�, Hamiltonian �1� can be diagonalized as

ĥ0�p�=Up
+ȟ0�p�Up=diag��H�p� ,�L�p� ,�L�p� ,�H�p�	. Here,

�H�p�=
�1−2�2

2m p2 and �L�p�=
�1+2�2

2m p2 are, respectively, the dis-
persion relations of the heavy- and light-hole bands. Physi-
cally, this transformation corresponds to a change from a
spin basis to a helicity basis.

In a realistic 3D system, holes experience scattering by
impurities. We assume that this interaction between holes
and impurities can be characterized by an isotropic potential,
V�
p−k 
 �, which corresponds to scattering a hole from state
p to state k. In the helicity basis, the scattering potential

takes the transformed form, T̂�p ,k�=Up
+V�
p−k 
 �Uk.

We are interested in the spin-Hall current in a bulk hole
system driven by a dc electric field E along the z axis. In
Coulomb gauge, this electric field can be described by the
scalar potential, V�−eE ·r, with r as the hole coordinate.
Without loss of generality, we specifically study a spin cur-
rent Jy

x that is polarized along the x axis and flows along the
y axis. In the spin basis, the conserved single-particle spin-
Hall operator ǰy

x is defined as24

ǰy
x�p� =

1

6
� � ȟ0

�py
,Pp

LSxPp
L + Pp

HSxPp
H� , �2�

with Pp
L and Pp

H, respectively, as projection operators onto the
states of light- and heavy-hole bands: Pp

L= 9
8 − 1

2p2 �p ·S�2, Pp
H

=1− Pp
L. Taking a statistical ensemble average, the observed

net spin-Hall current is given by

Jy
x = 


p
Tr� ǰy

x�p��̌�p�	 , �3�

where �̌�p� is the distribution function related to the nonequi-

librium “lesser” Green’s function, Ǧ��p ,	�, as given by

�̌�p�=−i� d	
2
Ǧ��p ,	�. Also, Jy

x can be determined in helicity
basis via

Jy
x = 


p
Tr� ĵy

x�p��̂�p�	 , �4�

with ĵy
x�p�=Up

+ ǰy
x�p�Up and �̂�p�=U+�p��̌�p�U�p� being the

helicity-basis single-particle spin current operator and distri-
bution function, respectively. Explicitly, Eq. �4� can be re-

written as ��̂���p� are the matrix elements of �̂�p� in helicity
basis; � ,�=1,2 ,3 ,4	

Jy
x =

�3�2

m


p

p�4 cos2 �psin �pIm��̂12�p� + �̂34�p�	

− sin�2�p�sin�2�p�Re��̂12�p� + �̂34�p�	

+ 2 cos�2�p�cos �pIm��̂13�p� − �̂24�p�	

− sin�2�p��1 + cos2 �p	Re��̂13�p� − �̂24�p�	� . �5�

Here, the Hermitian property of the distribution function, i.e.,
�̂�p�= �̂+�p�, has been used. It is clear from Eq. �5� that con-
tributions to the spin-Hall current arise only from those ele-
ments of the distribution function which describe the inter-
band polarization, such as �̂12�p�, �̂13�p�, �̂34�p�, and �̂24�p�.
The vanishing of spin-Hall current contributions from the
diagonal elements of the distribution function is associated
with the helicity degeneracy of the hole bands in p-type bulk
semiconductors. The diagonal elements of the distribution
function for holes in same band but with opposite helicities
are the same, i.e., �̂22�p�=�33�p� and �̂11�p�=�44�p�. How-
ever, the corresponding diagonal elements of the single-
particle spin current have opposite signs due to opposite he-
licities,� ĵy

x�22�p�=−� ĵy
x�33�p� and � ĵy

x�11�p�=−� ĵy
x�44�p�. As a

result, the net contributions to spin-Hall current from the
diagonal elements of distribution function are eliminated.

In order to carry out the calculation of spin-Hall current, it
is necessary to determine the hole distribution function.25

Under homogeneous and steady-state conditions, the spin-
basis distribution �̌�p� obeys a kinetic equation taken in the
form

eE · ��p�̌�p�	 + i�ȟ0�p�, �̌�p�	 = − Ǐ , �6�

with Ǐ as a collision term given by

Ǐ =� d	

2

�
̌p

r Ǧp
� + 
̌p

�Ǧp
a − Ǧp

r 
̌p
� − Ǧp

�
̌p
a� . �7�

Ǧp
r,a,� and 
̌p

r,a,� are, respectively, the nonequilibrium
Green’s functions and self-energies. For brevity, hereafter,
the argument �p ,	� of these functions will be denoted by a
subscript p. In the kinetic equation �6� above, the hole-

impurity scattering is embedded in the self-energies 
̌p
r,a,�. In

present paper, we consider hole-impurity collisions only in
the self-consistent Born approximation. It is widely accepted
that this is sufficiently accurate to analyze transport proper-
ties in the diffusive regime. Accordingly, the self-energies

take the forms 
̌p
r,,a,�=ni
k 
V�p−k�
2Ǧk

r,a,�, with impurity
density ni.

It is most convenient to study the hole distribution func-
tion in the helicity basis, �̂�p�=U+�p��̌�p�U�p�, because,
there, the unperturbed equilibrium distribution and the equi-
librium lesser, retarded, and advanced Green’s functions are
all diagonal. To derive the kinetic equation for the helicity-
basis distribution �̂�p�, we multiply Eq. �6� from left by Up

+

and from right by Up. Due to the unitarity of Up, the colli-

sion term in the helicity basis Î has a form similar to Eq. �7�,
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but with the helicity-basis Green’s functions and

self-energies, Ĝp
r,a,�=U+�p�Ǧp

r,a,�U�p� and 
̂p
r,a,�

=U+�p�
̌p
r,a,�U�p�, respectively, replacing those of the

spin basis, Ǧp
r,a,� and 
̌p

r,a,�. The left-hand side �LHS�
of Eq. �6� is simplified by using the following
facts: Up

+�p�̌�p�Up=�p�̂�p�−�pUp
+Up�̂�p�− �̂�p�Up

+�pUp

and �pUp
+Up=−Up

+�pUp. Thus the kinetic equation in helic-
ity basis may be written as

eE · ��p�̂�p� + ��̂�p�,�pUp
+Up	� + i�ĥ0�p�, �̂�p�	 = − Î .

�8�

In this equation, the helicity-basis self-energies 
̂p
r,a,� take

the forms


̂p
r,a,� = ni


k
T̂�p,k�Ĝk

r,a,�T̂+�p,k� . �9�

In this paper, we restrict our considerations to the linear-
response regime. In connection with this, all the functions,
such as the nonequilibrium Green’s functions, self-energies,
and distribution, can be expressed as sums of two terms: A
=A0+A1, with A as the Green’s functions, self-energies, or
distribution function. A0 and A1, respectively, are the unper-
turbed part and the linear electric-field part of A. In this way,
the kinetic equation for the linear electric-field part of the
distribution �̂1�p� can be written as

eE · �p�̂0�p� − eE · ��̂0�p�,Up
+�pUp	 + i�ĥ0�p�, �̂1�p�	 = − Î�1�,

�10�

with Î�1� as the linear electric-field part of the collision term

Î:

Î�1� =� d	

2

�
̂1p

r Ĝ0p
� + 
̂1p

� Ĝ0p
a − Ĝ1p

r 
̂0p
� − Ĝ1p

� 
̂0p
a + 
̂0p

r Ĝ1p
�

+ 
̂0p
� Ĝ1p

a − Ĝ0p
r 
̂1p

� − Ĝ0p
� 
̂1p

a 	 . �11�

Further, we employ a two-band generalized Kadanoff-
Baym ansatz �GKBA� �Refs. 26 and 27� to simplify Eq. �10�.
This ansatz, which expresses the lesser Green’s function
through the Wigner distribution function, has been proven
sufficiently accurate to analyze transport and optical proper-
ties in semiconductors.28 To first order in the dc field
strength, the GKBA reads

Ĝ1p
� = − Ĝ0p

r �̂1�p� + �̂1�p�Ĝ0p
a − Ĝ1p

r �̂0�p� + �̂0�p�Ĝ1p
a ,

�12�

where the equilibrium distribution and retarded and
advanced Green’s functions are all diagonal matrices:
�̂0�p�=diag�nF(�H�p�) ,nF(�L�p�) ,nF(�L�p�) ,nF(�H�p�)	 and

Ĝ0
r,a�p�=diag�(	−�H�p�± i�)−1 , (	−�L�p�± i�)−1 , (	−�L�p�

± i�)−1 , (	−�H�p�± i�)−1	, with the Fermi function nF�	�. We

note that Ĝ1p
r,a in the collision term leads to a collisional

broadening of the nonequilibrium distribution. In the present
transport study, such collisional broadening plays a second-
ary role and can be ignored. Based on this, the collision term

Î�1� no longer involves the linear electric-field part of the
retarded and advanced Green’s functions.

It is obvious that the driving force in Eq. �10� comprises
two components: the first of which, eE ·�p�̂0, is diagonal,
while another one, −eE · ��̂0�p� ,Up

+�pUp	, has null diagonal
elements. In connection with this, we formally split the ki-
netic equation into two equations with �̂1�p�= �̂1

I �p�+ �̂1
II�p�

as

eE · �p�̂0�p� + i�ĥ0�p�, �̂1
I �p�	 = − Î�1�, �13�

− eE · ��̂0�p�,Up
+�pUp	 + i�ĥ0�p�, �̂1

II�p�	 = 0, �14�

wherein �̂1
I �p� and �̂1

II�p� can be approximately determined
independently, as discussed below. We note that the solution
of Eq. �14�, �̂1

II�p�, is off-diagonal and independent of impu-
rity scattering. The matrix elements of �̂1

I,II�p� will be de-
noted by ��̂1

I,II����p�, and from Eqs. �4� and �5�, we corre-
spondingly write spin-Hall conductivity contributions based
on Jy

x =Jy
x
I+Jy

x
II as

��I�yz
x = Jy

x
I/E = 

p

Tr� ĵy
x�p��̂1

I �p�	;

��II�yz
x = Jy

x
II/E = 

p

Tr� ĵy
x�p��̂1

II�p�	 . �15�

It is evident that the diagonal driving term of Eq. �13�,
eE ·�p�̂0, is free of impurity scattering. Since �ĥ0 , �̂1

I �p�	 is
off-diagonal, the diagonal parts of this equation lead to diag-
onal �̂1

I �p� elements, ��̂1
I ����p� ��=1¯4�, of order of �ni�−1

in the impurity density. Substituting these diagonal elements,
��̂1

I ����p�, into the off-diagonal elements of the scattering

term Î�1� and considering the fact that the terms on the LHS
of the off-diagonal components of Eq. �13� are proportional
to the off-diagonal elements of �̂1

I �p�, we find that the lead-
ing order of the off-diagonal elements of �̂1

I �p� in the
impurity-density expansion is of order �ni�0, i.e., independent
of ni. This result implies that, in general, there always exists
a contribution to the spin-Hall current which is disorder re-
lated but independent of impurity density within the diffusive
regime. On the other hand, the off-diagonal impurity-
density-independent �̂1

I �p� elements, as well as all the non-
vanishing elements of �̂1

II�p�, make contributions to the scat-

tering term, Î�1�, which are linear in the impurity density,

while the Î�1� terms involving diagonal elements ��̂1
I ����p�

are independent of ni. Hence the contributions to Î�1� from

off-diagonal elements of �̂1�p� can be ignored and Î�1� effec-
tively involves only the diagonal elements of the distribution.
Correspondingly, Eqs. �13� and �14� are approximately inde-
pendent of each other and can be solved separately.

B. Disorder-independent spin-Hall effect

The disorder-independent spin-Hall current is associated
with �̂1

II�p�, the solution of Eq. �14�. The nonvanishing ele-
ments of this function are given by
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��̂1
II�12�p� = − ��̂1

II�21�p� = ��̂1
II�34�p� = − ��̂1

II�43�p�

=
�3m

4�2p3 ieE sin �p�f0
H�p� − f0

L�p�	 , �16�

with f0
H�p�=nF��H�p�	 and f0

L�p�=nF��L�p�	, while its re-
maining elements, such as ��̂1

II�13�p�, ��̂1
II�24�p�, etc. vanish.

Substituting �̂1
II�p� into Eq. �5�, we find that the disorder-

independent contribution to intrinsic spin-Hall current Jy
x
II

can be written as


Jy
x
II =

eE

6
2�
0

�

�f0
H�p� − f0

L�p�	dp . �17�

This result agrees with that obtained in Ref. 24.
Obviously, the nonvanishing of Jy

x
II is associated with the
nonzero driving term on the LHS of Eq. �14�, which is just
the interband electric dipole moment between the heavy- and
light-hole bands. Thus the disorder-independent spin-Hall ef-
fect arises essentially from the polarization process between
two hole bands directly induced by the dc electric field. Such
a polarization can also be interpreted as a two-band quantum
interference process. It should be noted that this polarization
process affects only those off-diagonal �̂1

II�p� elements which
describe dc-field induced transitions between hole states in
the light- and heavy-hole bands. Of course, such transition
processes are not restricted only to hole states in the vicinity
of the Fermi surface: they contribute from all the hole states
below the Fermi surface. As a result, the disorder-
independent spin-Hall current given by Eq. �17� is a function
of the entire unperturbed equilibrium distribution nF�	�, not
just of its derivative �nF�	� /�	, at the Fermi surface.

C. Disorder-related spin-Hall effect

To simplify Eq. �13�, we first analyze symmetry relations
between the elements of the distribution function �̂1

I �p� in the
self-consistent Born approximation. Since the distribution
function is a Hermitian matrix, only the independent ele-
ments ��̂1

I ����p� with � ,�=1–4 and ��� need to be consid-
ered. We know that ��̂1

I �11�p� and ��̂1
I �44�p� describe the dis-

tributions of the heavy holes having spins Sz=3/2 and Sz
=−3/2, respectively. In equilibrium, heavy hole populations
in degenerate states with Sz=3/2 and Sz=−3/2 distribute
equally. Out of equilibrium, the dc electric field action on
these hole populations is also the same. Hence the nonequi-
librium distribution of the heavy holes with Sz=3/2 is the
same as that of the heavy holes with Sz=−3/2, i.e.,
��̂1

I �11�p�= ��̂1
I �44�p�. An analogous relation for light holes is

also expected to be valid: ��̂1
I �22�p�= ��̂1

I �33�p�. Indeed, sub-
stituting these symmetrically related diagonal elements of the

distribution �̂1
I �p� into the scattering term, we find Î11

�1�= Î44
�1�,

Î22
�1�= Î33

�1�, and Î23
�1�= Î32

�1�= Î14
�1�= Î41

�1�=0, which are consistent with
the elements on the LHS of Eq. �13�. As another conse-
quence of these relations ���̂1

I �11�p�= ��̂1
I �44�p� and ��̂1

I �22�p�
= ��̂1

I �33�p�	, we also obtain symmetry relations between the

remaining off-diagonal elements of Î�1�: Î12
�1�=−Î34

�1� and Î13
�1�

= Î24
�1�, which result in symmetry relations for the �̂1

I �p� ele-

ments as ��̂1
I �12�p�= ��̂1

I �34�p� and ��̂1
I �13�p�=−��̂1

I �24�p�.
Hence to determine the disorder-related spin-Hall effect, one
only needs to evaluate the diagonal elements, ��̂1

I �11�p� and
��̂1

I �22�p�, and the off-diagonal elements, ��̂1
I �12�p� and

��̂1
I �13�p�.
From Eq. �13�, it follows that the diagonal �̂1

I �p� elements
are determined by the integral equation

− eE · �pnF����p�	 = 


k


V�p − k�
2�a1�p,k����̂1
I ����p�

− ��̂1
I ����k�	��� + a2�p,k����̂1

I ����p�

− ��̂1
I ��̄�̄�k����̄	 . �18�

Here, �=1,2, respectively, correspond to the heavy- and
light-hole bands: �1�p���H�p�, �2�p���L�p�, �̄=3−�,
���=�����p�−���k�	. The factors a1�p ,k� and a2�p ,k� are
associated only with the momentum angles:

a1�p,k� =
1

4
�2 + 6 cos2 �pk�sin2 �p − cos2 �k	

+ 6 cos2 �p cos2 �k�1 + cos2 �pk	

+ 3 cos �pkcos�2�p�cos�2�k�� , �19�

a2�p,k� = 2 − a1�p,k� , �20�

where �pk��p−�k. From Eq. �18�, we see that we may
remove the dependence of ��1

I ����p� on momentum angle �p
by redefining the angular integration variable as �k→�pk
=�p−�k, taken jointly with the facts that the left hand side
does not depend on �p and the potential V�p−k�, as well as
the factors a1�p ,k� and a2�p ,k�, depends on �p and �k only
through the combination �pk.

Analyzing the components of the scattering term in the
kinetic equation for the off-diagonal elements, ��̂1

I �12�p� and
��̂1

I �13�p�, we find that these elements of the distribution
�̂1

I �p� are similarly effectively independent of �p. In connec-
tion with this, contributions to the disorder-related spin-Hall
current Jy

x
I from ��̂1
I �13�p� and Re���̂1

I �12�p�	 vanish under the
�p integration in Eq. �5�, and only the imaginary part of
��̂1

I �12�p� makes a nonvanishing contribution to Jy
x
I. Hence


Jy
x
I =

8�3�2

m


p

p�cos2 �psin �pIm���̂1
I �12�p�	� , �21�

with

Im���̂1
I �12�p�	 =

�3
m

4�2p2 

k,�=1,2


V�p − k�
2a3�p,k�

� �− 1���������̂1
I ����p� − ��̂1

I ����k�	

− ���̄���̂1
I ����p� − ��̂1

I ��̄�̄�k�	� , �22�

and

a3�p,k� = −
1

2
�sin�2�p��cos2 �k − sin2 �kcos2 �pk	

+ sin�2�k�cos �pk�1 − 2 cos2 �p	� . �23�
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From Eqs. �18� and �22� we see that Jy
x
I is independent of

impurity density. In contrast to the disorder-independent
case, the disorder-related spin-Hall current involves only the
derivative of the equilibrium distribution function, i.e.,
�nF�	� /�	. This implies that Jy

x
I is constituted of contribu-
tions arising only from hole states in the vicinity of the Fermi
surface, or in other words, from hole states involved in lon-
gitudinal transport. Physically, the holes participating in
transport experience impurity scattering, producing diagonal
�̂1

I �p� elements of order of ni
−1. Moreover, the scattering of

these perturbed holes by impurities also gives rise to an in-
terband polarization, which no longer depends on impurity
density within the diffusive regime. It is obvious that in such
a polarization process the disorder plays only an intermediate
role. It should be noted that Jy

x
I generally depends on the
form of the hole-impurity scattering potential, notwithstand-
ing its independence of impurity density in the diffusive re-
gime.

The fact that the total spin-Hall current, Jy
x =Jy

x
I+Jy
x
II,

consists of two parts associated with hole states below and
near the Fermi surface, respectively, is similar to the well-
known result of Středa29 in the context of the 2D charge Hall
effect. In 2D electron systems in a normal magnetic field, the
off-diagonal conductivity usually arises from two terms, one
of which is due to electron states near the Fermi energy and
the other is related to the contribution of all occupied elec-
tron states below the Fermi energy. A similar picture has also
recently emerged in studies of the anomalous Hall effect.30,31

III. RESULTS AND DISCUSSIONS

To compare our results with the short-range result pre-
sented in Ref. 21, we first consider a short-range hole-
impurity scattering potential described by V�p−k��u, with
u as a constant. Substituting Eq. �22� into Eq. �5� and per-
forming integrations with respect to the angles of p or k,
respectively, for terms involving ��̂1

I ����k� or ��̂1
I ����p�, we

find that the contribution of short-range disorder to the spin-
Hall current vanishes, i.e., Jy

x
I=0. This implies that for short-
range hole-impurity collisions, the total spin-Hall current is
just the disorder-independent one, Jy

x =Jy
x
II. This result agrees

with that obtained in Ref. 21.
Furthermore, we perform a numerical calculation to in-

vestigate the effect of long-range hole-impurity collisions
on the spin-Hall current in a GaAs bulk semiconductor.
The long-range scattering is described by a screened
Coulombic impurity potential V�p�: V�p�=e2 / ��0���p2

+1/dD
2 	−1 with � as a static dielectric constant.32 dD is a

Thomas-Fermi-Debye-type screening length:

dD
2 = 
2�0�/�e2�2m3EF�2−1/3

����1 + 2�2�−3/2 + ��1 − 2�2�−3/2	−2/3,
with EF= �3
2Np /2�2/3 / �2m�. The material parameters �1

and �2 are chosen to be 6.85 and 2.5, respectively.33 In our
calculation, the momentum integration is computed by the
Gauss-Legendre scheme.

In the present paper, we address the spin-Hall effect at
zero temperature, T=0. In this case, the disorder-independent
spin-Hall current can be obtained analytically from Eq. �17�:

Jy
x
II=eE�kF

H−kF
L	 / �6
2�, with kF

H and kF
L as the Fermi mo-

menta for heavy- and light-hole bands, respectively. In order
to investigate the disorder-related spin-Hall effect, we need
to compute the distribution function �̂1

I �p� at the Fermi sur-
face. In this calculation, we employ a “singular value decom-
position” method34 to solve the integral equation, Eq. �18�,
for the diagonal �̂1

I �p� elements. The obtained diagonal ele-
ments are then employed to determine Im���1

I �12�p�	 using
Eq. �22�. Following that, we obtain the disorder-related spin-
Hall current from Eq. �21�, performing the momentum inte-
gration.

In Fig. 1, the calculated total and disorder-independent
spin-Hall conductivities, �yz

x =Jy
x /E and ��II�yz

x =Jy
x
II /E, and

the total and disorder-independent spin-Hall mobilities, �yz
x

=�yz
x /Np and ��II�yz

x = ��II�yz
x /Np, are shown as functions of

the hole density. The spin-Hall mobility, analogous to the
mobility of charge transport, characterizes the average mo-
bile ability of a single spin driven by the external field. This
quantity has the same units in 2D and 3D systems.

From Fig. 1, we see that, with increasing hole density, the
total spin-Hall conductivity first increases and then decreases
and even becomes negative as the hole density becomes
larger than Npc=3�1024 m−3. This behavior of the hole-
density dependence of total spin-Hall conductivity is the re-
sult of a competition between the disorder-independent and
disorder-related processes. The contributions to spin-Hall
conductivity from these two processes always have opposite
signs and their absolute values increase with increasing hole
density. Considering total spin-Hall conductivity, the
disorder-related part, ��I�yz

x , is dominant for high hole den-
sity, while ��II�yz

x is important in the low hole-density regime.

FIG. 1. Hole-density dependencies of �a� total �yz
x and �yz

x , and
�b� disorder-independent ��II�yz

x and ��II�yz
x , in a bulk GaAs semi-

conductor. The material parameters for GaAs are �1=6.85 and �2

=2.5. The lattice temperature is T=0 K.
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Notwithstanding this hole-density dependence of �yz
x , the to-

tal spin-Hall mobility �yz
x as well as the disorder-independent

one, monotonically decreases with increasing hole density.
It should be noted that the total spin-Hall mobility in bulk

systems has the same order of magnitude as that in 2D hole
systems. We know that the spin-Hall conductivity in 2D hole
systems is of order of e /
.19 For a typical 2D hole density,
np

�2D�=1�1012 cm−2, the corresponding spin-Hall mobility is
about 0.05 m2/Vs.

In the present paper, we have ignored the effect of colli-
sional broadening on spin-Hall current. Since Jy

x
I is associ-
ated only with the hole states in the vicinity of the Fermi
surface, the neglect of broadening in the disorder-related
spin-Hall current is valid for �F��1 (�F is the Fermi energy
and � is the larger of the relaxation times for holes in the
different bands at the Fermi surface, �L��F� and �H��F�: �
=max��L��F� ,�H��F�	). This condition coincides with the
usual restriction on transport in the diffusive regime and is
satisfied for p-type bulk GaAs with mobility approximately
larger than 1 m2/Vs �for Np�5�1022 m−3�. On the other
hand, the disorder-independent spin-Hall conductivity in-
volves contributions from all hole states in the Fermi sea and
hence it may be strongly affected by collisional broadening.
To estimate the broadening effect on the disorder-

independent SHE, we add an imaginary part to ĥ0�p� and use

ĥ0�p�+ i�̂�p� instead of ĥ0�p� in Eq. �14� ��̂�p� is a diagonal
matrix describing the broadening: ��̂�11�p�= ��̂�44�p�
=1/2�H(�H�p�) and ��̂�22�p�= ��̂�33�p�=1/2�L(�L�p�)	. In
this way, Jy

x
II takes a form similar to Eq. �17� but with an
additional factor, �2�2p2�2 / ��2�2p2	2+ �1/2�H��H�p��
−1/2�L��L�p��	2�, in the momentum integrand. Performing a
numerical calculation, we find that, in the studied regime of
hole density, the effect of collisional broadening on the
disorder-independent spin-Hall current is less than 1% for
p-type bulk GaAs semiconductors with mobility approxi-
mately larger than 5 m2/Vs. Thus, in such systems, the effect
of collisional broadening on the total spin-Hall conductivity
can be ignored. It should be noted that in our calculations,
we computed �L,H��� by considering short-range hole-
impurity scattering: 1 /�L,H���=2
niu

2�L,H��� with the den-
sities of hole states in the light- and heavy-hole bands taken
as �L,H���=2
p���−�L,H�p�	. The quantity niu

2 is deter-
mined from the mobility of the system: �=e�Np

L�L��F� /mL

+Np
H�H��F� /mH	 /Np, where mL=m / ��1+2�2� and mH

=m / ��1−2�2� are the effective masses of holes and Np
L /Np

H

= ���1−2�2� / ��1+2�2�	3/2 with Np
L and Np

H being the hole

densities in the light- and heavy-hole bands, respectively.
On the other hand, in our considerations, the impurities

are taken to be so dense that we can use a statistical average
over the impurity configuration. This requires that LD�L �L
is the characteristic size of the sample and LD is the larger of
the diffusion lengths of holes in the light- and heavy-hole
bands�. Failing this, the behavior of the holes would become
ballistic, with transport properties depending on the specific
impurity configuration.

IV. CONCLUSIONS

We have employed a nonequilibrium Green’s function ki-
netic equation approach to investigate disorder effects on the
spin-Hall current in the diffusive regime in p-type bulk Lut-
tinger semiconductors. Long-range hole-impurity scattering
has been considered within the framework of the self-
consistent Born approximation. We have found that, in con-
trast to the null effect of short-range disorder on the spin-
Hall current, long-range scattering produces a nonvanishing
contribution to the spin-Hall current, independent of impu-
rity density in the diffusive regime. This contribution has its
sign opposite to that of the disorder-independent one, leading
to a sign change of the total spin-Hall current as the hole
density varies. We also made clear that the disorder-
independent spin-Hall effect arises from a dc-field-induced
polarization associated with all hole states in the Fermi sea,
while the disorder-related one is produced by a disorder-
mediated polarization and relates to only those hole states in
the vicinity of the Fermi surface. The numerical calculation
indicates that with increasing hole density, the total spin-Hall
mobility monotonically decreases, whereas the spin-Hall
conductivity first increases and then falls.

In addition to Jy
x, we also examined other components of

the spin current. We found that the previously discovered
“basic spintronics relation,”3 which relates the ith component
of the spin current along the direction j, Jj

i, and the applied
electric field Ek by Jj

i =�s�ijkEk with �ijk as a totally antisym-
metric tensor, still holds in the presence of spin-conserving
hole-impurity scattering.

ACKNOWLEDGMENTS

This work was supported by the Department of Defense
through the DURINT program administered by the US Army
Research Office, DAAD Grant No. 19-01-1-0592, and
by projects of the National Science Foundation of China
and the Shanghai Municipal Commission of Science and
Technology.

*Electronic address: liusy@mail.sjtu.edu.cn
1 M. I. Dyakonov and V. I. Perel, Phys. Lett. 35A, 459 �1971�.
2 J. E. Hirsch, Phys. Rev. Lett. 83, 1834 �1999�.
3 S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348

�2003�.
4 J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A.

H. MacDonald, Phys. Rev. Lett. 92, 126603 �2004�.

5 Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,
Science 306, 1910 �2004�.

6 J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys.
Rev. Lett. 94, 047204 �2005�.

7 J. Schliemann and D. Loss, Phys. Rev. B 69, 165315 �2004�.
8 K. Nomura, J. Sinova, T. Jungwirth, Q. Niu, and A. H. Mac-

Donald, Phys. Rev. B 71, 041304�R� �2005�.

LIU, HORING, AND LEI PHYSICAL REVIEW B 73, 205207 �2006�

205207-6



9 O. Chalaev and D. Loss, Phys. Rev. B 71, 245318 �2005�.
10 O. V. Dimitrova, Phys. Rev. B 71, 245327 �2005�.
11 J. I. Inoue, G. E.W. Bauer, and L. W. Molenkamp, Phys. Rev. B

70, 041303�R� �2004�.
12 R. Raimondi and P. Schwab, Phys. Rev. B 71, 033311 �2005�.
13 A. Khaetskii, Phys. Rev. Lett. 96, 056602 �2006�.
14 E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys. Rev.

Lett. 93, 226602 �2004�.
15 S. Y. Liu and X. L. Lei, cond-mat/0411629 �unpublished�.
16 N. Sugimoto, S. Onoda, S. Murakami, and N. Nagaosa, cond-mat/

0503475v2 �unpublished�.
17 S. Y. Liu, X. L. Lei, and N. J. M. Horing, Phys. Rev. B 73,

035323 �2006�.
18 B. A. Bernevig and S. C. Zhang, Phys. Rev. Lett. 95, 016801

�2005�.
19 S. Y. Liu and X. L. Lei, Phys. Rev. B 72, 155314 �2005�.
20 A. V. Shytov, E. G. Mishchenko, and B. I. Halperin, Phys. Rev. B

73, 075316 �2006�.
21 S. Murakami, Phys. Rev. B 69, 241202�R� �2004�.
22 W. Q. Chen, Z. Y. Weng, and D. N. Sheng, Phys. Rev. Lett. 95,

086605 �2005�.
23 J. M. Luttinger, Phys. Rev. 102, 1030 �1956�.
24 S. Murakami, N. Nagaosa, and S. C. Zhang, Phys. Rev. B 69,

235206 �2004�.
25 For kinetic equations of spin-orbit-coupled systems in a spin-

basis representation, see also M. Q. Weng and M. W. Wu, Phys.
Rev. B 66, 235109 � 2002�; J. Appl. Phys. 93, 410 �2003�; E. G.
Mishchenko and B. I. Halperin, Phys. Rev. B 68, 045317
�2003�.

26 P. Lipavský, V. Špička, and B. Velicky, Phys. Rev. B 34, 6933
�1986�.

27 H. Haug, Phys. Status Solidi B 173, 139 �1992�.
28 H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and

Optics of Semiconductors �Springer, New York, 1996�.
29 P. Středa, J. Phys. C 15, L717 �1982�.
30 V. K. Dugaev, P. Bruno, M. Taillefumier, B. Canals, and C. Lac-

roix, Phys. Rev. B 71, 224423 �2005�.
31 S. Y. Liu and X. L. Lei, Phys. Rev. B 72, 195329 �2005�.
32 R. Grill, Phys. Rev. B 46, 2092 �1992�.
33 A. Dargys and J. Kundrotas, Handbook on Physical Properties of

Ge, Si, GaAs, and InP �Science and Encyclopedia Publishers,
Vilnius, 1994�.

34 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetter-
ling, Numerical Recipes: The Art of Scientific Computing �Cam-
bridge University Press, Cambridge, England, 1986�.

LONG-RANGE SCATTERING EFFECTS ON SPIN HALL¼ PHYSICAL REVIEW B 73, 205207 �2006�

205207-7


