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Density-functional theory �DFT� calculations of intrinsic point defect properties in zinc oxide were per-
formed in order to remedy the influence of finite-size effects and the improper description of the band structure.
The generalized gradient approximation �GGA� with empirical self-interaction corrections �GGA+U� was
applied to correct for the overestimation of covalency intrinsic to GGA-DFT calculations. Elastic as well as
electrostatic image interactions were accounted for by application of extensive finite-size scaling and compen-
sating charge corrections. Size-corrected formation enthalpies and volumes as well as their charge state de-
pendence have been deduced. Our results partly confirm earlier calculations but reveal a larger number of
transition levels: �1� For both the zinc interstitial as well as the oxygen vacancy, transition levels are close to
the conduction band minimum. �2� The zinc vacancy shows a transition rather close to the valence band
maximum and another one near the middle of the calculated band gap. �3� For the oxygen interstitials,
transition levels occur both near the valence band maximum and the conduction band minimum.
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I. INTRODUCTION

The current interest in zinc oxide is largely driven by
potential applications in optical and optoelectronic devices.1

Since many properties of zinc oxide are highly sensitive to
point and line defects present in the material, the defect
physics of ZnO has been extensively studied in the past.
Theoretically, a number of density functional theory �DFT�
calculations have been performed to elucidate the behavior
of intrinsic2–5 as well as extrinsic point defects.6–9 These cal-
culations, however, are based on the local density �LDA� or
generalized-gradient approximation �GGA� which suffer
from an underestimation of the band gap and an improper
description of the band structure. The first shortcoming is
intrinsic to the DFT method in general �see, e.g., Refs. 10
and 11�. The second problem is particularly pronounced for
zinc oxide because self-interactions intrinsic to the LDA and
GGA exchange-correlation potentials cause an energy level
shift of the Zn 3d states. As a result, the calculations not only
yield a band-gap error of more than 2 eV but also overesti-
mate the covalency of the Zn-O bond. A direct comparison
between data calculated within LDA or GGA-DFT and ex-
periment is, therefore, severely hampered. In the past, this
problem has been addressed in various ways.

Zhang et al. proposed an empirical correction scheme
based on a Taylor expansion of the formation enthalpies in
the plane-wave cutoff energy.3,12 Since a profound physical
motivation for this scheme is lacking, the results can only be
interpreted semiquantitatively. Kohan et al. discussed correc-
tions based on the electronic structure of the defect
configurations,2 while other authors resorted to a qualitative
discussion of their results.4,5

If no correction is applied the calculated formation enthal-
pies reported by different authors are comparable �see Table
I below�, whereas the various correction schemes lead to
very different results. This can be illustrated for the case of
the oxygen vacancy. According to the data of Kohan et al.

the +2/0 transition for this defect should be located in the
vicinity of the valence band maximum �VBM�,2 while the
corrected data by Zhang et al. predict the same transition to
occur just below the conduction band minimum �CBM�.3
Since it is difficult to assess the reliability of these predic-
tions, quantitatively more reliable calculations are required.

Recently, some defect calculations were carried out using
the semiempirical LDA+U scheme,13 which allows one to
adjust the position of d-electron levels by implementing self-
interaction corrections into the LDA or GGA exchange-
correlation potentials. Hitherto, this scheme has been em-
ployed to study point defects in CuInSe2, where the Cu 3d
electrons play a similar role as the Zn 3d electrons in ZnO,14

and in calculations of optical transition levels of the oxygen
vacancy in ZnO.15,16 Therefore the method is an excellent
candidate for a reassessment of the thermodynamics of point
defects in zinc oxide. Another issue, which has hardly been
addressed in studies of point defects in zinc oxide so far, is
the role of volume relaxation and finite-size effects. It is,
however, well-known, that formation enthalpies can con-
verge slowly with supercell size,17 especially if charged de-
fects are considered.18

The purpose of the present work is twofold. First, we seek
to determine formation enthalpies for the intrinsic point de-
fects of zinc oxide by taking into account the role of Zn 3d
electrons. Furthermore, we study the effect of supercell size
and volume relaxation by employing finite-size scaling.
Thereby, we are also able to obtain defect formation volumes
for point defects in ZnO. In summary, by taking into account
the band structure as well as finite-size effects, this study
aims to provide a consistent set of point defect properties,
which will allow for a more quantitative interpretation of
experimental data.

In the following section, we summarize some observa-
tions on the band structure of zinc oxide based on experi-
mental as well as theoretical studies. This overview allows us
to motivate our computational approach which is described

PHYSICAL REVIEW B 73, 205203 �2006�

1098-0121/2006/73�20�/205203�9� ©2006 The American Physical Society205203-1

http://dx.doi.org/10.1103/PhysRevB.73.205203


in Sec. III. The results are compiled in Sec. IV. An interpre-
tation and comparison with literature is given in Sec. V and
the paper is concluded in Sec. VI.

II. BAND STRUCTURE OF ZINC OXIDE

Experimentally, the electronic structure of zinc oxide has
been investigated in some detail �see Ref. 19 and references
therein�. Typically, the density of states reveals two primary
bands between 0 and −10 eV �measured from the valence
band maximum�. The upper band is primarily derived from
O 2p and Zn 4s orbitals, while the lower band arises almost
solely from Zn 3d electrons with a maximum between −7
and −8 eV.20,21 From x-ray photoelectron spectra the admix-
ture of Zn 3d states in the O 2p band has been determined to
be about 9% indicating a small covalent contribution to
bonding.22 The band dispersion has been investigated via
angle-resolved photoelectron spectroscopy along a few high-
symmetry directions.23,24 The measurements reveal a strong
dispersion of the upper valence bands and a smaller disper-
sion of the Zn 3d levels. Zinc oxide displays a direct band
gap of about 3.4 eV at the �-point.

In general, DFT calculations yield too small band gaps
compared to experiment. This effect is further enhanced in
ZnO due to the underestimation of the repulsion between the
Zn 3d and conduction band levels,21 which leads to a signifi-
cant hybridization of the O 2p and Zn 3d levels21 and even-
tually to an overestimation of covalency.25 Schröer et al.
have performed an analysis of the wave functions obtained
from self-consistent pseudopotential calculations and deter-
mined a contribution of 20%–30% of the Zn 3d orbitals to
the levels in the upper valence band26 �to be compared with
the experimental estimate of 9% covalency cited above22�.
For zinc oxide the band gap calculated with LDA or GGA is
about 0.7–0.9 eV, which is just about 25% of the experi-
mental value �3.4 eV�.2–5,21,26

The insufficient description of strongly localized electrons
�such as those occupying the Zn 3d states in ZnO� and the
underestimation of their binding energies is a generic prob-
lem of DFT within the LDA or GGA, and at least partially a
result of unphysical self-interactions.27 In fact, it has been
found that calculations based on the Hartree-Fock or the GW
approximation give much more tightly bound d-electrons and
significantly larger band gaps.21,28 An alternative approach is
the explicit correction of self-interaction.29 Vogel et al. have
developed this idea further and devised a scheme, which al-
lows one to incorporate self-interaction corrections �SIC� and
electronic relaxation corrections �SIRC� already during the
construction of pseudopotentials �PP�.27 Thereby, they were
able to reproduce the experimental band gap as well as the
position of the 3d levels in several II-VI compounds with
remarkable precision. In fact, the thus obtained band struc-
ture for ZnO compares better with experiment than calcula-
tions within the Hartree-Fock and GW approximations.21,28

SIC-PPs have also been used by Zhang et al. in the calcula-
tion of the formation enthalpies of a few neutral point defects
in zinc oxide.3 Unfortunately, as they point out, the SIC
scheme cannot be transferred unambiguously to charged de-
fect calculations and is therefore not applicable in the present
situation.

III. METHODOLOGY

A. Calibration of GGA+U method

The problems related to tightly bound electrons within
LDA and GGA-DFT have motivated the development of the
so-called LDA+U �or equivalently GGA+U� method.13,30–32

In this scheme self-interaction corrections are included heu-
ristically by considering the �orbital dependent� on-site re-
pulsion between electrons. The scheme has been quite suc-
cessful in describing the electronic properties of several
transition metal oxides for which normal LDA and GGA
calculations fail to reproduce the experimentally observed
ground states.13,30–32 The method has also been employed for
studying ferromagnetism in ZnO codoped with transition
metals33 and for calculating absorption spectra of nanostruc-
tured ZnO.34 The work by Zhao et al.14 is of particular inter-
est in the present context as it illustrates the applicability of
the LDA+U approach to the study of point defects. These
authors employed the LDA+U method to adjust the position
of the Cu 3d levels in CuInSe2 by tuning the self-interaction
parameter U. More recently, the LDA+U method has also
been employed in the study of the optical transitions of the
oxygen vacancy in zinc oxide.15,16 In the present work we
apply a similar scheme to obtain a more realistic representa-
tion of the Zn 3d electrons in zinc oxide.

We begin by calibrating and benchmarking the GGA+U
method. In the present work we have adopted the formula-
tion by Dudarev et al.32 In this approach, the only free pa-

rameter is the difference Ū− J̄ between the matrix elements
of the screened Coulomb electron-electron interaction. We
applied the on-site interaction correction for the Zn 3d elec-
trons only and tuned the position of the Zn 3d bands by

adjusting the difference Ū− J̄. The calculations were carried
out within density-functional theory �DFT� as implemented
in the Vienna ab initio simulation package �VASP�35 using the
projector-augmented wave �PAW� method.36,37 The param-
eterization by Perdew and Wang �PW91�38 was used for the
exchange-correlation functional. A nonshifted �-point cen-
tered 4�4�4 k-point mesh was used for Brillouin zone
sampling. In all calculations, the plane-wave energy cutoff
was set to 500 eV giving a technical error due to discretiza-
tion of the Brillouin zone integrals and incomplete basis set
of less than 1 meV. The equilibrium configuration was de-
termined by calculating the energy-volume curve. At each
volume the full structure was optimized until the forces were
converged to better than 5 meV/Å. As experimental data on
band dispersion are sparse �see Sec. II�, we have decided to
benchmark our calculations using the band structure calcu-
lated by Vogel et al. employing their self-interaction and
relaxation-corrected �SIRC� pseudopotentials, which repro-
duces the experimental band gap as well as the position of
the Zn 3d levels.27

Values for Ū− J̄ between 0 and 10 eV were considered. As

Ū− J̄ is raised the Zn 3d states are shifted downwards and the
band gap increases. At the same time the equilibrium volume
decreases while the bulk modulus varies only slightly. Even-

tually, we settled for Ū− J̄=7.5 eV. With this value the va-
lence band energy levels as well as the position of the Zn 3d
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levels are in very good agreement with the SIRC calculations
and experiment. The band gap calculated using the GGA
+U scheme is 1.83 eV, which constitutes a significant im-
provement over GGA. With otherwise identical parameters
the latter yields a band gap of 0.75 eV.

The thus obtained band structure compares very well with
the SIRC data from Vogel et al.27 as shown in Fig. 1. �For
better visualization, the conduction band has been rigidly
shifted upwards by the remaining band-gap error.� The band

structure obtained with Ū− J̄=0 eV, equivalent to a noncor-
rected GGA calculation, is included for comparison. The dif-
ferences are quite striking, in particular with respect to the
position of the lowest band which is predominantly derived
from Zn 3d states. The right-hand panel compares the calcu-
lated density of states �DOS� with experimental data mea-
sured via photoelectron spectroscopy.19 �Since the excitation
probabilities for s, p, and d electrons change with h� the
experimental DOS varies strongly with the energy of the
incoming photons.20 In order to simplify comparison some of
the bands have been rescaled�. Compared to experiment, the
GGA+U calculation yields a slightly smaller dispersion of
the upper valence band and a yet smaller difference in the
position of the Zn 3d band.54 The calculation reproduces the
double feature in the Zn 3d bands reported by Zwicker and
Jacobi23 as well as Girard et al.24 Overall, the agreement of
the GGA+U band structure and density of states with SIRC
calculations as well as experiments is very good.

B. Defect calculations

For the defect calculations we used hexagonal supercells
with 32–108 atoms equivalent to 2�2�2 and 3�3�3,
primitive unit cells, respectively. In these calculations a non-
shifted �-point centered 2�2�2 k-point mesh was em-
ployed. All calculations were performed within GGA as well
as GGA+U in order to quantify the energy corrections.

First, the atomic positions were relaxed with all cell pa-
rameters fixed at the ideal bulk values �Sec. IV A� until the
forces were converged to better than 5 meV/Å. We then
computed the energy-volume curves for the supercells with
fixed atomic coordinates. The minimum of the curve pro-
vided the volume of the defective cell, VD, which allowed us
to calculate the formation volume according to �see, e.g.,
Refs. 39–41�

VD
f = VD −

ND

Nid
Vid. �1�

Here, Vid and Nid denote the volume and the number of at-
oms in the ideal reference system, and ND denotes the num-
ber of atoms in the defective cell. The data were then sub-
jected to finite-size scaling in a similar manner as the
formation enthalpies. The formation volume determines
the pressure dependence of the formation enthalpy
�VD

f =−�GD
f /�p�.

Earlier DFT calculations within LDA and GGA consis-
tently gave very high formation enthalpies for antisite
defects2–4 and we have no reason to assume that their forma-
tion enthalpies would be significantly lowered within GGA
+U. After all, we have considered the following point de-
fects: the oxygen vacancy �VO�, the octahedral oxygen inter-
stitial �Oi,oct�, the dumbbell oxygen interstitial �Oi,db�, the
rotated dumbbell interstitial �Oi,db-rot�, the zinc vacancy
�VZn�, and the octahedral zinc interstitial �Zni,oct�. With the
exception of the latter the geometric structures of these de-
fects have been described in our preceding study.5 For
charged defects a homogeneous compensating background
charge was added �see, e.g., Ref. 18�.

The variation of the formation enthalpies with the chemi-
cal potential of the reservoir and the Fermi level was calcu-
lated using the thermodynamic formalism established in
Refs. 42 and 43. The defect formation enthalpy of a defect in
charge state q is calculated according to

HD
f = ED −

1

2
�nZn + nO��ZnO

bulk −
1

2
�nZn − nO���Zn

bulk − �O
bulk�

− q�EVBM + �e� −
1

2
�nZn − nO��� , �2�

where ED is the total energy of the system in the presence of
the defect, ni is the number of atoms of atom type i, and �i

bulk

is the chemical potential of the pure constituent i in its ref-
erence state. The valence band maximum �VBM� and the
�electro-�chemical potential of the electrons �Fermi energy�
are denoted by EVBM and �e, respectively. The last term de-
scribes the range within which the chemical potentials can
vary. The quantity �� is restricted by the formation enthalpy
�Hf of wurtzitic zinc oxide by ����� ��Hf�; zinc- and

FIG. 1. Band structures obtained from density-functional theory
calculations within the generalized-gradient approximation �GGA�
�top� and using the GGA+U method with Ū− J̄=7.5 eV �bottom�.
The conduction band states have been rigidly shifted to the experi-
mental band gap. The small black circles represent data from self-
interaction and relaxation corrected �SIRC� pseudopotential calcu-
lations �Ref. 27�. In the plots on the right the solid and dashed lines
show the calculated and experimental �Ref. 19� density of states,
respectively. The gray stripe indicates the calculated band gap.
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oxygen-rich conditions correspond to ��=−�Hf and ��
=�Hf, respectively. In the zero temperature limit the chemi-
cal potentials of gaseous oxygen, solid zinc, and zinc oxide
are given by the cohesive energies.

Knowledge of the formation enthalpies of the fully re-
laxed defects allows us to derive the thermal �equilibrium�
transition level between charge states q1 and q2 according to

� = −
HD

f �q1� − HD
f �q2�

q1 − q2
, �3�

where HD
f �q1� and HD

f �q2� denote the formation enthalpies at
the valence band maximum for charge states q1 and q2, re-
spectively.

IV. RESULTS

A. Ground state properties

The crystallographic parameters for ZnO in the wurtzite
structure calculated by the GGA+U method are a=3.196 Å,
c /a=1.606, and u=0.381 which compare very well with the
experimental values a=3.24 Å, c /a=1.600, and u=0.382
�experimental data cited in this section from Refs. 44–48�.
From fitting the energy-volume data to the Birch-Murnaghan
equation of state49 a bulk modulus of 136 GPa was deter-
mined in good agreement with the experimental value of
143 GPa. The calculation gave a formation enthalpy of
�Hf =−3.46 eV/f.u., which compares very well with the ex-
perimental value of �Hf =−3.58 eV/f.u. �f.u.=formula unit�.
The GGA calculations gave a=3.283 Å, c /a=1.611, u
=0.378, B=149 GPa, and �Hf =−3.55 eV/f.u.

Furthermore, we calculated the cohesive energies of pure
oxygen and zinc, since they enter the calculation of the for-
mation energy of zinc oxide as well as the defect formation
enthalpies. For hcp-zinc we obtained a cohesive energy of
Ec=−1.115 eV/atom, and lattice constants of a=2.641 Å and
c /a=1.930 �experimental values: Ec=−1.359 eV/atom, a
=2.660 Å, c /a=1.828�; for the oxygen dimer the calculation
yielded a dimer energy of D0=8.80 eV and a bond length of
r0=1.238 Å �experimental values: D0=5.166 eV and r0
=1.208 Å�.

B. Finite-size scaling

Strain interactions typically scale as O�V−1�=O�N−1�
=O�c�, where V is the supercell volume, N is the number of
atoms, and c is the defect concentration in the supercell.
Accordingly, in order to obtain the formation enthalpies at
infinite dilution, results obtained from calculations with su-
percells comprising 32, 48, 72, and 108 atoms were extrapo-
lated. For neutral defects the data can well be fitted by a
straight line as shown in Fig. 2. The formation enthalpy at
infinite dilution is then given by the abscissa of the linear fit.

For charged defects, Makov and Payne have shown that
additional energy contributions have to be included in order
to correct for image charge interactions.50 They derived the
correction in the form of a multipole expansion. The first
term in this expansion corresponds to monopole-monopole
interactions, which scale as O�V−1/3�, and was explicitly

taken into account. The magnitude of this correction is
shown in Fig. 2.

Since dipole-dipole and monopole-quadrupole interac-
tions scale as O�V−1�=O�N−1�=O�c� and thus show the same
scaling behavior as the interactions of the strain fields, they
are implicitly considered through the finite-size scaling pro-
cedure. Figure 2 shows that indeed after correction of the
monopole-monopole term the data are well-described by a
linear fit.

C. Formation enthalpies

Formation enthalpies calculated by the GGA+U method
are given in Table I. This compilation of data also includes
the results of our GGA calculations and the data of previous
DFT studies. For most defects and charge states the extrapo-
lation errors are very small confirming the reliability of the
procedure employed. In these cases the multipole-expansion-
based correction scheme works excellently.50 Larger errors
arise for oxygen dumbbell interstitials in charge states ±2
and for the octahedral oxygen interstitial in charge state +2.
For the dumbbell defects �Oi,db, Oi,db-rot� the defect core com-
prises two atoms5 which renders them distinct from the other
defects considered here. Apparently, higher order moments
would be required in order to fully capture these features.
For the octahedral interstitial �Oi,oct� in charge state +2
analysis of the electron density shows significant charge de-
localization which cannot be described by a finite multipole
expansion.50

If we compare the difference between our GGA and
GGA+U results with the corrections calculated by Zhang et
al.,3 we find agreement of the general trends. The differences
between the GGA and GGA+U are smaller than the predic-

FIG. 2. Scaling behavior of formation enthalpies with concen-
tration �equivalent to the inverse cell volume� exemplified for the
case of the zinc interstitial �Zni,oct�. For the charged defects the
small circles show the data before monopole-monopole corrections
are applied �Ref. 50�. Large closed circles correspond to formation
enthalpies after volume relaxation while large open circles show the
data obtained at fixed volume. The data presented here have been
computed by the GGA+U method.
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tions of the correction scheme of Zhang et al.,3 which is,
however, consistent with the band-gap underestimation still
present in the GGA+U calculations. We also point out that
for the oxygen vacancy and the zinc interstitial �where com-
parison is possible� the trends agree with the SIC-PP
calculations.3

Our results yield further support for the qualitative argu-
mentation put forth by Zhang and co-workers regarding the
trends expected upon band-gap correction.12 The formation
enthalpy correction is negative for positively charged de-
fects, positive for neutral, and yet more positive for nega-
tively charged defects.

D. Geometries

For almost all defects the dependence of the atomic dis-
placements on the supercell size is quite small giving evi-
dence that the strain fields are rather short ranged. For the
vacancies and the octahedral interstitials the relaxations
maintain the threefold symmetry axis of the lattice. For VZn,
Oi,oct, and Zni,oct the displacements change continuously with

the addition or subtraction of electrons. The observations re-
garding the charge-state dependent relaxation behavior of the
oxygen vacancy described in Refs. 5, 15, and 16 are con-
firmed. For the neutral and positively charged oxygen dumb-
bell the oxygen-oxygen bond length is found to be between
15% �q= +2� and 23% �q=0� longer than the calculated
dimer bond length, which is in full agreement with our pre-
vious calculation.5

E. Formation volumes

The defect formation volumes obtained via Eq. �1� and
subjected to finite-size scaling are given in Table II and plot-
ted as a function of charge state in Fig. 3. With the exception
of the oxygen vacancy all defects display the same trend. As
electrons are added to the system the formation volume rises
linearly. The slope for the oxygen interstitials as well as the
zinc vacancy is roughly −0.37 �f.u. /e while for the zinc in-
terstitial it amounts to about −0.56 �f.u. /e ��f.u. denotes the
volume per formula unit�. In the case of VZn, Oi,db, Oi,db-rot,
and Oi,oct electrons are added and removed predominantly

TABLE I. Calculated formation enthalpies for point defects in bulk zinc oxide for zinc-rich and p-type conducting conditions ��e

=0 eV, VBM�; the second column under GGA and GGA+U gives the error of the extrapolation to infinite dilution. Ref. 2; DFT, LDA,
ultrasoft PP; Ref. 3: DFT, LDA, norm-conserving PP; Ref. 4: DFT, GGA, ultrasoft PP; and Ref. 5: DFT, LDA, norm-conserving PP.

Defect Charge state

This work

Ref. 2

Ref. 3

Ref. 4a Ref. 5GGA GGA+U Uncorrected Corrected

Zni,oct 0 2.50 0.03 4.25 0.03 1.7 3.4 6.2 1.2

+1 0.98 0.02 1.69 0.03 1.3 1.5 2.1 	0.4

+2 0.33 0.07 0.02 0.03 0.9 −0.2 −2.3 −0.6

VO 0 1.00 0.06 1.71 0.04 0.0 1.5 2.4 0.9

+1 0.26 0.03 0.71 0.03 0.2 0.8 1.5

+2 −0.48 0.02 −0.73 0.03 −0.3 −0.5 −3.0 −0.9 −0.5

Oi,db 0 4.61 0.05 4.70 0.07 5.1

+1 4.76 0.07 4.59 0.02 5.1

+2 5.36 0.33 5.08 0.27 5.2

Oi,db-rot −2 7.70 0.40 8.79 0.17 �8.2�b 7.2

−1 6.51 0.28 7.08 0.04 �7.5�b �	7.1�b 6.6

0 4.87 0.03 4.96 0.04 �6.5�b �6.0�b 5.2

+1 5.07 0.07 4.91 0.05 �6.5�b 5.3

+2 5.67 0.72 5.41 0.29 5.4

Oi,oct −2 7.84 0.13 8.97 0.07 7.8 �7.4�c �9.7�c 7.8 7.4

−1 6.65 0.05 7.33 0.03 6.8 �6.4�c �10.4�c 6.9 6.7

0 6.20 0.03 6.60 0.03 6.4 �6.2�c �12.1�c 6.4 6.2

+1 6.36 0.11 6.60 0.10 6.4 6.3

+2 6.95 0.37 7.09 0.34 6.3

VZn −2 6.32 0.11 7.06 0.05 6.6 5.8 10.1 5.1 5.9

−1 5.57 0.08 5.96 0.05 5.8 5.7 10.1 5.0 5.8

0 5.35 0.04 5.60 0.01 6.0 5.8 10.6 	5.1 6.0

aThe data given here were derived from Fig. 1 in the original reference, since no explicit values are given.
bReferences 2 and 4 report formation enthalpies for a “tetrahedral interstitial” configuration but no details on the geometry of the relaxed
configuration are given.
cThe geometry of the oxygen interstitial is not specified in Ref. 3.
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from oxygenlike orbitals, while for Zni,oct zinclike orbitals
compensate most of the defect charge. In a simple picture the
two different slopes are manifestations of the different spatial
extents of the O and Zn-derived orbitals.

The oxygen vacancy behaves atypically because the local
relaxation is different for the neutral and positive charge
states. As explained in detail in Refs. 5, 15, and 16, Zn atoms
surrounding the vacancy site in neutral charge state relax
outward, while they show an inward relaxation for positive
charge states. The result is a nonlinear charge state depen-
dence of the formation volume.

V. DISCUSSION

In the following we first discuss the results of the GGA
+U calculations. From the data in Table I the Fermi level
dependence of the formation enthalpies �Fig. 4� and the sta-

bility map �Fig. 5� were derived. In agreement with our ear-
lier calculations5 three defects are found to be the most abun-
dant: Under zinc-rich conditions the oxygen vacancy is the
most likely defect for all Fermi levels; under oxygen-rich
conditions the zinc vacancy and oxygen interstitials are the
dominant defect types. Using Eq. �3� the defect transition
levels were obtained as shown in Fig. 6�b�. Earlier studies
have consistently found the oxygen vacancy to be energeti-
cally slightly more favorable than the zinc interstitial. Our
data imply that upon inclusion of volume relaxation this dif-
ference becomes yet larger ��0.7 eV at the VBM�. For the
zinc interstitial as well as for the oxygen vacancy we find
transition levels close to the calculated conduction band
minimum �CBM�.

The oxygen vacancy shows a +2/0 transition 0.61 eV be-
low the calculated CBM. This is in qualitative agreement
with Zhang et al.3 and Oba et al.4 but contradicts the result
by Kohan et al. who predicted the +2/0 transition of the
oxygen vacancy in the vicinity of the VBM.2 The deep level

TABLE II. Point defect formation volumes calculated within
GGA+U given in units of volume per formula unit �VD

f /�f.u.�. The
errors of the extrapolation to infinite dilution are given in brackets.

Defect

Charge state

−2 −1 0 +1 +2

Zni,oct 0.81 0.28 −0.30

�0.05� �0.03� �0.04�
VO −0.26 −0.18 −0.32

�0.01� �0.01� �0.01�
Oi,db 0.47 0.13 −0.26

�0.03� �
0.01� �
0.01�
Oi,db-rot 1.15 0.76 0.43 0.08 −0.32

�0.10� �0.05� �0.01� �0.03� �0.01�
Oi,oct 1.05 0.68 0.33 −0.05 −0.46

�0.08� �0.05� �0.01� �0.01� �0.01�
VZn 0.81 0.45 0.05

�0.03� �0.02� �0.06�

FIG. 3. Variation of defect formation volumes with charge state.
Open and closed circles indicate defects on the zinc and oxygen
sublattices, respectively.

FIG. 4. Variation of defect formation enthalp-
ies with Fermi level under zinc �left� and oxygen-
rich �right� conditions as obtained from GGA
+U calculations. The gray shaded area indicates
the difference between the calculated and the ex-
perimental band gap. The numbers in the plot in-
dicate the defect charge state; parallel lines imply
equal charge states. Open and closed circles cor-
respond to defects on the zinc and oxygen sublat-
tices, respectively.
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character �strong localization of defect electrons� correlates
with the significant charge dependent structural changes �see
Sec. IV E and Refs. 15 and 16�.

For the zinc interstitial our calculations locate the +2/
+1 transition level 0.15 eV below the CBM. In this case, the
data by Kohan et al. show the same charge transition, while
Zhang et al. and Oba et al.3,4 predict no transition from the
+2 charge state over the entire band gap. The structure of
the zinc interstitial is similar in all charge states, indicative
for a shallow defect level in agreement with experimental
observations.51

Previous studies provided evidence that dumbbell geom-
etries �Oi,db, Oi,db-rot�, in which two oxygen atoms jointly
occupy a regular lattice site, are the most stable oxygen in-
terstitial configurations.5,6 Unlike the highly symmetric octa-
hedral interstitial �Oi,oct� these defect configurations have
comparably low formation enthalpies in positive as well as
negative charge states. The present data provide a strong in-
dication for ambipolar behavior as anticipated in Ref. 5.

For oxygen-rich conditions, oxygen dumbbell defects
have the lowest formation enthalpies of all intrinsic point

defects over the widest range of the �calculated� band gap
confirming the results of earlier studies.5,6 Our present data
clearly prove the existence of a +1/0 transition level close to
the VBM �Oi,db: 0.34 eV, Oi,db-rot: 0.02 eV above VBM�. For
the rotated dumbbell interstitial, the 0/−2 transition lies at
the CBM indicating shallow acceptor behavior.

The zinc vacancy represents a good example for the im-
portance of finite-size sampling: supercell calculations with
less than 108 atoms consistently predict the neutral charge
state to be unstable with respect to the negative charge states.
If supercell effects are, however, properly taken into account,
it turns out that the formation enthalpy of the neutral zinc
vacancy at the VBM is indeed lower than for the negative
charge states. This results in two transitions. The first one
�0/−1� lies very close to the VBM, the second one �−1/
−2� occurs near the middle of the calculated band gap. The
zinc vacancy has the lowest formation enthalpy of all intrin-
sic point defects under oxygen-rich conditions for Fermi lev-
els in the upper half of the band gap. Under these conditions
it is therefore the dominant acceptor confirming the experi-
mental results of Tuomisto and co-workers.52 By using pos-
itron annihilation spectroscopy in combination with isochro-
nal annealing cycles on electron irradiated n-type samples,
they furthermore obtained evidence for a second acceptor
and suggested oxygen interstitials as likely candidates. From
our calculations we identify this defect to be the rotated
dumbbell interstitial.

We now turn to the question to which extent the band-gap
underestimation within GGA+U affects the results. Al-
though the band gap is significantly larger with GGA+U
than with GGA, it is still smaller than experiment. In the past
a variety of methods has been conceived in order to correct
for the band-gap error intrinsic to DFT calculations �see, e.g.,
Refs. 2, 3, 15, 16, and 53; also compare Secs. II and III A�.
As pointed out by Lany and Zunger15 these schemes lead to
somewhat different results. In the present context, we have
applied the extrapolation formula applied by Janotti and Van
de Walle.16 According to this scheme the transition level, �ext,
corresponding to the experimental band gap, EG

exp, is obtained
from the transition levels calculated within GGA ��GGA� and
GGA+U ��GGA+U� according to

FIG. 5. Variation of dominant defect as a function of chemical
potential and Fermi level as obtained from GGA+U calculations. In
regions where the most stable defect is neutral, the transitions for
the most stable charged defect are indicated by arrows and dotted
lines.

FIG. 6. Transition levels in the band gap calculated within GGA, GGA+U and using the extrapolation formula �4�. The dark gray shaded
areas indicate the error bars resulting from the errors given in Table I.
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�ext =
EG

exp − EG
GGA+U

EG
GGA+U − EG

GGA��GGA+U − �GGA� + �GGA+U, �4�

where EG
GGA and EG

GGA+U denote the GGA and GGA+U band
gaps, respectively.55 The results of this extrapolation are
shown in Fig. 6 in comparison with the GGA and GGA+U
data. It is apparent that the extrapolated transition levels are
very sensitive to the accuracy of the GGA and GGA+U data.
Nonetheless, the qualitative classification of the defect levels
as well as their hierarchy, which has been established above
based on the GGA+U results, is preserved in the extrapo-
lated data.

In general, point defects will be abundant under normal
conditions, since the point defect formation enthalpies in
zinc oxide are very small. The resulting high defect concen-
trations probably do not only actively influence the elec-
tronic and optical, but to some extent also the mechanical
properties. This could explain the large spread of experimen-
tal data for various materials properties.

VI. CONCLUSIONS

In the present work, we performed an extensive study of
intrinsic point defects in zinc oxide in order to remedy the
most significant approximations made in previous studies. To

this end, we have applied the GGA+U method to correct the
band structure and thereby the overestimation of covalency.
As a consequence we also obtained a doubling of the band
gap which is, however, still smaller than in experiments. In
order to remove the effects of elastic as well as electrostatic
image forces, we employed finite-size scaling which allowed
us to derive more precise formation enthalpies of intrinsic
point defects along with formation volumes.

Our results in some respects confirm earlier calculations
but predict a larger number of transition levels for intrinsic
defects. Transition levels close to the conduction band mini-
mum are identified for both the oxygen vacancy and the zinc
interstitial. The zinc vacancy possesses a transition rather
close to the VBM and another one roughly in the middle of
the band gap. As anticipated earlier5 oxygen interstitials
show ambipolar behavior displaying transition levels near
the valence band maximum and the conduction band mini-
mum.
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