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Effect of pressure on the first-order Raman intensity in semiconductors
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One-phonon Raman scattering in the zinc-blende-type semiconductors under hydrostatic pressure and with
excitation energies below the fundamental gap is examined. A microscopic description of the scattering inten-
sities and Raman cross sections for longitudinal and transverse optical phonons is presented in terms of
deformation potential and interband allowed Fröhlich interaction. Calculations are compared to the experimen-
tal results for ZnTe, i.e., the variation of the integrated Raman intensity with pressure for LO��� and TO���
modes. So as to make possible a comparison with experimental data, the pressure dependence of all parameters
entering into the description of the scattering processes had to be taken into account. In particular, the pressure
variation of the relevant conduction band states and optical deformation potential were evaluated using the
pseudopotential plane-wave method within the local density approximation to the density functional theory.
The present theoretical approach can be used to evaluate the Raman scattering intensities and cross sections in
other II-VI and III-V compounds under pressure.
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I. INTRODUCTION

Raman scattering has been used extensively to study the
effect of pressure on vibrational properties of tetrahedrally
coordinated III-V and II-VI semiconductors.1–4 Most inves-
tigations focused on the pressure-induced frequency shifts of
zone-center transverse �TO� and longitudinal �LO� optical
phonon modes. Changes in Raman line shapes due to
phonon-phonon and phonon-electron interactions were ad-
dressed in a number of experimental studies �see Refs. 3 and
4 for citations�. Further, pressure tuning of the electronic
band structure was used to study resonance effects in the
Raman scattering intensity at exciting laser energies larger
than the fundamental band gap.

Here, we examine what the established theory of Raman
scattering predicts5–10 for the effect of pressure on the first-
order Raman scattering intensity under nonresonant condi-
tions which in this paper refers to the excitation energy being
smaller than the fundamental energy gap. The work is partly
motivated by the results of a recent Raman study of ZnTe
under pressure.11 There, the integrated first-order scattering
intensities are reported to decrease with increasing pressure.

At ambient pressure, the intensity of first-order Raman
scattering has been investigated in detail by changing the
exciting laser wavelength in a fixed scattering configuration
�see e.g. Ref. 12�. Off resonance, the phonon-induced light
scattering occurs through the deformation-potential �DP�
electron-phonon interaction.6,9 In case of the longitudinal op-
tical phonon at the � point, the interband Fröhlich electro-
optical �EO� contribution has to be taken into account.13

When considering the effect of pressure on the integrated
first-order Raman intensities, the two main factors to be con-
sidered are the variation of interband excitation energies and
the variation of the phonon frequencies.

We employed a microscopic phenomenological model for
the Raman intensity of the zinc-blende-type semiconductors
described in Refs. 9 and 10, which takes into account all
relevant contributions to the first-order scattering processes.

As an example, the model is applied to ZnTe. Changes in
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optical properties, electronic states, phonon vibrations, and
electron-phonon interactions induced by external hydrostatic
pressure are analyzed, in part with reference to first-
principles calculations of the band structure. The influence of
these factors on the Raman tensor is examined.

II. FIRST-ORDER RAMAN SCATTERING INTENSITY

For the sake of clarity we summarize in the following the
main expressions needed to describe the evolution of the
scattering intensity with applied hydrostatic pressure.

A. Basic relations

The scattering intensities for the TO��� or LO��� pro-
cesses can be expressed as

�S

��
=

1

V
� �2�

�� � �S
d�S. �1�

The Raman cross section for a Stokes process is related to
the scattering amplitude WFI by14

�2�

�� � �S
=

V2

�2��2

�L�S
3

c4

�L�S
3

���L�2 �N0 + 1�

	 �
F

�WFI�2
��S − �L + �0� . �2�

Here �L ��S� is the refractive index for the incident �scat-
tered� radiation �L��S�, c is the speed of light in vacuum, V
is a normalization volume, and N0 represents the Bose-
Einstein distribution function for phonons with frequency �0.
The electronic system is assumed to be in its ground state in
both the initial and final states of the scattering process
which are denoted by, respectively, �I� and �F�.

The scattering amplitude probability in Eq. �2� can be

written as

©2006 The American Physical Society-1

http://dx.doi.org/10.1103/PhysRevB.73.205202


TRALLERO-GINER, KUNC, AND SYASSEN PHYSICAL REVIEW B 73, 205202 �2006�
WFI = �
�1,�2

�F�ĤE−R��2���2�ĤE−L��1���1�ĤE−R�I�
���S − E�2

����L − E�1
�

+ A .

�3�

Here ĤE−L and ĤE−R are the Hamiltonians describing the
interaction of the electronic system with, respectively, the
lattice vibrations and the radiation field, ��i� �i=1,2� is the
intermediate electron-hole state with energy E�i

. Here and
throughout the paper, the constant A stands for a dispersion-
less background coming from other scattering processes;12

its magnitude may differ depending on spectral range, scat-
tering geometry, and other factors. By permuting the interac-
tion operators in Eq. �3� one obtains other contributions to
the Raman cross section Eq. �2� which, however, are small
and can be considered to be resumed in the constant A.

Off resonance, the electron-hole correlation �excitons� and
the polariton effects are negligible. Hence, the intermediate
virtual electronic states ��i� are described by the free
electron-hole picture �E-H� at any pressure. In the two-band
parabolic model the E-H energy E��E�ke ,kh� is given by

E�ke,kh� = Eg +
�2ke

2

2me
+

�2kh
2

2mh
, �4�

where Eg is the fundamental gap, me �mh� and ke �kh� are the
effective mass and wave vector of the electron �hole�. The
electron-radiation matrix elements in Eq. �3� are given by

���ĤE−R�I�F�� = 
ke,−kh

e

m0
	 2��

�L�S��L�S�
2

eL�S� · pcv

	V
�5�

with pcv being the interband momentum matrix element be-
tween the �15v valence and �1c conduction bands, eL�S� the
polarization vector of the incident �scattered� light, and m0
the free-electron mass.

The scattering processes contributing to the first-order Ra-
man cross section, i.e., electron-deformation potential and
interband Fröhlich interactions, are shown schematically in
Fig. 1. The DP Hamiltonian couples the heavy hole �HH� and
light hole �LH� valence bands, while the electro-optical
mechanism couples the two upper �1c and �15c conduction
bands.

B. Deformation potential

Assuming two independent HH and LH valence bands v1
and v2, and only the �1c conduction band of s symmetry, the
DP interaction by optical phonons does not couple the Bloch
states in the conduction band.15 Thus, scattering by a phonon
with frequency �0 and wave vector q only involves the hole
part and the corresponding matrix element in Eq. �3� reduces
to5,9

��2�ĤE−L��1� = − 
ke�,ke

kk�,kh+q

ū0
	3

2a0
�v2�D̂h�v1� �6�

with ū being the relative phonon displacement defined by
0
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ū0 = 
 �Vc

2VM*�0
�1/2

. �7�

Here a0 is the lattice constant, M* is the reduced mass of the

atoms in the unit cell with volume Vc, and �v2 � D̂h �v1� is the
deformation-potential matrix as defined by Bir and Pikus.15

Inserting Eqs. �4�–�6� into Eq. �3�, after straightforward cal-
culation, the contribution of the DP interaction to the scatter-
ing amplitude probability can be written as

WFI
DP = −

1
	V

e2

4	3m0
2

d0

a0�S�L

�P0�2

	��L � �S

	 Vc
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	�lh�hh

	Eg − � �S

� + A �8�

with

� = F�z� +
1
	z

F
1

z
�

and

F�z� =
1

1 +	z
Eg − � �L

Eg − � �S

.

Here z=�hh /�lh and �lh ��hh� is the electron–light �heavy�
hole reduced mass, d0 is the optical deformation potential,
and P0= ��s � px �x��.

Inserting Eq. �8� into Eq. �2� one obtains

FIG. 1. �Color online� Schematic representation of the deforma-
tion potential and interband Fröhlich interactions at the � point of
the Brillouin zone. The solid lines show the optical transitions and
the dashed lines correspond to the electron-phonon-assisted quasi-
particle interband transitions. The effect of hydrostatic pressure on
the relevant gaps, pertaining to ZnTe, is shown as well.
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�2�DP

�� � �S
= C0�ADP� + A��2

�N0 + 1��
��S − �L + �0�2 + �2 . �9�

Here we have replaced the delta function by a Lorentzian
where 1/� is the phonon lifetime. All constants are collected
in the factor

C0 =
V

6�2��3
 e

2c�
�4 m0

M* �10�

such that the background amplitude is rescaled accordingly
�A→A��. The deformation potential amplitude factor be-
comes

ADP = −
d0�SP0

2

�Lm0
	�S

�L

a0�lh

��0�Eg − � �S�
�hh

�m0�3/2 . �11�

This factor contains all the quantities that depend on pres-

sure; the most important are the energy difference Eg− ��S

205202
and the phonon frequency. At ��LEg the other critical
points which can couple via DP, e.g., Eg+�0, E1, and E1
+�1, are very far in energy and their contributions to the
scattering amplitude ADP can be resumed in the dispersion-
less constant A.

C. Interband Fröhlich interaction

In the case of the LO phonon, besides the DP contribu-
tion, we have to consider the Fröhlich interaction. For first-
order scattering, intraband transitions assisted by LO
phonons are forbidden and out of resonance they are negli-
gible. However, the macroscopic electric field can couple
two different bands with different symmetry and the Fröhlich
mechanism becomes allowed. The interband Fröhlich inter-
action couples the nearest �1c and �15c conduction bands
�see Fig. 1�. In this case the electro-optical �EO� matrix ele-
ment is given by5,10
��2�ĤE−L��1� = 
ke�,ke+q
kk�,kh

CF

q	V
�uc15

�1 + iq · r�uc1
�

= 
ke�,ke+q
kk�,kh

�

m0
	V

CF

Ec15 − Ec1
�uc15

�eLO · p�uc1
� , �12�
where uc15
and uc1

are the Bloch functions of the �15c and �1c

conduction bands, eLO=q /q is the phonon polarization vec-
tor, and Ec15−Ec1 is the energy difference between the �1c
and �15c gap energies. The Fröhlich constant CF is equal to

CF = − i	2� � �LOe2
 1

��

−
1

�0
� �13�

with ��, �0, and �LO being, respectively, the optical and
static dielectric constants, and the LO���-phonon frequency.
Combining Eqs. �3�, �5�, and �12�, and assuming, for sim-
plicity, the cross polarization with phonon displacement
along the 001� direction, the resulting expression for the EO
scattering amplitude probability becomes

WFI
EO =

�CF�
	V

e2

	2m0
3

�

a0�S�L

QP0

	�L�S

1

Ec15 − Ec1

	�lh�hh

	Eg − � �S

�

�14�

with

� = z0hG�z,Eg;z0h,Ec15� + G�z0h,Ec15;z,Eg��

+
z0l

3z
G�1,Eg;z0l,Ec15� + G�z0l,Ec15;1,Eg��

and
G�z1,E1;z2,E2� =
1

	z1
E1 − � �L

Eg − � �S
+	z2

E2 − � �L

Eg − � �S

.

Here iQ= �x � py ��15c�z��,16 z0h�z0l�=�0h��0l� /�lh, and
�0h��0l� denotes the reduced mass between the heavy �light�
hole in the valence band and the electron in the �15c conduc-
tion band. In Eq. �14� the interband matrix element
��15 � pz �S�= iP� of Eq. �12� has been taken equal to P�
=2�� /a0.16

The ratio of the scattering amplitude WLO Eqs. �8� and
�14� for DP and EO contributions by the LO phonon� to WTO

Eq. �8� for DP by TO phonon� determines the Faust-Henry
coefficient which gives the strength of the electro-optical
mechanism relative to the DP coupling. This coefficient de-
pends on the laser frequency, on the scattering geometry, and
also on the applied external pressure. It can be either positive
or negative see Refs. 13 and 17–19�. For the case of ZnTe,
treated in the next section, the Faust-Henry coefficient is
taken positive as derived in Ref. 20 from the measurements
of the absolute Raman efficiency.

The total amplitude for the allowed LO��� scattering is
obtained by adding Eqs. �8� and �14�, and the corresponding
Raman cross section takes the form
-3
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�2�LO

�� � �S
= C0�ADP� + AEO� + A��2

	
�NLO + 1��LO

��S − �L + �LO�2 + �LO
2 . �15�

With the same constant prefactor C0 as given in Eq. �10� the
amplitude factor AEO becomes

AEO = − d0
�S

�L
�P0�2	�S

�L

a0

��LO

	�lh�hh

	Eg − � �S

� . �16�

The effective electro-optical constant � introduced above de-
pends on the applied external pressure and is given by

� = 4	3�

��

�
e�

m0

	���LO�2 − ���TO�2

d0

Q

P0

	�

Ec15 − Ec1
.

�17�

�TO is the TO��� phonon frequency and � is the reduced
mass density. The important pressure-dependent factors here
are the difference between the squared LO and TO frequen-
cies and the energy difference Ec15−Ec1 between conduction
band states.

III. APPLICATION TO ZINC TELLURIDE

We apply the theoretical description just presented by
considering ZnTe which at T=300 K and below 9.5 GPa oc-
curs in the zinc-blende crystal structure. Changes of Raman
mode intensities under hydrostatic pressure have been re-
ported recently.11 The measurements for the TO��� and
LO��� phonon lines were taken at room temperature in the
backscattering configuration using diamond anvil cell �DAC�
techniques. The experiment was not specifically designed for
quantitative �relative� intensity measurements. These are dif-
ficult to perform in a DAC experiment because reflections at
interfaces lead to admixtures of forward scattering if the
sample is transparent for the exciting laser energy. However,
the intensity changes for the TO and LO modes of ZnTe with
increasing pressure were observed to be quite pronounced
�see below�. The observed pressure effects are assumed here
to reflect the overall trends, at least at a semiquantitative
level.

In order to evaluate the pressure dependence of �S /��
Eq. �1�� and to compare with the experimental data it is
necessary to consider the influence of pressure on all quan-
tities appearing in Eqs. �9� and �15�. The values of the quan-
tities employed in our calculations are listed in Table I. For
the refractive index an empirical expression was used, based
on the Marple’s equation21 reported in Ref. 22. Reduced ef-
fective masses were evaluated in terms of the fundamental
gaps according to the Kane model22,23 and within the k ·p
theory. Thus, with the reduced masses �, the following varia-
tions are obtained:

�i� Electron ��1c�–light hole ��15v�

m0 =
2P0

2 �Eg + 2
3�

+
2

3
� , �18�
�lh m0Eg Eg + �
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�ii� Electron ��1c�–heavy hole ��15v�

m0

�hh
= 1 +

2P0
2

m0Eg

Eg + 2
3�

Eg + �
+ �1 − 2�2, �19�

�iii� electron ��15c�–light hole ��15v�

m0

�0l
=

4

3m0
�P0

2

Eg
+

Q2

Ec15
� +

2

m0

P�2

�Ec15 − Ec1�
, �20�

�iv� electron ��15c�–heavy hole ��15v�

m0

�0h
= 1 +

4

3m0

Q2

Ec15
+

2

3m0

P�2

�Ec15 − Ec1�
+ �1 − 2�2.

�21�

Here �1 and �2 are the Luttinger parameters and � is the
spin-orbit splitting, all three pressure independent.24 In Table
I we also quote the pressure dependence of �lh, �hh, �0l, and
�0h.

As for the energy difference between the �1c and �15c gap
energies, 
=Ec15−Ec1 and its behavior under pressure P, we
calculate the one-electron energies En�k� for the bands n

TABLE I. Values of parameters used for the calculation of the
Raman intensities of ZnTe under pressure as plotted in Fig. 2. Pres-
sure P is in GPa.

Parameter Value

Eg �2.27+10.4	10−2P−28	10−4P2� eVa

�TO �176.9+5.82P−0.13P2� cm−1 b

�LO �206.1+4.74P−0.12P2� cm−1 b

a0 �6.1037−0.391P−1.05	10−3P2� Åb

�lh /m0 �0.0762+3.33	10−3P�c

�hh /m0 �0.0918+2.57	10−3P�d

�0l /m0 �0.0705−2.30	10−4P�e

�0h /m0 �0.0832−1.7	10−3P�f


=Ec15−Ec1 �3.2698−0.1148P+2.36	10−3P2� eV

P2 /m0 9.5 eVg

Q2 /m0 15.5 eVh

� 0.96 eVi

�� 7.4g

�1 3.8j

�2 0.72j

d0 28 eVk

aReference 33.
bReference 11.
cSee Eq. �18�.
dSee Eq. �19�.
eSee Eq. �20�.
fSee Eq. �21�.
gReference 22.
hReference 34.
iReference 24.
jReference 35.
kReference 12.
=c15 and c1 by employing the pseudopotential–plane-wave
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method within the local-density approximation �LDA� to the
density functional theory �DFT�. It is well known that this
approach cannot supply reliable values of the band gaps,
nevertheless it has been shown25 that it provides correct pre-
dictions for the pressure variation of the gaps. We used the
VASP implementation26–29 of the DFT, and the Vanderbilt-
type pseudopotentials30 as supplied by Kresse and Hafner.31

The pseudopotential that we chose for Zn treats the semicore
states explicitly, i.e., Zn is represented with 12 valence elec-
trons 3d104s2, and the nonlinear core correction32 has been
applied as well. The calculations are carried out with the
plane-wave cutoff energy of 19.3 Ry and the Brillouin zone
sampling is based on the �-centered uniform mesh 8	8
	8. The calculated equilibrium corresponds to a lattice con-
stant of a0=6.104Å, B0=48 GPa, B0�=4.7 �Murnaghan equa-
tion of state�, and the subsequent determination of the pres-
sure coefficients was based on calculations of the one-
electron energies En�k�� for a0=5.9, 5.95, 6.0, 6.05, and 6.1 Å
�a quadratic fit of the volume dependence�. The obtained
variation of 
=Ec15−Ec1 with pressure is given in Table I
and illustrated schematically in Fig. 1. Note that in ZnTe the
energy separation decreases with increasing pressure.

In order to evaluate the optical deformation potential d0
for the energy difference �E between the HH and LH va-
lence bands at � we treated in the same fashion a structure
with the frozen phonon TO���, i.e., imposed displacements
u�Te�=u�1,1 ,1� and u�Zn�=−u�1,1 ,1�MTe/MZn, with
u /a0= ±0.002 and ±0.006 �i.e., four additional calculations�.
A weak nonlinearity in the �E�u� was eliminated by fitting

FIG. 2. �Color online� Integrated Raman intensities of the �a�
TO��� and �b� LO��� phonon peak in ZnTe as a function of pres-
sure. The solid line in �a� represents calculations according to Eqs.
�1� and �9� with a background constant A�=0. In �b� solid lines
correspond to calculations taking into account the deformation po-
tential interaction only Eq. �9�� and with the electro-optical contri-
bution included Eq. �15��. Open squares are experimental data
taken from Ref. 11. The dashed line in �b� is a fit according to Eq.
�15� with a dispersionless background constant, independent of the
pressure, A� equal to 1.34	ADP �P=0�. Calculated intensities are
arbitrary and have been adjusted to overlap with the ranges used to
represent experimental data.
the u dependence by a quadratic polynomial in u, and the
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pressure variation of the linear coefficient �i.e., of the defor-
mation potential� was obtained by repeating the above calcu-
lations with lattice constants a0=6.10, 6.01, 5.92, and
5.83 Å. We found that the variation of the deformation po-
tential d0 between 0 and 9.5 GPa is smaller than 0.5 eV.
Thus, d0 can be considered independent of pressure, and we
used in the present calculations the experimental value given
in Table I.

Figure 2�a� shows the integrated TO��� intensity �open
squares� for ZnTe measured as a function of the applied pres-
sure 11 and using the excitation energy of ��L=1.916 eV,
i.e., below the fundamental gap. The data can be compared
with a calculation of the Raman intensity performed within
the framework of the present model Eqs. �1� and �9�� which
is given by a solid line. In the calculation, the background
constant A� was set equal to zero. Better agreement with the
experiment could be forced if A� were fitted to the measured
points. Such a procedure was used in several previous inves-
tigations of related problems under ambient-pressure
conditions.12,13,18

Results for the Raman intensity of the LO��� phonon are
displayed in Fig. 2�b�. The solid lines refer to the variation
given by Eq. �9�, i.e., corresponding to the DP interaction
alone, and to the calculated intensity with the electro-optical
contribution included Eq. �15��. Due to the decrease of the
gap difference 
=Ec15−Ec1 in the denominator of Eq. �17�
the effective electro-optical constant ��P� increases with in-
creasing pressure. As the pressure reduces the energy differ-
ence between the �15c and �1c states �see Table I� the inter-
band Fröhlich interaction becomes stronger. Hence, if added
to the deformation potential contribution with a negative
sign, the EO contribution would reduce the total scattering
intensity as a function of the pressure. In the calculation
presented in Fig. 2�b� we chose the same sign for the DP and
EO interactions, i.e., the same choice as the one reported for
several II-VI semiconductors.20

The dashed line in Fig. 2�b� refers to a calculation accord-
ing to Eq. �15� where the dispersionless background constant
A� is chosen equal to 1.34	ADP �P=0�, so as to match the
experimental data at P=9.34 GPa.

The main result of the theory outlined in Sec. II is that in
ZnTe the integrated Raman intensity of the TO��� and
LO��� modes decreases as the applied pressure increases.
The most important factors controlling this variation are the
dependence of the deformation potential scattering intensity
on the electronic transitions and the variation of the phonon
frequencies with pressure; in short form this can be written
as

�S

��
�

N0�P� + 1

Eg�P� − � �S� � �TO�LO��P�
. �22�

The intensity is decreasing because, at higher values of the
hydrostatic pressure, the Eg gap increases and so do the op-
tical phonon energies ��TO and ��LO. Other quantities in-
volved in the DP process, such as the relative values of the
effective masses, refractive index, or lattice constant, are
smooth and slowly varying functions of P.
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IV. CONCLUSIONS

We have examined theoretical expressions that determine
the first-order Raman scattering intensities of a zinc-blende-
type semiconductor as a function of applied pressure assum-
ing the incoming laser energy is smaller than the fundamen-
tal gap. In zinc-blende semiconductors both the lowest direct
gap Eg and the zone-center optical phonon frequencies at �
increase with hydrostatic pressure. So, according to Eq. �22�,
the model predicts an overall decrease of the integrated Ra-
man intensity of TO and LO modes with increasing pressure.
We have introduced an effective electro-optical constant
��P� Eq. �17�� that describes the pressure-dependent
electro-optical contribution to the scattering probability am-
plitude of the LO��� phonon. We conclude that in ZnTe the
electro-optical interaction becomes increasingly important

with increasing pressure for describing the LO scattering in-
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tensity relative to the TO scattering. It is believed that the
microscopic phenomenological model employed here con-
tains all essential mechanisms. Its application to pressure-
dependent Raman scattering intensities of other semiconduc-
tors can be envisioned. A complementary approach would be
to extend the first-principles density functional perturbation
theory of Raman efficiencies 36 to the pressure dependence
of Raman intensities in II-VI semiconductors.
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