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We report on a comprehensive experimental and theoretical study of light diffraction from synthetic opals.
A general theory of coherent elastic scattering �Bragg diffraction� is proposed, taking into account growth-
induced effects of interlayer disorder and the refraction of light waves due to a background dielectric permit-
tivity. The diffraction patterns were investigated using monochromatic or white light illumination in various
scattering geometries. It is shown that the scattering of a monochromatic beam produces a set of diffraction
spots �reflexes�, which obey the conditions for Bragg light reflection by the �hkl� crystal planes in a twinned
face-centered cubic �fcc� structure made up of closely packed amorphous silica spherical particles. The white
light diffraction patterns registered in different geometries are analyzed for a one dimensional �1D� disorder in
hexagonal closely packed layers normal to the growth axis. The data analysis is performed in terms of the
suggested diffraction theory of photonic crystals, taking into account the effects of random 1D packing of
growing layers. A good quantitative agreement between the experimental data and calculations has been
obtained for all diffraction patterns, including the angular and spectral dependencies of the radiation intensity.
We have also estimated the statistical parameters of the opal structure composed of fcc lattice twins of random
lengths along the sample growth axis. The long-wavelength diffraction edge is found for the principal scatter-
ing geometries.
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I. INTRODUCTION

The phenomenon of Bragg diffraction of waves having
various physical nature �x rays, neutrons, electrons� underlies
many techniques used for the study of the atomic structure of
crystals.1 Bragg diffraction gives rise to energy �frequency�
bandgaps in the spectrum for the wave propagation in a pe-
riodic structure.2 The presence of bandgaps, termed stop
bands, along certain directions of electromagnetic wave
propagation or of a full bandgap along all directions is the
major feature of a periodic dielectric structure known as a
photonic crystal.3 For a bandgap to arise, the period of the
spatial modulation of dielectric permittivity should be com-
parable with the light wavelength.

Currently, there is much interest in the fabrication and
study of photonic crystals possessing bandgaps in various
spectral regions, from the microwave range4 to the visible.5

Materials with photonic energy gaps do not occur naturally,
except for the well-known gemstone natural opal with bril-
liance light scattering in the visible. Both natural and syn-
thetic opals consist of closely packed monodisperse spherical
particles of amorphous silica �a-SiO2�, having a submicron
size close to the visible light wavelength. The authors of Ref.
6 suggested the application of opals as three-dimensional
�3D� photonic crystals for the visible spectral range. At
present, many other types of photonic crystals for the visible
are being studied, among them opal-based materials such as
synthetic opals with different fillings7–15 and inverted
opals,16–18 as well as structurally related materials with air
spheres in titania �TiO2�19–21 and various colloidal
crystals.22–25 The optical properties of photonic crystals,
mostly synthetic opals and related structures, were studied in
many works using spectroscopic techniques. Additionally,

there has been much activity on the measurement of specular
reflection spectra from the �111� plane in materials with air
spheres in titania20,21 and from various colloidal crystals.24,25

The Bragg diffraction as a key optical phenomenon in
photonic crystals has not been intensively examined, either
experimentally or theoretically, for opals or opal-based ma-
terials. The 3D Bragg diffraction in synthetic opals was in-
vestigated in Ref. 26, but this work primarily dealt with the
visualization of the photonic bandgap structure through the
diffraction patterns. An especially important conclusion from
this study is that the diffraction patterns can serve as a visual
indicator of stop bands along certain crystallographic direc-
tions and allow the identification of diffraction processes re-
sponsible for the formation of observable bandgaps in per-
fect and weakly disordered photonic structures. The results
of Ref. 26 have also demonstrated that the Bragg spots �re-
flexes� registered in visible range provide direct information
on the opal crystal structure. The earlier report on this effect
in natural opals27 was largely descriptive, the sample orien-
tation was not identified, and the diffraction was not ana-
lyzed theoretically. A recent paper28 reports on the Bragg
diffraction of light in colloidal crystals made up of polysty-
rene spheres. Also, another recent paper29 presents some dif-
fraction patterns measured for the only �111� growth direc-
tion of opals. However, the general properties of the 3D
Bragg diffraction in synthetic opals and related materials still
remain unclear.

The recent effort to analyze photonic crystals using Bragg
light diffraction26 is, in some respects, similar to an x-ray
diffraction study of atomic crystals.30 So, from the very be-
ginning, it is worth emphasizing the similarities and differ-
ences in the Bragg diffraction of light waves from photonic
crystals and of x rays from atomic crystals. The similarity
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between the two types of electromagnetic diffraction, as well
as the diffraction of waves of any physical nature by media
with periodically modulated response functions, is associated
with the coherence of this kind of elastic scattering. This
brings us to the structure factor and the Laue equations stat-
ing that the principal change in the wave vector in such me-
dia is equal to an integer of the reciprocal lattice vector.
However, the issue of special interest to us is the essential
differences between the two types of electromagnetic diffrac-
tion. These originate from the distinctions in �1� the dielec-
tric response functions, �2� the lattice period, �3� the particle
size and shape �the a-SiO2 spheres in the case of opals�, and
�4� the wavelength range under study. To compare, the peri-
odic variation in the dielectric constant for x rays that is
responsible for the stop bands is �10−5; so the stop bands are
extremely narrow,30 whereas the occurrence of a full band-
gap is impossible. For this reason, the x-ray experiments
usually deal with angle-resolved �directional� measurements
of diffraction patterns.30 What is essential in photonic crys-
tals is the presence of wide enough energy stop bands in the
wavelength range from ultraviolet, to infrared, where the
contrast in the dielectric constants becomes large enough for
a full photonic bandgap to appear. It is natural to study them
by spectroscopic methods, mostly using the reflection and
transmission spectra in the bandgap region. Besides, an es-
sential increase in the dielectric permittivity for visible light
has important consequences that have no analogs for x rays.
First, light refraction may arise at the crystal surface and,
second, diffracted waves propagate in a medium character-
ized by a nonvacuum dielectric background. Finally, the con-
stituting particle size and the lattice constant of a photonic
crystal can be technologically varied such that the principal
diffraction occurs in the visible, while the higher-order dif-
fraction spots are invisible to the human eye.

Our aim in the present work was to study experimentally
the Bragg diffraction from synthetic opal crystals of various
quality, from perfect to strongly disordered ones, and to de-
velop a diffraction theory for real opal-like photonic crystals.
The diffraction patterns were investigated in various scatter-
ing geometries, keeping in mind that the diffraction may be
considerably complicated by the sample growth disorder.
The diffraction patterns obtained did show the presence of a
twinned face-centered cubic �fcc� structure with a 1D disor-
der in the alternating hexagonal closely packed �hcp� layers
normal to the growth axis. Our theory of light diffraction
from a twinned opal structure is capable to take into account
the major features observed experimentally. These are the
presence of a long-wavelength diffraction edge varying with
the crystal orientation, the spectral and angular characteris-
tics of the diffracted beam intensity, and the relationship be-
tween the observed diffraction patterns and a twinned fcc
structure. Besides, we have found some statistical character-
istics of the twinned sample structure, in particular, the fcc
packing probability, which indicates that the cubic lattice is
largely composed of the fcc phase.

The paper is organized as follows. In Sec. II we present a
general theory of Bragg diffraction in photonic crystals, bear-
ing in mind the effects of the background dielectric constant
and growth-induced interlayer disorder, which are discussed
with reference to opal-like structures. In Sec. III we describe

the structure of synthetic opals and the samples under study,
while in Sec. IV we outline the experimental setup and the
scattering geometries. In Sec. V we discuss the experimental
results on the Bragg diffraction in opals. The data are ana-
lyzed and interpreted in the framework of the developed
theory of Bragg diffraction in disorder-affected opal struc-
tures.

II. THEORETICAL BACKGROUND

At first glance, the Bragg diffraction of visible light and
that of x rays look alike, so we will focus here on their
principal differences that constitute the specificity of photo-
nic crystals as diffraction objects. In this section, we develop
a consistent theory to consider the essential structural and
dielectric aspects of Bragg diffraction in photonic crystals
that seem to have not been properly treated in the literature.
The theory takes into account the inherent interlayer disorder
that occurs due to a specific growth mechanism in a variety
of self-organized photonic crystals. This kind of structural
randomness has been observed in such photonic crystals as
opals,12,14,15,31 inverted opals,32 colloidal structures,23 and
some other materials.

We treat Bragg diffraction as coherent elastic scattering of
light by perfect or disorder-affected photonic crystals, whose
dielectric permittivity is spatially modulated with a period
comparable with the light wavelength. We will show, in par-
ticular, that the theory can interpret the reflection due to the
crystal surface �the background dielectric constant�, whose
effect can interfere with the Bragg diffraction from a real
photonic crystal. Next, we consider the kinematics of the
Bragg diffraction from a perfect reference fcc lattice to apply
the results to the analysis of diffraction by slightly disordered
photonic crystals. Finally, a statistical consideration of the
diffraction intensity is presented for 3D closely packed opal-
like structures made up of random sequences of three pos-
sible positions of 2D hcp layers. The predictions and conclu-
sions from the theoretical treatment are applied in Sec. V to
interpret our experimental data on synthetic opals.

A. Basic equations

We can describe the spatially modulated dielectric permit-
tivity of a photonic crystal as

��r� = �0 + ���r� . �1�

By averaging over the crystal volume V, the uniform back-
ground dielectric constant

�0 =
1

V
�

V

dr · ��r� �2�

is introduced in Eq. �1�. The permittivity variation ���r�
=���r+ai�, periodic with the unit translations ai of the crys-
tal lattice is responsible for the Bragg diffraction, whose ki-
nematics is defined by the orientation of the crystal planes
specified by the reciprocal lattice, vector b. For a perfect
crystal, the modulation term in Eq. �1� is expanded into the
Fourier series
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���r� = 	
b��0�

��b eib·r, ��b =
1

v0
�

v0

dr · e−ib·r���r� = ��−b
* ,

�3�

where v0 is the unit cell volume. Disordering of the crystal
violates the long-range order expressed by Eq. �3�, but the
diffraction features due to the short-range order survive,
which is typical of the atomic structure of noncrystalline
solids.33

In what follows, we assume that a photonic crystal occu-
pies the half-space z�0, in which region the dielectric func-
tion obeys Eq. �1� with the background contribution �2�. The
zeroth-order approximation ���=0� takes into account only
the background permittivity �0�z� equal to �1, if z�0, and to
�0, if z�0, as seen in Fig. 1�a�. The plane z=0, where the
dielectric function �0�z� jumps from �1 to �0, represents the
optical boundary of a photonic crystal specularly reflecting
the incident waves, irrespective of the orientation of the crys-
tallographic planes. In general, the monochromatic �with the
frequency �� zeroth-order electric field E0 and the related

tensorial Green function Ĝ0, and the total field E can be
found from the equations

�curl curl − �0�z�k0
2�
 E0�r�

Ĝ0�r,r��
E�r�

� = 
 0

��r − r��Î
���r�k0

2E�r�
� . �4�

Here, k0=� /c, c is the velocity of light in vacuum, Î is the
unit matrix with the elements I��=���, � and � are the Car-
tesian indices, and ��� is the Kroneker delta.

In the presence of the perturbation ���r�, the solution of
the third of Eqs. �4� for the field outside the crystal �z�0� is

E��r� = E�
0�r� + k0

2	
�
� dr� G��

0 �r,r�����r��Ẽ��r�� , �5�

Hereafter, the overtilde will indicate the fields inside the
crystal �z�0� satisfying the self-consistent integral equation

Ẽ��r� = Ẽ�
0�r� + k0

2	
�
� dr� G̃��

0 �r,r�����r��Ẽ��r�� . �6�

To solve Eqs. �4�–�6�, we will assume that a wave with
the linear polarization 	, the amplitude E	

inc, and the wave
vector

K = � + ezk1, � = ��1k0 sin 
�ex cos � + ey sin ��,

k1 = ��1k0 cos 
 �7�

is incident onto the crystal from the half-space z�0. Equa-
tions �7� are expressed in the Cartesian coordinates with the
unit vectors e�, in which the beam direction can be given by
the spherical polar 
 and azimuth � angles, as indicated in
Fig. 1�a�. At z�0, the first of Eqs. �4� yields

E�
0�r� = E	

ince�
	 �K�exp�i� · ���exp�ik1z� + r	

0���exp�− ik1z�� ,

�8�

for the tangential field components ��=x ,y� and Ez
0�r�

= �i /k1
2�d�� ·E0�r�� /dz for the normal component with r

= �� ,z� and �= �x ,y�. In Eq. �8�, the polarization unit vectors
e	 are

ep�K� = �ex cos � + ey sin ��cos 
 − ez sin 
,

es�K� = − ex sin � + ey cos � , �9�

for p- and s-polarized waves, respectively. The Fresnel coef-
ficients r	

0 for the reflection from the background surface z
=0 are

rp
0 =

�1k − �0k1

�1k + �0k1
, rs

0 =
k1 − k

k1 + k
, �10�

where k���=��0k0
2−�2. Inside the crystal �z�0�, the tangen-

tial components of the unperturbed field entering Eq. �6�
have the form

Ẽ�
0�r� = E	

inct	
0���e�

	 �Q�exp�iQ · r� , �11�

with t	
0=1+r	

0. In accordance with Fig. 2, the in-crystal wave
vector

FIG. 1. �a� Optical scheme
showing the relation between the
vectors K of the incident wave
and K� of the diffracted wave
�measured outside the crystal�
with the vectors Q and Q� enter-
ing the in-crystal diffraction con-
dition Q�=Q+b, where b is the
reciprocal lattice vector. �b� The
principal crystallographic direc-
tions in the reference fcc lattice
and the in-crystal unit vectors

x̂ 
 �1̄1̄2�, ŷ 
 �111�, and ẑ 
 �1̄10�
used in the Bragg diffraction
analysis. The unit translations â1

and â2 from Eq. �A1� are shown
for a hcp layer.
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Q = � + ezk, k = ��0k0 cos 
 , �12�

is related to the out-crystal vector K in Eq. �7� by the Snell
law ��1 sin 
=��0 sin 
=� /k0 �continuity of the wave vec-
tor �� for the light at the boundary z=0. The unit vectors
e	�Q� are derived from Eq. �9� by substituting 
→
. The
in-crystal Q� and out-crystal K� wave vectors of the scat-
tered light are then found by the substitutions �→��, 

→�−
� and 
→�−
� in expressions of the form �7�–�9�
for K and �12� for Q. The angles 
� and 
� are taken from
the negative direction of ez, in accordance with Fig. 1�a�.
Because of the elastic scattering, we further imply the equali-
ties �Q��= �Q�=��0k0 and �K��= �K�=��1k0.

B. Observable quantities

The Born approximation of the scattering theory is
usually sufficient to interpret the diffraction of waves
from atomic crystals and disordered solids.33 Similarly, keep-
ing in mind that opal-based photonic crystals have a low
dielectric contrast ����b���0�, we calculate the diffraction

intensity in the Born approximation, assuming Ẽ� Ẽ0�r�
� Ẽ0�Q�exp�iQ·r� in the integrand of Eq. �6�. Therefore, the

field Ẽ will have the same linear polarization 	 as the unper-

turbed field Ẽ0, and the radiation field E�=E−E0 outside the
crystal due to the perturbation ���r� can be calculated from
Eq. �5� under the conditions �8� and �11�. In the lowest-order
approximation in ��, the asymptotic expression for the field
radiated from the crystal into the back hemisphere �z�0,
��1k0r�1, r=��2+z2� is evaluated by the steepest descent
technique:34,35

E���r� = −
i��1k0

3 cos 
�

2�

ei��1k0r

r 	
�

D��
0 �0−,0+;���

���
V

���r��e−iq·r� dr��Ẽ�
0�Q� . �13�

Here, the tensor D̂0�z ,z� ;�� is the �z ,�� representation of the

Green’s function Ĝ0�r ,r��= Ĝ0�z ,z� ;�−���, and

q = Q� − Q �14�

is the scattering vector in the crystal. The direction of the
vector K� of the outgoing wave �the spherical angles 
� and
��� is defined by the vector r=r��ex cos ��+ey sin ���sin 
�
−ez cos 
�� of the observation point outside the crystal.

Next, we calculate the ratio of the Poynting vectors S	�
�

= �8��−1c��1�E	�
� �2 of the 	�-polarized diffracted wave �13�

outside the crystal �z→−�� to S	
inc= �8��−1c��1�E	

inc�2 of the
	-polarized incident wave �8�. This yields the following cross
section for the scattering �diffraction� channel K ,	→K� ,	�
specified by the 	 and 	� polarization indices:

d�		�

d��
=

k0
4

16�2��
V

���r�e−iq·r dr�2

· �t	
0����2

� u		���,��� · �t	�
0 �����2. �15�

Here, d��=sin 
� d
� d�� is the solid angle in the back
hemisphere, and upp=cos2 
��cos 
 cos���−��−sin 

tan 
��2, ups=cos2 
 sin2���−��, usp=cos2 
� sin2���−��,
uss=cos2���−��. The cross section for nonpolarized light is

d�

d��
=

1

4 	
	,	�

d�		�

d��
. �16�

It follows from Eqs. �13� and �15� that the diffraction
properties of a photonic crystal are mainly determined by the
structure factor

S�q� = � 1
�N

	
n

eiq·Rn�2

=
1

N
	
n,n�

e−iq·�Rn�−Rn�, �17�

entering the term

��
V

���r�e−iq·r dr�2

= v0V���q�2S�q� . �18�

Here, N is the number of unit cells having the volume v0
within the crystal volume V=v0N. The form factor ���q�2 is
expressed through the Fourier transform,

��q =
1

v0
�

v0

��̃�r − Rn�e−iq·�r−Rn� dr , �19�

of the function ��̃�r−Rn�, which is equal to ���r� within a
Wigner-Seitz unit cell centered at the site Rn and to zero
outside the cell; so the dielectric function �1� is ���r�
=	n��̃�r−Rn�.

When analyzing the diffraction patterns, one should keep
in mind that self-organized photonic crystals like opals grow
as stacks of 2D hcp layers built up of identical dielectric
spherical particles. Along the growth axis of a real 3D
closely packed structure, the hcp layers may take acciden-
tally one of the three positions A, B, or C, which are strictly
ordered in a perfect fcc lattice.1 In the presence of the inter-
layer disorder, the summation over the site indices n
= �n
 , l� in Eq. �17� can be separated into intralayer �over n
�
and interlayer �over the layer numbers l� summations by us-

FIG. 2. �Color online� Scheme of the Bragg diffraction in opals.
The diffraction kinematic triangles for the incidence geometries de-
noted as �i� and �ii� in text �the vectors b�11̄1̄� and b�111� are shown
as an example�. The triangle �i� presents the diffraction Q1→Q1�
with Q1 
 �111� and the triangle �ii� presents the diffraction
Q2→Q2� from the �111� planes. The adjacent domains of the fcc-I
and fcc-II lattices are shown to form a twin. The nonequivalence of

the �111� and �11̄1̄� planes in the twinned fcc structure is clearly
seen.
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ing the representation Rn�−n�Rn1�−n
,0
+R0,l�−l. After the av-

eraging over the random vectors R0,l �this operation is des-
ignated further as �¼��, the structure factor �18� transforms
to

�S�q�� = S
�q��S��q�� = S
�q�� 1

L
	

l,l�=1

L

e−iq·R0,l�−l� ,

�20�

where L is the number of hcp layers in a stack. Here, S
�q�
stands for the structure factor of a single layer, appearing as
a structural unit of both the fcc lattice and the random stack.
The summation in Eq. �17� over the sites n
 of the layer
lattice defined by two in-layer unit translations âi yields

S
�q� = �
i=1,2

Si�q� = �
i=1,2

1

Ni

sin2�Niq · âi/2�
sin2�q · âi/2�

. �21�

In the limit Ni→�, each factor in Eq. �21� changes to the
2�-periodic delta function,

Si�q� = 2�	
mi

��q · âi − 2�mi� , �22�

where mi with i=1,2 are integers.

C. Diffraction by regular lattices

We will now analyze the kinematics of the Bragg diffrac-
tion from the reference fcc lattice and apply the results to
opal-like crystals with a weak interlayer disorder. For a 3D
lattice, the summation over l in Eqs. �17� or �20� with the
interlayer unit translation â3 gives

S��q� =
1

L

sin2�Lq · â3/2�
sin2�q · â3/2�

——→
L→�

2�	
m3

��q · â3 − 2�m3� ,

�23�

where m3 are integers. The maxima of the functions �22� and
�23� correspond to the solutions of the Laue equations q· âi
=2�mi with i=1,2 ,3 related to the perfect crystal lattice.
Then, by expanding the scattering vector q in Eq. �14� in the

basis vectors b̂i of the reciprocal lattice and taking account of

�âi · b̂ j�=2��ij, one can make sure that the equations q· âi

=2�mi are indeed equivalent to the Bragg diffraction condi-
tion q=b, or

Q� − Q = b � 	
i

mi · b̂i. �24�

Using the dimensionless values

�� =
q�

k0
��0

, � =
a

2�
b , �25�

Eq. �24� can be rewritten as

� = �� = �	
i

mi�i, �26�

where �=� / �a��0�, �=2� /k0 is the wavelength of light in
vacuum, and a is the distance between the nearest lattice
sites.

Given the wave vectors Q and Q�, Eqs. �24� and �25�
yield

�x = sin 
� cos �� − sin 
 cos �,

�y = sin 
� sin �� − sin 
 sin �,

�z = − �cos 
� + cos 
� , �27�

the angles 
 �
�� being counted from the positive �negative�
direction of ez. When solved for the incidence angles 
 ,�
and the set �m1 ,m2 ,m3� with, at least, one nonzero index mi,
Eq. �26� provides the angles 
� ,�� that define the direction
of the potentially allowed reflex �maximum of the diffraction
intensity�. Note that for the unit translations �A1� chosen, the
indices �m1 ,m2 ,m3� of diffraction reflex appeared in Eqs.
�24� and �26� differ from the Miller indices �hkl� of the crys-
tal plane perpendicular to the vector b; this difference is
clear from the relation �A4�. The right-hand sides of Eqs.
�26� are limited because of �����2, i.e., the higher are the
diffraction indices �m1 ,m2 ,m3�, the smaller is the � / �a��0�
ratio necessary for the diffraction to occur.

Next, we turn to Eq. �24� to analyze the Bragg diffraction
kinematics for two fcc lattices that can appear in weakly
disordered opal-like crystals. The displacement of a hcp
layer from one of the above positions �A, B, or C� to the
other two positions is provided by the interlayer unit trans-
lation â3, which is either tI or tII. If the translation is tI �tII�,
a fcc ¼ABCABC¼ �¼ACBACB¼� lattice can arise,
which will further be called a fcc-I �fcc-II� lattice. Unless
otherwise stated, the fcc-I is referred to as the reference lat-
tice, and the Miller indices of the planes and directions are
given for this lattice.36 In what follows, we will treat two
incidence geometries relative to the reference fcc-I lattice
presented in Fig. 2. In the case �i�, the incident beam propa-
gates along the �111� plane of the fcc-I structure, i.e.
Q 
 �111�. In the case �ii�, the beam incidence onto the �111�
plane is oblique.

To proceed with the case �i�, the vector Q 
 �111� is as-

sumed to make an angle � with the direction �2̄11�, as shown
in Fig. 1�b�. With the basis vectors �A2�, one gets

� = −
2
�3
�ex�m1 cos�� −

�

6
� + m2 sin ��

+ ez�m1 sin�� −
�

6
� − m2 cos ���

+ ey��m3 −
m1 + 2m2

3
� , �28�

on the right-hand side of Eq. �26�, with the unit vectors ez
=Q /Q �
=0� and ey 
 �111�. The parameter �=a /A in Eq.
�28� with the �111� interlayer spacing A enables one to treat
a variety of structures, from a single layer �A=�, �=0� to a
fcc lattice �Amin=a�2/3, �=�max=�3/2�.

For Q 
 �2̄11�, when �=0, the first of Eqs. �26� with m1

=0 �i.e., �x=0� has the solutions �1�=� /2 and �2�=3� /2,
which means that light is diffracted up and down the �111�

LIGHT DIFFRACTION FROM OPAL-BASED PHOTONIC¼ PHYSICAL REVIEW B 73, 205118 �2006�

205118-5



plane, respectively. The z projection of Eq. �26�, �z
=2m2� /�3, shows that at m1=0 and m2=−1 the Bragg dif-
fraction with the wavelengths

��
�� =
a�3�0

2
�1 + cos 
�� , �29�

occurs in the range a�3�0 /2���a�3�0. Since the two
equations are independent of �, these are particularly valid
for a single hcp layer ��=0�. When dealing with the diffrac-
tion in a perfect 3D lattice, one should combine Eq. �29� with
the rest of Eqs. �26�, �y =���m3+2/3�, to obtain

tan

�

2
=

3

2�2

1

sin �1,2�
�m3 +

2

3
� , �30�

for the reference fcc-I lattice ��=�3/2�. The solutions of Eq.
�30� are 
1�=2 arctan��2/2�=70°30� and ��
1��=2a��0 /3
for m3=0 and sin �1�=1; but they are 
2�=2 arctan��2/4�
=39° and ��
2��= �8/3�a��0 /3 for m3=−1 and sin �2�=−1.
No other solutions are possible for the light diffracted by the
fcc-I structure into the back hemisphere, or at 0�
��� /2
under the above conventions. At the other m3 values, Eq.
�30� gives solutions in the range of � /2�
��� �front
hemisphere�. The substitution of the obtained sets of integers
mi into Eq. �A4� brings one to the conclusion that the dif-
fraction reflexes at �
1� ,�1�� and �
2� ,�2�� are due to the �200�
and �11̄1̄� planes, respectively. For the fcc-II structure, the

related solutions to Eq. �30� 
̃1�=39°, m3=0 at sin �1�=1 and


̃1�=70°30�, m3=1 at sin �2�=−1 �from the �1̄11� and �2̄00�
planes� have mirror symmetry in respect to those of the fcc-I
structure with �111� mirror plane.

Figure 3�a� presents the normalized structure factors

S�
I,II�q� /L calculated from Eq. �23� at Q 
 �2̄11� for the fcc-I

and fcc-II lattices consisting of L hcp layers. Like the experi-
mental data later, S�

I,II�q� /L are plotted versus the registration
angles −90° ����90°, where ��=−
� for the solution
�2�=3� /2 and ��=
� for �1�=� /2.37 In the frame of the
above kinematics analysis, the angular positions of the
S�

I �q� /L peaks at �1�=70°30� and �2�=−39° �curve 1 in Fig.

3�a�� are due to the diffraction from the �200� and �11̄1̄�
planes of the reference fcc-I lattice. In turn, two maxima of
curve 2 in Fig. 3�a� belong to the structure factor S�

II �q� /L of
the fcc-II lattice. Note that the Bragg wavelengths �29� are
different for the ����=39° and ����=70°30� maxima. Be-
sides, the sums �S�

I +S�
II � / �2L� presented by curves 3 and 4

in Fig. 3�a� estimate the structure factors for a mixture of
alternating fcc-I and fcc-II structures having the same growth
axis and equal numbers L of constituting layers. All the
curves in Fig. 3�a� demonstrate a size effect in the broaden-
ing of the angular peaks ������1/L, which becomes drastic
at small L: S�

I,II�q� /L→1 at L→1.
Thus, we have discussed all processes potentially allowed

in the backward diffraction, as these are defined by the struc-
ture factor normalized to unity. It follows from Eqs. �15� and
�16�, however, that the observable intensity of each peak is
actually governed by the relevant form factor ���b�2. In par-
ticular, one can expect that the large-angle maxima of

S�
I,II�q� /L associated with the �200� planes will be

suppressed.21

For comparison, we briefly consider the diffraction in the
case �ii�, i.e. under the oblique light incidence onto the �111�
planes of the reference fcc lattice. The expression derived
from Eq. �28� is

�� = −
2
�3
�ex��m1 cos�� −

�

6
� + m2 sin ��

+ ey��m1 sin�� −
�

6
� − m2 cos ���

− ez���m3 −
m1 + 2m2

3
� , �31�

FIG. 3. The structure factors S�
I,II /L calculated from Eq. �23� for

the fcc-I and fcc-II lattices consisting of L hcp layers �a� and the
normalized mean structure factor �S�� of random stacking �b� as a

function of the angle �� for the Q 
 �2̄11� incidence and m1=0,
m2=−1. The S�

I /L �curve 1� and S�
II /L �2� are presented in panel �a�

for L=10, and the sums �S�
I +S�

II � / �2L� are presented for L=5
�curve 3�, and L=15 �4�. The normalized values of �S�� calculated
from Eq. �39� are shown in panel �b� for the fcc packing probabili-
ties p=0.65 �curve 1�, p=0.8 �2�, and p=0.9 �3�. The upper wave-
length scale corresponds to the Bragg condition �29�. Panel �b�
shows a good fit between the maxima of �S�� at p=0.8 �curve 2�
and �S�

I +S�
II � /L at L=10 �curve 4�. Calculated at a��0=375 nm.
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with ey� 
 �1̄10� and ez� 
 �1̄1̄1̄�. At m1=m2=0, Eq. �26� with the
substituted Eq. �27� and ��=−m3�ez� following from Eq. �31�
predicts a series of diffraction maxima under the Bragg con-
dition

��
� =
2

m3�
a��0 cos 
 , �32�

where m3�1. These correspond to specular reflection �
�
=
 and ��=�� by the �111� planes of the reference fcc lat-
tice, whose period a /� is d�111�=a�2/3. The lowest-order
diffraction process with m3=1 in Eq. �32� is just what has
been extensively studied in the majority of reports on
reflection6,10,17,20,21 and transmission6,8–10 in opals and re-
lated materials. The diffraction remains the same for the fcc-I
and fcc-II lattices until the different diffraction processes
with nonzero m1 or m2 become allowed. If the optical bound-
ary defined by the function �0�z� is perpendicular to the �111�
direction, the Bragg diffraction interferes the Fresnel reflec-
tion from the crystal surface.

In the next section, we consider how the diffraction fea-
tures predicted above for fcc structures are modified by the
growth-induced disorder typical of real opals.

D. Diffraction from randomly packed layers

We have pointed out above that opals and related photonic
crystals are characterized by a probabilistic interchange of
three possible positions �A, B, and C� of the hcp layers made
up of a-SiO2 spheres. This means that the translation vectors
tI and tII in a 3D closely packed structure alternate in a
random sequence. For this reason, the domains of the fcc-I
lattice ¼ABCABC¼, the fcc-II lattice ¼ACBACB¼, and
the 3D hcp lattice ¼ABABAB¼ coexist and alternate sta-
tistically along their common growth axis. For disordered
opals, the structure factor in Eq. �20� appears on averaging
the observable quantities �15� and �16�. The mean structure
factor entering Eq. �20� for random stacking of L hcp layers
is the following:38

�S��q�� = 	
l=−L+1

L−1 �1 −
�l�
L
��e−iq·R0,l� . �33�

To evaluate Eq. �33�, we introduce the fcc packing probabil-
ity p, implying the event when two successive translations
�tI or tII� coincide in a random stack of hcp layers. There are
the following possibilities: �1� a fcc-I or fcc-II lattice is
formed, if p=1, �2� a 3D hcp lattice is formed, if p=0, and
�3� a mixture of 3D hcp and fcc lattices appears, if 0� p
�1. In the latter case, the one-step mean phase factor

�e−iq·R0,1�= �1/2�eT ·M̂�q� · e is defined by the matrix

M̂�q� = � pe−iq·tI �1 − p�e−iq·tII

�1 − p�e−iq·tI pe−iq·tII
� , �34�

where e is the vector matrix, whose transpose is eT= �1,1�
with eT · e=2. With account of

�e−iq·R0,l� =
1

2
eT · M̂l�q� · e �35�

at l�1, Eq. �33� yields

�S��q�� =
1

2
eT · �1 + 	

l=1

L−1 �1 −
l

L
��M̂l + �M̂*�l�� · e .

�36�

Summing with the accuracy to the terms of the order 1 /L
�1 �L→�� gives

�S��q�� =
1

2
eT · ��Î − M̂�−1 + �Î − M̂*�−1 − Î� · e , �37�

where Î is the unit matrix. Using in Eq. �37� the matrix �34�
expressed through the vectors tI and tII, we arrive at the
relation

�S��q��

=
p�1 − p�sin2 ��

�1 − 2p�sin2 �0 + p2�1 − 2 cos �0 cos �� + cos2 ���
,

�38�

where

�0 =
1

2
q · �tI + tII�, �� =

1

2
q · �tI − tII� ,

and tI,II= �a /2��±x̂ /�3+ ŷ�8/3+ ẑ� is taken in accordance
with Eq. �A1�.

Turning to the case �i� with the Q 
 �2̄11� incidence �

=0, �=0�, we substitute into Eq. �38� the values of �� for the
solutions �1�=� /2 and �2�=3� /2 at m1=0 and m2=−1 with
the Bragg condition �29�. This yields the following structure
factor averaged over the random stacking:

�S��q�� =
3

2

p�1 − p�
�2p − 1��cos 2� − 1� + p2�2 cos � + 5/2�

,

�39�

where �= �4��2/3�tan��� /2�. The normalized structure
factors �39� for random stacks with different p values are
presented in Fig. 3�b� as a function of the registration angle
�� introduced in Fig. 3�a�.37 With increasing p, the angular
dependence of �S�� is seen to vary from the one typical of a
3D hcp lattice �p�1� to that typical of fcc lattices �1− p
�1�. This tendency has been derived from Fig. 3�b�, though
no limiting analytical expressions are available for Eq. �39�.
Curve 4 in Fig. 3�b� presents the sum �S�

I +S�
II � /L at L=10

reproduced from Fig. 3�a�. To compare, near the maxima this
curve is very close to the normalized dependence �S�� for
p=0.8 presented by curve 2 in Fig. 3�b�. Thus, the �� de-
pendencies of �S�� and �S�

I +S�
II � /L derived, respectively, for

the statistical and regular models of alternating fcc-I and
fcc-II domains show good agreement.38 To anticipate, such
an alternation of domains indicates that opals do have a
twinned fcc structure, the statement will be experimentally
supported in Sec. V.
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Before proceeding to the experiment, it is worthy com-
menting on a few important theoretical points. In the next
sections the previous theory is demonstrated to explain all
our experimental data on diffraction from real opals. Because
our opal samples with ���b�111�

� /�0�0.0539 are actually low-

contrast dielectrics, it is not surprising that the discussed
first-order solution of Eqs. �5�, implying that �E−E0�� �E0� is
exact enough. But if one has to deal with the optical diffrac-
tion from high-contrast photonic crystals, a question could
arise about the role of effects occurring due to the interfer-
ence of multiple-scattered waves. Such effects in the photo-
nic crystal are taken into account by multiple-scattering
numerical methods,40 particularly applied to calculate
optical diffraction-mediated transmission through colloidal
crystals22 and inverted opals.32 These complicated numerical
methods are mainly used to provide rich and detailed infor-
mation about the photonic band structure,41,42 represented as
the dispersion branches of the frequency versus the wave
vector covering the whole volume of the Brillouin zone of
the lattice. In the Bragg diffraction essential are the processes
associated with the surface of the Brillouin zone where the
photonic stop bands open up. Given the diffraction channel
K→K�, such processes can be specified by either a single
vector b or a few reciprocal lattice vectors simultaneously,
the situations being referred to as single �presented here� or
multiple Bragg diffraction,21 respectively. In both cases, ac-
count of multiple-scattering effects could be taken by substi-

tuting a self-consistent solution of Eq. �6� rather than Ẽ0 in
�5� and an analog of Eq. �13�. Then, these get a resonant
denominator whose zeros in the lowest-order approximation
in ��b define the conditions for the Bragg diffraction in a
perfect crystal, providing the same diffraction intensity
maxima as Eqs. �22�–�24�. The higher-order corrections re-
sult in a complex term responsible for shift and broadening
of the diffraction maxima, which optical effects can be
treated semiempirically. In real crystals, imperfections and
disorder of the lattice as well as finiteness of the crystal sizes
are important origins of additional broadening of the Bragg
maxima. Turning to our theory, it predicts significant broad-
ening of single Bragg diffraction features due to stacking
disorder and domain size effects �Fig. 3�, under which con-
ditions one may expect that the multiple-scattering effects
will be suppressed.

III. OPAL STRUCTURE AND SAMPLE
CHARACTERIZATION

The opal samples under study represented 3D closely
packed structures with monodisperse spherical a-SiO2 par-
ticles located at the lattice sites. The particle diameter was
several hundreds of nanometers, i.e., its size was comparable
with the wavelengths in the visible spectral region. The di-
electric constant of the bulk amorphous silica is �a-SiO2
=1.85 �the refractive index na-SiO2

�1.36�, and the interpar-
ticle voids form a continuous network that can be filled with
various liquids or solid materials. As an opal sample grows,
silica particles form well-ordered hcp layers that succes-
sively stack to produce a 3D closely packed structure. We

will assume further that the growing 2D hcp layers are par-
allel to the �111� plane of the reference fcc lattice, while the
growth axis coincides with its �111� direction.

The details of the 3D closely packed structure will be
discussed with reference to Fig. 2. We have mentioned in
Sec. II that the hcp layers may occupy any of the three po-
sitions A, B, or C in the �111� plane. During the 3D stacking,
any two adjacent layers may have any two different positions
from the set A, B, and C. The resulting periodic layer se-
quence ¼ABCABC¼ produces a fcc lattice, whereas the
sequence ¼ABABAB¼ forms a 3D hcp lattice. A random
layer sequence, say, ¼ABACBACA¼, provides a 3D
closely packed structure disordered along the normal to the
layers. Among the 1D disordered structures that appear
during the growth, we will single out a twinned
¼ACBABCA¼ structure, well known from crystallography,
which is made up of two fcc lattices �fcc-I and fcc-II in Fig.
2� having a common plane denoted as A. It is important for
further discussion that the �111�, and �1̄1̄1̄� growth planes in
synthetic opals are physically different from the other six
planes, i.e., from the �1̄11�, �11̄1�, �111̄�, �1̄1̄1�, �1̄11̄�, and
�111� planes that would be equivalent to the �111� planes in
the perfect fcc lattice. This is due to the random stacking of
hcp layers along the �111� growth axis. As a result, the �111�
and �1̄1̄1̄� axes appears to be different from the �1̄11�, �11̄1�,
�111̄�, �1̄1̄1�, �1̄11̄� and �11̄1̄� axes that change their direc-
tion with the transition from a fcc-I domain to a fcc-II do-
main, and vice versa. This is illustrated in Fig. 2, showing
that the arrangement of sites in the hcp layers formed by
a-SiO2 particles in the �111� or �1̄1̄1̄� planes is perfectly
ordered, while in the other planes of the �111� family the
sphere packing is irregular due to a random alternation of
domains of the fcc-I and fcc-II lattices along the �111�
growth axis.

Our study was performed with well characterized and ori-
ented opal samples, as described previously.12,26 The samples
were a few centimeters at the base and about 1 cm high.
Atomic-force microscopy was used to match the crystal axes
with the geometry of each sample and to determine the lat-
tice parameters. In order to visualize the Bragg diffraction in
the visible wavelength range, we selected samples with silica
spheres having an average diameter D�270 nm.

The analysis of the optical transmission spectra showed
that the sample structure essentially changed along the
growth axis.15 The sample regions at the initial growth stage
manifested a strong structural disorder that manifested itself,
among other things, as a disorientation of some crystallites
relative to the sample growth axis. The best structural per-
fection was achieved at the latest growth stage. The atomic-
force micrographs demonstrated a long range ordering of a
-SiO2 spheres in the 2D hcp layers on the scale of a few
hundreds of microns.15 In the present study we analyzed the
diffraction patterns of various regions of the initial sample,
both strongly disordered and best ordered ones.

IV. EXPERIMENTAL TECHNIQUES

A. Experimental setup

The diffraction experiments on synthetic opals were car-
ried out using a setup shown schematically in Fig. 4. For
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monochromatic illumination, we employed Ar+, He-Ne, and
Cu lasers or an incandescent lamp as a source of white light
�1�. In the latter case, the light beam was collimated with a
diaphragm and a lens �2�. An additional focusing lens �3�
with the focal length of 6 cm was used to reduce the light
spot on the sample. An opal sample �4� was fixed at the
center of a spherical cell �5� of 5 cm in diameter, filled with
glycerin �the dielectric constant �gl=2.07, the refractive in-
dex ngl=1.44� and used as an immersion medium to suppress
diffusive light scattering from the surfaces. According to Eq.
�2�, the effective dielectric constant of an opal sample is �0
=0.74�a-SiO2

+0.26�gl�1.91 �n0=��0�1.38, in which case
a��0�375 nm for our samples with the above constant
�a-SiO2

�1.85�. As a result, there was practically neither re-
flection nor refraction of light on the sample surface, and the
effects of the sample shape and surface morphology were
negligible, which allowed making quantitative measurements
of the spectral and angular dependencies of the diffracted
light intensities. The crystallographic axes were oriented
along the axis of a scaled circle that could be precisely ro-
tated. A translucent frosted glass screen �6� with a mounted
focusing lens �3� was placed in between the light source and
the sample. The screen was used to register the light dif-
fracted by the sample �4� to the back hemisphere. The dif-
fraction patterns were visualized on the screen, photographed
and analyzed by a DFS-24 spectrometer that received the
signal through an optical fiber.

B. Diffraction geometries

The diffraction experiments registered �at a high angular
resolution� the intensity of light scattered into the large solid
angle of the back hemisphere. To observe the most represen-
tative diffraction patterns, we employed two geometries of
light incidence with respect to the opal structure �Fig. 2�. The
geometry denoted as �i� in Sec. II C corresponds to the wave
incidence along the �111� layers, i.e., perpendicularly to the
�111� growth axis. The other geometry, denoted as �ii�, cor-
responds to the normal or oblique incidence on the �111�
growth plane. The two situations cover all incidence geom-
etries for opal crystal structures.

Here we focus on the most informative �i� geometry,

which has not been considered in detail before. The incident
beam propagates along the 111 growing layers. Since these
layers have a hexagonal symmetry, we can identify two ma-
jor high symmetry directions of the wave vector Q 
 �111� of
the incident beam �Fig. 1�b��. In one case, the beam with

Q 
 �1̄10� is incident along continuous chains of closely
packed a-SiO2 spheres in the �111� hcp layer �Fig. 1�b��. This
orientation corresponds to the  -K direction in the Brillouin
zone of the reference fcc-I lattice �Fig. 5�a��. In the other

case, the Q 
 �2̄11� beam is normal to the chain of silica

spheres making the angle of 60° with the Q 
 �1̄10� beam

�Fig. 1�b��. The Q 
 �2̄11� incidence corresponds to the  -P
direction in the reciprocal space. The untabulated symbol P
has been introduced for the point of interception of the

b�2̄11� 
 �2̄11� vector of the reciprocal lattice and the Brillouin
zone surface. It should be emphasized that the angle between

the �1̄10� and �2̄11� directions is 30° �Fig. 1�b�� and that
owing to the symmetry of the hcp layers, exhaustive infor-
mation on the diffraction in the �i� geometry can be obtained
by varying the Q 
 �111� vector within this angle.

In the �ii� geometry, we observed on the screen a single
bright diffraction spot in the direction of the specular reflec-
tion relative to the �111� normal.43 This spot satisfies the
condition �32� with m1=m2=0 and m3=1 for the Bragg dif-
fraction from a sequence of �111� hcp layers. The �111� lat-
tice period was a�2/3=220 nm in our samples, with a=D,
because of the close packing of the a-SiO2 spheres. Note that
this type of Bragg reflection of light from the �111� growth
surface has been a subject of detailed analysis in many ex-
periments on angle-resolved reflection.6,10,17,20,21,43

V. RESULTS AND DISCUSSION

Since our experiments were performed with opals im-
mersed in a liquid filling a spherical vessel, we will not dis-
tinguish between the wave vectors in the sample, in the im-
mersion liquid and outside the vessel, for which reason we
assume K�Q, K��Q� and �1��0 in applying the previous
theory �Sec. II� to our experiments. According to Eq. �24�
and Fig. 1�a�, the directions of the principal diffraction
maxima are defined by the kinematic relations Q�−Q
=b�hkl� with �Q��= �Q�.

A. Diffraction in the Q ¸ †2̄11‡ geometry

To start, we discuss the experimental data on the Q 
 �111�
geometry with the analysis of diffraction patterns of samples

FIG. 4. Experimental setup: light source �1�, collimator �2�, fo-
cusing lens �3�, opal sample �4�, spherical vessel �5�, semitranspar-
ent screen �6�. The diffraction pattern shown schematically on the

screen is for a monochromatic light beam incident along �2̄11� in
the �111� growth plane.

FIG. 5. The Brillouin zones of the fcc-I �a� and fcc-II �b� struc-
tures that form a twin.
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illuminated with monochromatic or white light along the

�2̄11� direction �Fig. 5�. If the number of alternating fcc-I
and fcc-II fragments �domains of random thickness� is large,
it means the existence of a multiplicity of twins located ran-
domly along the �111� growth axis normal to them. Each
perfect fcc-I and fcc-II lattice has its own Brillouin zone
shown in Figs. 5�a� and 5�b�, respectively. One can notice
that one zone changes to the other either in the mirror reflec-
tion in the �111� plane of the reference fcc lattice or when it

is rotated through 60° around its �111� axis. The Q 
 �2̄11�
light beam propagates along the �111� growth plane common
to both fcc lattices �Fig. 2�. The beam width usually appears
to be larger than the characteristic size of the fcc-I and fcc-II
domains, and the typical diffraction pattern contains two
spots symmetric with respect to the �111� plane. The angular
deviation ���� of the spot centers increases with decreasing
wavelength. This is illustrated in the photographs in Fig. 6,
taken in monochromatic light with various wavelengths.

To interpret these patterns, we should remember that if a
monochromatic beam is incident on a twinned fcc structure

along the �1̄10� direction, the Bragg reflection Q→Q� into
the back hemisphere shown for the fcc-I lattice in Fig. 2 is
allowed for several sets of �111� planes. In order to identify
these planes, we should keep in mind that diffraction from
the �h�k�l�� crystal plane into the back hemisphere relative to
the light incidence direction Q is generally allowed, if

��hkl�
�h�k�l��

�135°, where ��hkl�
�h�k�l�� is the angle between the

Q 
 �hkl� direction and the normal �h�k�l�� 
b�h�k�l�� to the set

of �h�k�l�� planes responsible for the diffraction. If ��hkl�
�h�k�l��

�135°, the diffracted beam will face the front hemisphere

and propagate into the sample. For this reason, the Q 
 �2̄11�
monochromatic diffraction into the back hemisphere will be

allowed only for the �11̄1̄� plane with �
�2̄11�

�11̄1̄�
�160° out of

the eight �111� planes, and the Bragg angle will then be

�����39° �Fig. 4�. The �1̄11� planes of the fcc-II structure
make a similar contribution to the diffraction. Therefore, the

Q 
 �2̄11� geometry gives two diffraction spots at ��= ±39°
that are symmetric with respect to the �111� plane because of
the diffraction from the �111� planes of the fcc-I and fcc-II
lattices. For our samples with D�270 nm, the Bragg condi-
tion �29� is fulfilled for light with �B=565 nm.

It should be noted that the two spots were observed ex-
perimentally both at the theoretical Bragg angle ����=39°
and wavelength �B=565 nm and at the other values of ��
and � �Fig. 6�. To explain this result, we carried out experi-

ments on diffraction of white light with Q 
 �2̄11�. We ob-

served on the screen a color strip along the �111� growth
axis. The spectral structure of the strip was analyzed in detail
as a function of �� �this angle was varied by moving the
optical fiber, transmitting the diffracted light to a spectrom-
eter�. The angle-resolved reflectivity spectra measured at
various registration angles �� are presented in Figs. 7�a� and
7�b�.37 The spectra in Fig. 7�a� are for the light scattered into
the lower region of the back hemisphere in the range −60°
����0, while those in Fig. 7�b� are for the scattering into
the upper region of the same hemisphere in the symmetric
range 0����60°. Figure 7�c� shows the intensity variation
at the peaks of the reflection bands presented in Figs. 7�a�
and 7�b�.

It is clear from Fig. 7 that the diffraction pattern repre-
sents the spectral dispersion of white light along two sym-
metric directions relative to the incident beam, producing a
symmetric iridescent strip. For the strip, the spectral width is

FIG. 6. �Color online� Photographs of diffrac-

tion patterns on the screen for the �2̄11� incidence
of monochromatic light with the wavelengths �
=633, 578, 515, and 488 nm and the respective
registration angles ����.

FIG. 7. �a�, �b� Diffraction spectra registered at various angles

�� for white light incident on the sample along the �2̄11� direction.
�c� The spectral angular dependence of the light intensity at the
scattering peaks shown in �a� and �b�: circles and dashed line—
experimental data; solid line—calculations. The insert shows the

geometry of light scattering by two sets of �11̄1̄� planes in the fcc-I
and fcc-II lattices of a twinned fcc structure.
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about 150 nm and the angular width is �20°. The angular
dispersion agrees well with Eq. �29�, which yields the dis-
persion relation �����= �D�3�0 /2��cos ��+1� for Q 
 �2̄11�,
indicating that the Bragg wavelength � decreases with in-
creasing ����. Our sample with D�270 nm reflected red
light into the back hemisphere at a small angle ���→0�,
with the wavelength of the strictly backscattered light ���
=0� being ��0�=D�3�0=650 nm.

Let us compare the experimental angular dependence of
the white light diffraction intensity and the results derived
from the scattering theory presented in Sec. II D, with refer-
ence to randomly packed hcp layers. In addition to the ex-
perimental diffraction intensity, Fig. 7�c� shows the relation-
ship between the normalized averaged structure factor �S��
given in Fig. 2�b� and the registration angle ��, which pro-
vides the best fit with the experiment. It is clear from Fig. 7
that the white light pattern has two well-defined intensity
peaks at ��� ±40° when the beam is incident along the

�2̄11� direction, with the absolute maximum at ��570 nm.
These values fit perfectly well the Bragg values of ����
=39° and �B=565 nm for the averaged structure factor
maxima. The theoretical normalized �S�� curve in Fig. 7�c�
was plotted for the fcc packing probability p=0.8.

Thus, the analysis of the angular dependence of the dif-

fraction intensity �the structure factor �S��� in the Q 
 �2̄11�
geometry, which we have made in terms of the theory devel-
oped in Sec. II D, has provided the fcc packing probability
p=0.8 to describe the interlayer disorder in the samples we
studied. On the other hand, the close agreement between the
theoretical dependences �S�� at p=0.8 and �S�

I +S�
II � /L at

L=10, presented in Fig. 3�b�, means that the characteristic
number of hcp layers in the fcc-I and fcc-II domains in our

opal samples is L̄�10. This conclusion is supported by our
calculations of the average fcc domain length, made using
the theoretical distribution function of hcp layers over do-
mains of different lengths. As for a detailed analysis of ran-
dom fcc twins in opals, it is a probabilistic problem to be
treated elsewhere.

B. Diffraction in the Q ¸ †1̄10‡ geometry

Consider light diffraction in opals when the incident beam
propagates along another highly symmetric direction in the

�111� growth plane, i.e., along chains of a-SiO2 spheres �the

Q 
 �1̄10� geometry, the  -K direction�, Fig. 5. For the refer-
ence fcc-I lattice, the condition for the diffraction in the back

hemisphere at ��hkl�
�h�k�l��

�135° is valid for two sets of �111�

planes: �11̄1� and �11̄1̄�. For these planes the angles ��hkl�
�h�k�l��

are identical: �
�1̄10�

�11̄1�
=�

�1̄10�

�11̄1̄�
=144°40�. The contribution to

the diffraction from the �1̄11̄� and �1̄11� planes of the fcc-II
structures is similar. Therefore, there should be four diffrac-
tion spots due to the diffraction from the �111� planes of the

fcc-I and fcc-II domains in the Q 
 �1̄10� geometry. In the
opals with the a-SiO2 sphere diameter D�270 nm, the
Bragg condition is satisfied at �B�500 nm.

Indeed, the Q 
 �1̄10� experiments showed four spots at
certain � values, which were located at the vertices of a
rectangle with two sides parallel to the �111� axis. The four-
spot pattern from the samples with D�270 nm is clearly
visible when monochromatic light has �=515 nm, as shown
in Fig. 8�a�. But at �=578 and 633 nm, there is no four-spot
pattern �Figs. 8�b� and 8�c�� because the � values differ much
from the Bragg value, an issue to be discussed later.

C. General features of Q ¸ „111… diffraction

Here we will analyze diffraction patterns of monochro-
matic light incident on a sample with the wave vector

Q 
 �111� making different angles � with the �2̄11� direction
in the �111� plane �Fig. 1�b��. This experiment was made by
rotating the sample around its �111� growth axis, as shown in
Fig. 4. Since the immersion liquid had a dielectric permittiv-
ity close to that of opal �see Sec. III A�, the stray scattering
from the rough surface and specular reflection due to the
presence of a background dielectric permittivity were consid-
erably reduced. As a result, the diffraction patterns were
practically independent of the sample shape and did not
change while the beam scanned the surface of a pretreated
high quality sample, in which the orientation of the fcc crys-
tallographic axes were fixed with respect to the incident
beam. The patterns changed only with the sample rotation
angle −� relative to the wave vector Q in the �111� plane of
hcp layers �Fig. 1�b��. Since the vessel �5� containing the

FIG. 8. �Color online� Ob-
served transformation from two-
to four-spot diffraction patterns in
varying the sample rotation angle

� from �=0 �the Q 
 �2̄11� inci-

dence� to �=30° ��1̄01� inci-
dence�. The patterns were regis-
tered in monochromatic light at
the following wavelengths:
515 nm �a�, 578 nm �b�, and
633 nm �c�. The sample was ori-
ented so that the growth axis �111�
is normal to the incident beam.

LIGHT DIFFRACTION FROM OPAL-BASED PHOTONIC¼ PHYSICAL REVIEW B 73, 205118 �2006�

205118-11



sample was spherical �Fig. 4�, there was no pattern distortion
because of the refraction of the diffracted light at the liquid-
wall-air interfaces.

1. Pattern evolution during the sample rotation

Consider first the patterns obtained in monochromatic
light with �=515 nm �Fig. 8�a��. We have shown in Secs.
V A and V B that there are two spots located on the screen
along the �111� growth axis of a twinned fcc structure in the

Q 
 �2̄11� geometry at �=0. However, the number of spots

increases to four in the Q 
 �1̄10� geometry with �=−30°. As

the sample is rotated around its �111� axis from the �1̄10�
incidence direction to the �2̄11� one, we observe a continu-
ous transformation from a four-spot to a two-spot pattern.

When the sample is rotated through 30° from �2̄11� to �1̄01�,
the two-spot pattern changes to the four-spot one in the re-
verse order. Then this transformation is repeated periodically
with each 60° rotation. It is essential that a perfect fcc lattice
has the symmetry axis C3 
 �111� seen in Fig. 1�b�, so that the
patterns of a monodomain lattice should be repeated every
time the rotation angle appears to be multiple to 120°.

The way the diffraction patterns evolve with the sample

rotation around the �111� axis from �2̄11� to �1̄01� is strongly
dependent on the light wavelength. If the incident beam

propagates along the �2̄11� direction, two beam-symmetric
spots are observed at all of the above wavelengths. At �
=515 nm, the diffraction spots are observed in the angle
range −30° !�!30°. At �=578 nm, there are spots only at
−20° ���20° �Fig. 8�b��, and there is no four-spot pattern.
Finally, when the incident light has �=633 nm, two spots are
observed in a still smaller range of the rotation angle,
−10° ���10° �Fig. 8�c��.

In order to explain the observed effects of appearance,
displacement and quenching of the diffraction spots with
changing rotation angle �, let us turn to Eqs. �26�–�28� for
Q 
 �111� at 
=0. If we divide the scattering vector q=q


+q� into the in-plane q
 
 �111� and perpendicular q� com-
ponents, the former can be derived from Eqs. �26�–�28� as

sin 
� cos �� = −
2�

�3
�m1 cos�� −

�

6
� + m2 sin �� ,

1 + cos 
� =
2�

�3
�m1 sin�� −

�

6
� − m2 cos �� . �40�

Consistent with the two equations is the normal component

q�/�k0
��0� = sin 
� sin ��, �41�

defined by the 3D packing of the hcp layers. Formally, Eqs.

�40� coinside with the equation q
 =m1b̂1
0+m2b̂2

0 for the in-
layer Bragg diffraction with the wave vectors Q 
 �111� 
Q�

by a single hcp layer, whose reciprocal lattice vectors b̂1
0 and

b̂2
0 are defined by Eq. �A3� in the Appendix. For this reason,

we first analyze the Bragg diffraction within the model of a
single hcp layer.

2. Diffraction from a single layer

For the reference fcc structure, the diffraction equations

�40� at Q 
 �2̄11� ��=0� for the pair of indices m1=0, m2

=−1 give the solutions

��2̄11����� =
a�3�0

2
�1 + cos ���; �1� = �/2, �2� = 3�/2,

�42�

written in terms of the experimental registration angle
−90°����90°, which is ��=−
��0 at �2�=3� /2 and 0
���=
� at �1�=� /2.37 The solution �42� is designated by

the point �01̄� in the 2D Ewald scheme shown in Fig. 9�a� for

a hcp layer with the reciprocal lattice vectors b̂1
0 and b̂2

0 from
Eq. �A3�. It follows from Eq. �42� that the diffracted beam of

white light with Q 
 �2̄11� should give an iridescent strip on
the screen, as shown by the dashed line A in Fig. 10. The
wavelengths are dispersed in �� symmetrically from the
screen center up �along the ray �1�=� /2� and down �along
the ray �2�=3� /2�, following the Bragg condition �42�.

FIG. 9. The Ewald construc-
tions for diffraction from a single
hcp layer for the incidence geom-

etries Q 
 �2̄11� �a� and Q 
 �1̄10�
�b� with the light wave vectors re-
lated to the reference fcc lattice.

The basis vectors b̂1
0 and b̂2

0 of the
reciprocal lattice are calculated
from Eq. �A3�. The pair �m1m2� of
site indices specify a diffraction
reflex.
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To compare, for Q 
 �1̄10� ��=−30° �, Eqs. �40� for the
diffraction reflex with m1=−1, m2=0 and m1=0, m2=−1 re-
sult in sin 
� cos ��= ±� /�3 and 1+cos 
�=�. Here the

signs " correspond, respectively, to the points �1̄0� and �01̄�
in the Ewald scheme in Fig. 9�b�. The solutions of the related
equations

��1̄10����� = a��0�1 + cos ���, cos �� =
1
�3

cot
��

2
,

�43�

exist only at 60° � �����90°. At ����min=60°, Eq. �43�
yields �1�=0 and �2�=� for the above reflexes �1̄0� and �01̄�

registered at the wavelength �max
�1̄10�=3a��0 /2. Above ����min,

the solution �1�=0 splits into �̄� and 2�− �̄�, while �2�=�
splits into �#�̄� with �̄�=arccos�3−1/2 cot����� /2��. At
����→90°, the four solutions �reflexes� go to asymptotes

with �̄��90° �=arccos�1/�3��54°45� and ��1̄10�→a��0.

The calculation shows that the Q 
 �1̄10� diffracted beam of
white light should produce the iridescent arcs B and B� on
the screen. These are shown by dashed lines in Fig. 10, the
colors �wavelengths� change symmetrically away from the
screen center, in accordance with Eq. �43�. It follows from
Eqs. �40� that the arcs B ��=−30° � and B� ��=30° � and the
strip A ��=0� are reproduced when the angle � rotates
through 60° with the reflex indices �m1m2�, given by the
Ewald scheme �Fig. 9�. These color lines can be observed for
a single hcp layer because its structure factor �23� at L=1 is
S��q�=1, and any of the vector components �41� is allowed
because of b3

0=0 according to Eq. �A3�. When a restriction is
imposed on the vector q�, these lines �A,B,B�� serve as a
basis to form diffraction spots.

When a single hcp layer is illuminated by monochromatic
light, the color spots with the given wavelength � are ex-
pected to be selected from the strip A and the arcs B and B�.

In the reference Q 
 �2̄11� geometry, for example, the above
two spots �1����� and �2����� appear on the screen at the
angle �� defined by Eq. �42�. When the rotation angle �
changes continuously, say, in the range −30° !�!30°, the
two colored spots change their positions on the screen, mov-
ing along certain lines. The spot trajectories calculated at the
laser wavelengths �=488, 515, 578, and 633 nm used in our
experiments are shown in Fig. 10 in the coordinates on a
plane screen �X ,Y�=H�cos �� , sin ���tan ��, where H is the
sample-to-screen distance. It is seen that some trajectories
��=488, 515 nm� intersect the strip and arcs, the latter inter-

sections indicating the appearance of four spots at Q 
 �1̄10�
��=−30° �. The trajectories of the spots at �=578 and
633 nm have no common points with the arcs B and B�, i.e.,

there is no diffraction in the Q 
 �1̄10� and Q 
 �1̄01� geom-

etries. When the rotation angle varies from �=0 �Q 
 �2̄11�
incidence� to �= +30°, Q 
 �1̄01�, Fig. 1�b�, �or �=−30°,

Q 
 �1̄10�� the 633 nm spots disappear at a much smaller de-
viation of � than the 578 nm spots.

We have mentioned that the color lines A, B, and B� were
observed in our experiments, but the intensity distribution
measured along the lines was found to be essential in a rather
narrow wavelength range. It is easy to see that the displace-
ments of diffraction spots during the sample rotation �Fig. 8�
fit well the trajectories of the points calculated for a single
layer at a given wavelength �Fig. 10�. Thus, the results ob-
tained within the diffraction theory describe well the whole
combination of diffraction patterns arising at the variation of
the light wavelength and the sample rotation angle.

D. Long-wavelength diffraction edges

For the Bragg wavelength of diffraction reflex �m�
= �m1 ,m2 ,m3� in a 3D lattice, Eqs. �24� with �Q��= �Q�
=��0� /c yield

��hkl��m,
� = 4���0�	
i,j

mimj�b̂i · b̂ j��−1/2
cos 
 , �44�

where �−
 is the angle between the vectors Q and b from
Eq. �24�. Note that the Miller indices �hkl� are expressed
thought the above reflex indices �m1 ,m2 ,m3� using Eq. �A4�.
The above experimental data have revealed a maximum
value of diffraction wavelength for each incidence geometry
defined by the direction Q 
 �hkl�. Given Q 
 �hkl�, Eq. �44�
reveals a maximum value of �max

�hkl� �the long-wavelength edge
for a given direction� that is achieved depending on 
 at a
smallest allowed reflex index �m�. The largest value of �max

�hkl�

over the all crystallographic directions is the absolute long-
wavelength edge, above which light cannot diffract in the
crystal.

For opals, in the Q 
 �2̄11� geometry Eq. �44� gives

�max
�2̄11�=a�3�0 for the �m�= �0, 1̄ ,0� reflex and the other re-

flexes related to the same circle in the 2D Ewald scheme in

FIG. 10. �Color online� The on-screen trajectories of monochro-
matic spots �at 488, 515, 578, and 633 nm wavelengths� in diffrac-
tion from the hcp layer �solid lines�, calculated as a function of the
layer rotation angle � around the layer normal in the range −30°
���30°, Fig. 1�b�. Dashed lines present the theoretical strip A at

�=0 �Q 
 �2̄11� incidence relative to the reference fcc lattice�, the

arc B at �=−30° �Q 
 �1̄10��, and the arc B� at �=30° �Q 
 �1̄01��.
The on-screen coordinates X and Y are calculated using Eqs. �40�
for the diffraction into the back hemisphere with a��0=375 nm and
the sample-to-screen distance H was 6 cm in our experiment.
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Fig. 9�a�. At Q 
 �1̄10�, Eq. �44� and Fig. 9�b� provide �max
�1̄10�

=3a��0 /2, so �max
�2̄11� /�max

�1̄10�=2�3/3�1. The calculated values

�max
�2̄11�=650 nm and �max

�1̄10�=560 nm satisfy the above expres-
sions at a��0�375 nm. Turning again to the experimental
patterns in Fig. 8, we conclude that the threshold quenching
of monochromatic diffraction spots with the changing angle
occurs when the related long-wavelength edge becomes
shorter than the incident �. At �=515 nm, diffraction spots

are actually observed for both the Q 
 �2̄11� and Q 
 �1̄10�
incidence �Fig. 8�a��, in agreement with the condition �

��max
�1̄10���max

�2̄11�, allowing both diffraction events. Figures

8�b� and 8�c� shows diffraction patterns for Q 
 �2̄11� at �

=578 nm and �=633 nm with �max
�1̄10�����max

�2̄11�, and no

spots are observed for Q 
 �1̄10�. This is because both � val-
ues exceed the long-wavelength edge for this direction and
light is not diffracted by the sample.

In the �i� geometry, the long wavelength of the diffracted

light, �max
�1̄1̄1̄�=2a�2�0 /3, is derived from Eq. �32� in the

Q 
 �1̄1̄1̄� geometry at �=�3/2, 
=0, m3=1, corresponding
to the �111� diffraction in the fcc lattice. The long-

wavelength edge �max
�1̄1̄1̄�=610 nm measured at 
=0 for our

samples is in good agreement with the theoretical value. A

comparison of the long-wavelength edges �max
�1̄1̄1̄���max

�2̄11� mea-

sured in the �i� and �ii� geometries have shown that �max
�2̄11�

=650 nm is the absolute long-wavelength edge for our
samples. In the range 610���650 nm, the diffraction from
a single layer or a few layers studied in this work was found
to be unaffected by the other diffraction processes, including
the commonly studied diffraction from the �111� planes.

Note that a pattern with two spots registered in the �2̄11�

geometry at ���max
�2̄11� transforms to a one-spot pattern at �

=�max
�2̄11�. A four-spot pattern registered in the �1̄10� geometry

at ���max
�1̄10� changes to a two-spot pattern at �=�max

�1̄10�. This

effect was observed in the �1̄10� geometry in monochromatic
laser light with �=578 nm, which is close to the calculated

red diffraction edge �max
�1̄10��560 nm for this direction. The

theory does not predict four spots at this wavelength, while

the �1̄10� pattern seems to have two diffuse spots along the
vertical axis �Fig. 8�b��.

E. Diffraction in the Q ¸ †1̄10‡ geometry as a probe for
sample quality

Next, we discuss the results of the diffraction experiments
that allowed an estimation of the degree of structural disor-
der of opals and an identification of the best-ordered regions
on the sample suitable for precise measurements. The most
informative incidence geometry appeared to be that with

Q 
 �1̄10�. Figure 11 shows the diffraction patterns registered
in this geometry on illumination with monochromatic light.
It is found that some small regions on the sample produce
only two spots each, as shown in Figs. 11�a� and 11�b�. The

two pairs of spots are seen to be mirror symmetric relative to
the �111� direction. Careful measurements showed that actu-
ally each diffraction pattern contained, in addition to a pair
of intense spots, a pair of mirror symmetric spots of much
lower intensity, such that they are visually undetectable in
Figs. 11�a� and 11�b�. The atomic-force microscopic and op-
tical spectroscopic data demonstrated that the small areas
producing this type of pattern possessed the most perfect

structure.15 However, the typical Q 
 �1̄10� patterns presented
in Fig. 11�c� consisted of four visually observed spots.

We offer the following interpretation of the diffraction
patters obtained in our experiments. Opals may possess two
types of fcc structure representing sequences of ¼AB-
CABC¼ layers �fcc-I� and ¼CBACB¼ layers �fcc-II� illus-
trated in Fig. 2. In Bragg diffraction, a fcc-I structure would
give the type of pattern shown in Fig. 11�a�, while a fcc-II
structure would produce a mirror symmetric pattern, like the

one in Fig. 11�b�. Therefore, the Q 
 �1̄10� diffraction from a
perfect fcc lattice �a monodomain opal sample� cannot pro-
duce the pattern with four spots shown in Fig. 11�c�. But this
pattern can be obtained as a superposition of the patterns
presented in Figs. 11�a� and 11�b�. This indicates that the
patterns in Fig. 11�c� are due to the coexistence of the fcc-I
and fcc-II lattices alternating along the �111� growth axis.
These adjacent domains having a common interface form a
twinned fcc structure �such opal twins have been identified
by electron microscopy31�. If the beam width was larger than
the characteristic size of the fcc-I and fcc-II domains, the
diffraction from the twinned structure produced four spots,
one pair of spots from the fcc-I and the other from the fcc-II
structure. When the domain size was larger than the beam
width, the diffraction pattern contained only one pair of spots

FIG. 11. �Color online� Diffraction patterns from various sample

regions in the Q 
 �1̄10� incidence geometry at �=515 nm: �a�, �b�
best-ordered monodomains of the fcc-I and fcc-II lattices; �c� a
slightly disordered region of fcc twins; �d� a strongly disordered
region made up of numerous microcrystallites with their growth
axes oriented randomly relative to one another.

BARYSHEV et al. PHYSICAL REVIEW B 73, 205118 �2006�

205118-14



typical of a single fcc structure, Fig. 11�a� and 11�b�.
Turn now to the discussion of diffraction from the most

strongly disordered opal samples. The results of structural
and optical studies show that �111� hcp layers can form not
only a twinned fcc structure with embedded 3D hcp domains
but also a structure made up of numerous microcrystallites
with their growth axes oriented randomly relative to one
another.15 The microcrystallites may have both the fcc and
hcp lattice, as well as the structure with 1D disorder of alter-
nating closely packed layers. The diffraction pattern for a
sample region with maximum disorder is illustrated in Fig.
11�d�. It is similar to the Debye pattern but its diffracted light
cone is in the backscattering geometry, and the diffraction is
due only to one set of �111� planes. Bearing in mind the
orientation of fss domains mentioned previously, we can in-
terpret this pattern in a way similar to that of x-ray diffrac-
tion patterns of powders: a mixture of numerous microcrys-
tallites with a random orientation of the growth axes may
always contain crystallites obeying the Bragg condition at a
given wavelength �.1 Monochromatic light beams diffracted
by such crystallites produce a cone with the angle �� at the
vertex,37 making a circle on a flat screen. Therefore, the dif-
fraction spots from a strongly disordered opal sample de-
grade to form a ring.

We have shown that diffraction patterns obtained by illu-
mination of synthetic opals with monochromatic light allow
a visual evaluation of the degree of structural perfection of
the sample under study. Thus, one can test the initial sample
for regions with the best structure. For completeness, it
should be noted that more opal-like and colloidal materials
of various structure and perfection become technologically
available.13,44 In the same time, studied theoretically and ex-
perimentally are the optical spectra of disordered photonic
crystals, influenced by polydispersity,45 stacking faults,32,46

the disorder-induced coherent multiple-scattering effects,47

etc. All this means that for opal-like structures a field exists
for extending the above ideas on the Bragg diffraction.

VI. CONCLUSION

Our experimental and theoretical study of the Bragg dif-
fraction of light in synthetic opals has shown that opal-based
photonic crystals manifested itself as 3D diffraction gratings
to visible light. By special choosing of the a-SiO2 spheres
sizes, we have visualized the principal Bragg diffraction fea-
tures such as angle and wavelength dependencies of 3D dif-
fraction patterns, the existence of a long-wavelength edge,
the interlayer and orientation disorder effects in diffraction
patterns. It is demonstrated that the scattering of monochro-
matic light by the crystal lattice of high quality opals appears
on the screen as symmetric sets of diffraction spots. The
presence of the bright spots due to the Bragg reflection of
visible light by the �111� planes of a twinned fcc structure is
specific of the diffraction patterns. We also analyzed the evo-
lution of the patterns from a highly ordered samples to ones
with a twinned fcc lattice and further to a strongly disordered
samples made up of disoriented microcrystallites. A light dif-

fraction theory is developed for opal-like structures with a
random alternation of the closely packed growth layers.
Within this theory, we have offered an interpretation of the
observed spectral angular characteristics and found the long-
wavelength diffraction edge and its variation with the light
incidence relative to the fcc lattice.

An essential structural feature of ordered opals is that the
hcp growth layers of closely packed silica spheres possess a
long-range 2D ordering at macroscopic distances. The 1D
interlayer disorder along the growth axis allowed the obser-
vation of a very informative and diverse diffraction patterns
possessing characteristics typical of both 2D and 3D struc-
tures. This type of pattern is interpreted in terms of the sug-
gested theory and is shown to be consistent with the charac-
teristic size of random domains in the fcc lattice of an opal
twin structure.
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APPENDIX:

We use the following unit translations:

â1 =
a

2
�− x̂�3 + ẑ�, â2 =

a

2
�x̂�3 + ẑ�,

â3 =
a

2� 1
�3

x̂ +
2

�
ŷ + ẑ� , �A1�

expressed in the “in-crystal” coordinate system shown in Fig.
1�b�. The vectors â1 and â2 define the lattice of a single hcp
layer with the intersite distance a. In general, since the vector
â3 depends on the interlayer spacing A through the parameter
�=a /A, it refers to a single hcp layer at �→0 and to a fcc
lattice at �=�max=�3/2. Equations �A1� yields the following
reciprocal lattice vectors:

b̂1 =
2�

a
�− x̂

1
�3

+ ẑ −
1

3
�ŷ�,

b̂2 =
2�

a
�x̂

1
�3

+ ẑ −
2

3
�ŷ�, b̂3 =

2�

a
�ŷ . �A2�

In the limit �→0 of a single hcp layer, the vectors �A2�
become
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b̂1
0 =

2�

a
�− x̂

1
�3

+ ẑ�, b̂2
0 =

2�

a
�x̂

1
�3

+ ẑ�, b̂3
0 = 0.

�A3�

In analyzing Eq. �24�, the vectors entering both Eqs. �A1�
and �A2� are expressed through the unit vectors ê� using the
Euler angles. Given the indices mi in Eq. �24� for the refer-
ence fcc-I lattice with �A2� and �=�3/2, the Miller indices

�hkl� defined in the reference coordinate system, whose unit
vectors are parallel to �100�, �010�, and �001�, are

h:k:l = �− m1 − 2m2 + m3�:�m1 + m3�:�− m1 + m3� .

�A4�

When treating the diffraction for the complementary �fcc-II�
lattice, one should take all the vectors �A1�–�A3� with the
opposite signs.36
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