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We report a systematic study of transport properties of nanosytems with charge density waves. We demon-
strate how the presence of density waves modifies the current-voltage characteristics. On the other hand, we
show that the density waves themselves are strongly affected by the applied voltage. This self-consistent
problem is solved within the formalism of the nonequilibrium Green’s functions. The conventional charge
density waves occur only for specific, periodically distributed ranges of the voltage. Apart from the low-voltage
regime, they are incommensurate and the corresponding wave vectors decrease discontinuously when the
voltage increases.
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I. INTRODUCTION

Transport properties of nanosystems are very different
from those of macroscopic conductors. In particular, nonlin-
ear or even irregular current-voltage characteristics seem to
be intrinsic properties of these systems. Although a great
number of theoretical and experimental results concern quan-
tum dots, there is an increasing interest in the transport prop-
erties of nanowires and single molecules.1–4 The main reason
for such a tendency is their possible application in future
electronic devices. Theoretical analysis of the transport phe-
nomena is difficult due to the coupling between the nanosys-
tem and macroscopic leads. As a consequence, Coulomb cor-
relations are usually taken into account only approximately.

The spatial confinement that originates from the geometry
of the nanosystem may be responsible for inhomogeneity of
the charge distribution. Additionally, one may expect that
phenomena typical for low-dimensional correlated systems,
e.g., charge density waves �CDWs�, occur as well. Most of
the research on the conductance of low-dimensional systems
with CDW correlations focuses on sliding density waves.5–7

This transport mechanism sets in for incommensurate CDWs
when the applied voltage exceeds the depinning threshold.
For finite incommensurate CDW systems it has been shown
that the transport properties are controlled predominantly by
the leads.8 It has also been shown that the conductance of a
commensurate CDW system is very different from that of an
incommensurate one. The theoretical description of incom-
mensurate CDWs is similar to the theory of the Luttinger
liquid. The resulting temperature dependence of the conduc-
tance is much simpler than that of commensurate CDWs.9

These results lead straightforwardly to a question about the
mechanisms that determine the commensurability of CDWs
in meso- and nanoscales, e.g, whether commensurability of
the charge distribution depends on the bias voltage and the
geometry of the nanosystem. Recent self-consistent investi-
gations of the molecular chain show that the charge distribu-
tion strongly depends on the applied voltage.10,11 This effect
has already been observed in molecular devices.1,12 In anal-
ogy to this result, one may expect that the applied voltage
changes also the charge distribution in the CDW system,
which affects the current-voltage characteristic. The current
itself can modify the charge distribution as well. As a result,

we may obtain a system, where small changes of the applied
voltage can, through the modification of the charge distribu-
tion, drive the system between insulating and metallic states.
It is possible, that this tempting feature of the CDW nano-
systems could be applied in switching devices.

In the present paper we use the formalism of nonequilib-
rium Green’s functions to analyze the charge distribution in a
nanosystem coupled to leads. We demonstrate that the ap-
plied voltage can induce a transition between commensurate
and incommensurate CDWs. We analyze how this transition
depends on the geometry of the nanosystem. The transport
properties determined for conventional CDWs are compared
with the results obtained for systems with unconventional
density waves.13 In particular, we analyze density wave
states with d-wave symmetry �DDWs� that have been inten-
sively investigated as a possible scenario for the pseudogap
phase in high-temperature superconductors.14 Such an order
has also been proposed as the low-temperature phase of
some quasi-two-dimensional organic conductors.16

II. MODEL AND METHOD

The Hamiltonian of the system under consideration con-
sists of three parts which describe the nanosystem itself,
macroscopic electrodes and the coupling between the elec-
trodes and the nanosystem: H=Hnano+Hel+Hnano-el. The
electrodes are modeled by a lattice gas of noninteracting
electrons with a wide energy band: Hel=�k,�,���k,�

−���ck,�,�
† ck,�,�, where � denotes the chemical potential and

�� �L ,R� indicates the left or right electrode. ck,�,�
† creates

an electron with momentum k and spin � in the electrode �.
At the mean-field level the Hamiltonian of the nanosystem is
given by

Hnano = �
�ij��

�− tij + �− 1�iUDDWWij	ci�
† cj�

− UCDW�
i�

�ni−�� −

1

2
�ci�

† ci�, �1�

where ci�
† creates an electron with spin � at site i of the

nanosystem, ni�=ci�
† ci�, and Wij = �−1�i�ci�

† cj�−cj�
† ci�� /2.
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The potentials UCDW and UDDW describe the strengths of
interactions that are responsible for the formation of conven-
tional and unconventional charge density waves,
respectively.15,17 The coupling between the nanosystem and
the electrodes is described by

Hnano-el = �
k,i,�,�

�gk,i,�ck,�,�
† ci� + H.c.� . �2�

A few remarks concerning the validity of the mean-field ap-
proach are needed at this stage. It is generally believed that
the mean-field approximation is inappropriate for low-
dimensional systems. However, it has been argued that this
approximation may be applicable at low temperatures for
weak interaction and strong coupling between the nanosys-
tem and electrodes �see Ref. 10 and the discussion therein�.
Therefore, we restrict our considerations to the case
UCDW�DDW��4t and assume a relatively strong coupling be-
tween the electrodes and the nanosystem. Additionally, the
recent investigations of nanorings with CDW correlations
have shown that the mean-field results qualitatively agree
with the exact ones18 �although the quantitative differences
remain significant�. These results concern the properties of
persistent currents in a system where the CDW is pinned by
impurities. In the present case, the coupling to electrodes
should play a similar role in stabilizing the CDW. Conse-
quently, we expect that the mean-field analysis provides cor-
rect qualitative results for the transport currents in a CDW
system.

The thermal averages that occur in the Hamiltonian �1�
are calculated self-consistently using the lesser Keldysh
Green’s functions

�ci�
† cj�� =

1

2�i
� d�Gj�,i�

� ��� . �3�

After obtaining convergency, one can calculate the current
flowing through the nanosystem,

J =
2e

h
� d��fL��� − fR���	Tr�	̂L���Ĝr���	̂R���Ĝa���	 ,

�4�

where f���� is the Fermi function of electrons in the elec-

trode �. The elements of the matrix 	̂L�R� are given by

�	̂����	ij = 2��
k

gk,i,�
* gk,j,�
�� − �k,�� , �5�

whereas the matrices Ĝr��� and Ĝa��� consist of retarded
and advanced Keldysh Green’s functions, respectively. For
the sake of brevity we do not present the complete set of
equations that determine the Green’s functions for the mean-
field Hamiltonian. Instead we refer to Ref. 10 for the details.

III. CONVENTIONAL CHARGE DENSITY WAVES

We start our investigations with a one-dimensional �1D�
nanowire taking into account only the nearest-neighbor hop-
ping. The ends of the nanowire are connected to the macro-

scopic leads. The only nonvanishing elements of the 	̂’s are
assumed to be frequency independent �	̂L���	11= �	̂R���	NN
=	, where the sites in the chain are enumerated from 1 to N.
The difference between the lead’s potentials gives the volt-
age applied to the nanosystem, eV=�L−�R.

In a 1D system a d density wave cannot occur and, there-
fore, in this case we restrict ourselves only to the conven-
tional charge density wave �UDDW=0�. Figure 1 shows
current-voltage �I-V� characteristics of 20- and 40-atom
chains coupled to the macroscopic leads. Here, we compare
the characteristics obtained for UCDW=1.5t with the results
for a noninteracting system �UCDW=0�.

In the uncorrelated case the I-V characteristic consists of a
series of plateaus smoothly connected by steep sections. In
the following, we refer to these plateaus as original plateaus.
In the presence of the CDW interaction additional smaller
plateaus occur instead of these steep sections and the result-
ing I-V characteristic changes from a relatively smooth one
to a step function. Within the original plateaus the character-
istic remains almost unchanged. These results clearly show
that the CDW correlations modify the I-V characteristic only
for some particular values of V. It occurs as a result of a
strong suppression of the charge density waves by the ap-
plied voltage in the regions of the original plateaus. In order
to confirm this statement we have analyzed the spatial distri-
bution of electrons over the nanowire. Figure 2 shows the
occupation number as a function of position for a 20-atom
chain at various voltages. We have found that within the
original plateaus electrons are distributed almost uniformly
over the system. Contrary to this, in the regions where the
additional plateaus occur the electron density is strongly in-
homogeneous and can be described as �in most cases incom-
mensurate� charge density waves, i.e., �ni�� can be fitted very
accurately by n0+A cos�Q ·Ri+��. It turns out that the CDW
wave vector Q strongly depends on V. For V=0 the CDW is
commensurate with the lattice �
Q
=��. The same holds true
for a small voltage. However, when the voltage increases, the
CDW wavelength increases as well. Figure 3 shows how the
density wave vector Q and and the density wave amplitude A
change with the applied voltage. Similarly to the I-V charac-
teristic Q�V� is a step function, whereas A�V� is approxi-
mately a two-value periodic function. Comparing Figs. 1 and
3 one can see that each of the additional plateaus in the
I-V characteristic corresponds to a different value of the
CDW wave vector. The overall behavior of the I-V and Q�V�
characteristics obtained for the 20-atom chain is similar to
those obtained for the 40-atom wire. The main difference is
related to the number and length of the plateaus; namely, the
number of allowed values of Q increases with increasing
length of the nanowire. Moreover, the ratio of the lengths of
the original and CDW-induced plateaus decreases when the
length of the nanowire increases. It suggests that for a suffi-
ciently long nanowire Q should become a continuously de-
creasing function of V. Comparison of Figs. 3�a� and 3�b�
illustrates this tendency. In an isolated 1D system the CDW
wave vector can be changed by the modification of the Fermi
wave vector �
Q
=2kF�, which in turn is a single-valued
function of the occupation number. In the present case Q can
be changed independently of the concentration of electrons
by means of the applied voltage.
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In order to get insight into the physical origin of the above
results, one can consider an isolated chain. In this case, the
onset of the charge density waves is determined by the CDW
susceptibility, defined as a retarded equilibrium Green’s
function:

FIG. 1. Current-voltage characteristics of one-dimensional chains containing 20 ��a� and �b�	 and 40 �c� atoms for the temperature of the
leads kBT=0.01t. �a� and �c� correspond to 	=0.1t and �b� to 	=0.3t. Continuous and dashed lines show results obtained for UCDW=0 and
UCDW=1.5t, respectively. We have denoted I0=2et /h and V0= t /e, where t is the nearest-neighbor hopping integral �Ref. 19�. Arrows labeled
as A, B, and C indicate voltages for which the charge distributions are shown in Fig. 2.

FIG. 2. �Color online� Average occupation �ni�� obtained for a
20-atom chain with UCDW=1.5t The voltage is indicated explicitly
in the figure, whereas the remaining model parameters are the same
as in Fig. 1. Results have been fitted by the function �ni��=n0

+A cos�Q ·Ri+��. For clarity of the figure the curves are offset.

FIG. 3. Voltage dependence of the density wave amplitude A
and the wave vector Q for chains containing 20 �upper panel� and
40 �lower panel� atoms. Model parameters are the same as in Fig. 1.
Arrows labeled as A, B, and C denote cases presented in Fig. 2.

TRANSPORT PROPERTIES OF NANOSYSTEMS WITH¼ PHYSICAL REVIEW B 73, 205103 �2006�

205103-3



��Q,�� = − ��
̂�Q�

̂†�Q��� , �6�

where


̂�Q� =
1

N
�
k,�

ck+Q,�
† ck,�, �7�

and ck,�
† creates an electron with momentum k and spin �. In

the static case, the CDW susceptibility is given by the
Lindhard function:

��Q,� = 0� =
2

N
�
k

f��k+Q� − f��k�
�k+Q − �k

, �8�

where �k=2t cos�
k
�−� and f��� is the Fermi distribution
function. Figure 4 shows ��Q ,�=0� as a function of the
chemical potential � for a finite system. The maxima of the
CDW susceptibility occur for such Q’s that both the energies
in the denominator in Eq. �8� vanish, i.e., for �k=0 and Q
=2k. In the case of an infinite system k changes continu-
ously and the first equation has a solution for an arbitrary
value of the chemical potential. Then, the maximum of the
CDW susceptibility occurs for Q that satisfies the condition
�=2t cos�
Q
 /2�. On the other hand, for a finite system, k
takes on discrete values and the maxima of the CDW sus-
ceptibility occur only for specific values of �, i.e., when � is
equal to one of the energy levels. This feature is responsible
for the CDW-induced plateaus in the I-V characteristics. In
the case of noninteracting electrons the steps arise due to
resonant tunneling through a multilevel quantum system. The
steep sections occur when the successive energy levels are
taking part in the charge transport. However, simultaneously
the criterion discussed above for the onset of CDW is satis-
fied. As a result, the CDW gap opens and new plateaus occur
in the middle of these steep sections.

But still there is a question concerning the degree of
steepness of the sections that connect the plateaus. It deter-
mines the height of peaks in the differential conductance.
The width of the one-particle energy levels is related to 	.
When the system is weakly coupled to the electrodes the

energy levels are very narrow and the I-V characteristic con-
sists of sharp steps, provided the temperature is low enough.
Increase of 	 smooths out these steps. It holds true both in
the presence and in the absence of CDWs, which can be
inferred from Figs. 1�a� and 1�b�.

In the following we investigate the influence of the trans-
verse dimension of the nanosystem. For that purpose we con-
sider a nanowire of a finite width. In such a case the descrip-
tion of the coupling between the nanosystem and the leads
becomes nontrivial. We assume a simple model in which
leads are described by a two-dimensional �2D� lattice gas
and the hopping between the leads and nanosystem is pos-
sible only perpendicularly to the edge of the nanosystem �see
the inset in Fig. 5�. Then, the nonvanishing elements of the

matrices 	̂L��� and 	̂R��� can be calculated directly from the
Eq. �5�:

�	̂����	ij = 2��
k


g
2
i�
 j� cos�k · Rij�
�� − �k,�� , �9�

where g denotes the hopping amplitude and Rij =Ri−R j.

iR�L� is equal to 1 if the site i is located at the right �left�
edge of the nanosystem and vanishes otherwise.

Figure 5 shows the I-V characteristics for a four-site-wide
and ten-site-long nanosystem calculated for UCDW=2t and 0.
Contrary to the 1D case an important difference between the
correlated and uncorrelated cases is visible only for low volt-
age. We have found that in this case there exists a commen-
surate CDW with the wave vector Q= �� ,��. Increasing of V
leads to a disappearance of the CDW ordering. There exist
minor differences between both the characteristics for larger
values of V. However, they appear irregularly and are much
smaller than in the 1D case. Therefore, the voltage-induced
incommensurate CDW seems to be an intrinsic feature only
of the 1D systems. One may attribute this behavior to general
properties of the density wave systems; namely, in the 2D

FIG. 4. �Color online� CDW susceptibility as a function of the
chemical potential � and the wave vector Q. Lighter regions corre-
spond to larger values of the susceptibility. These results have been
obtained for an isolated 20-atom chain with the nearest-neighbor
hopping and periodic boundary conditions. The solid line shows
�=2t cos�
Q
 /2� �see text for explanation�.

FIG. 5. Current-voltage characteristics of a 10�4 nanosystems
coupled to the leads, as shown in the inset. Continuous and dashed
lines show results obtained for UCDW=0 and 2t, respectively. We

have neglected the energy dependence of 	̂���� and adjusted the

value of the hopping energy g in such a way that �	̂����	ii

=0.1t
i� �see Eq. �5� for the details	.
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case the nesting of the Fermi surface plays a crucial role for
stability of the CDW phase. The CDW wave vector connects
the nested parts of the Fermi surface. For a square lattice
with the nearest-neighbor hopping the Fermi surface is per-
fectly nested only in the half-filled case, which corresponds
to the commensurate Q= �� ,��. Other values of Q do not
correspond to a perfectly nested Fermi surface. Therefore, an
incommensurate CDW in 2D systems is usually less stable
than in 1D cases. We believe that this property is responsible
for the visibly different I-V characteristics of 1D and 2D
systems.

IV. UNCONVENTIONAL CHARGE DENSITY WAVES

In the following we extend our analysis by taking into
account unconventional density waves, where a condensation
of electron-hole pairs with nonzero angular momentum
occurs.13 Such a state, with the angular momentum l=2, has
recently been proposed as an explanation for the pseudogap
phenomena in high-temperature superconductors.14 In con-
trast to conventional density waves the charge is distributed
uniformly over the whole system, but there occur orbital cur-
rents, i.e., the state breaks the time-reversal symmetry. This
difference may be visible in the transport properties because
of the interference between the transport and orbital currents.
Recent developments in the fabrication techniques allow
one to produce nanowires out of high-temperature
superconductors.20 The pseudogap is visible in these sys-
tems. Moreover, a discrete switching noise in the resistance
of the nanowires has been observed in the pseudogap regime
and explained in terms of the formation of the stripe phase. It
suggests that interesting phenomena emerge in high-
temperature superconductors, when one enters the meso- and
nanoscales. One may also expect that these results may con-
tribute to understanding of the pseudogap phenomenon. In
particular, a question arises as to whether the results pre-
sented in Ref. 20 can be explained within the unconventional
density wave scenario of the pseudogap.

In order to investigate this problem within the formalism
introduced above, we have considered a system described by
the Hamiltonian �1� with UCDW=0. Figure 6 shows the re-
sulting current-voltage characteristics obtained for UDDW
=1.6t and 0. They are very similar to those of conventional
2D CDWs for low and sufficiently high voltages. In the first
case, i.e., for low voltage, the energy gap does not allow for
current flow and the system is insulating. In the opposite
case, the applied voltage destroys both conventional and un-
conventional density waves. However, for unconventional
density waves there exists also an intermediate regime,
where the transport current is finite but the I-V characteristic
significantly differs from the results obtained for the uncor-
related system �UDDW=0�. In this regime sharp steps in the
I-V characteristic occur, indicating rapid changes of the or-
bital current distribution. Figure 7 shows the spatial distribu-
tions of the orbital currents 
i at various voltages, where 
i
is given by


i =
1

4
�Wi,i+x̂ + Wi,i−x̂ − Wi,i+ŷ − Wi,i−ŷ� . �10�

For a low voltage 
i is almost independent of the lattice
site i, which indicates the uniform magnitude of the orbital
currents. The sudden drop of 
i at the system edges origi-
nates from the reduced number of neighboring sites �see Eq.
�10�	. Increase of V reduces the magnitude of the orbital
currents. Additionally, this quantity becomes spatially modu-
lated, as can be inferred from Fig. 7. The modulation is
mostly visible in the longitudal direction. It is an almost
periodic modulation, with the period decreasing with in-
creasing V. This behavior is opposite to the previously dis-
cussed 1D conventional CDW, where the period of the
charge modulation increases with V. There exist lines where

i changes sign, which corresponds to reversed circulation of
the orbital currents. The voltage-induced transitions between
various distributions of 
i are accompanied by sharp steps in
the I-V characteristic. Therefore, one could speculate that in
larger systems such transitions may be responsible for the
switching noise in the resistance of the nanowires in the
pseudogap phase,20 i.e., in the phase that could be described
as an unconventional density wave state.14

V. DISCUSSION AND CONCLUDING REMARKS

In order to investigate the transport properties of nanosys-
tems with charge density waves we have applied the formal-
ism of nonequilibrium Keldysh Green’s functions. Both con-
ventional and unconventional states have been considered.
Most of the already published results concern the sliding
CDW, where it is assumed a priori whether the density
waves are commensurate or not. It has previously been
shown that the transport properties of commensurate and in-
commensurate CDW systems are different. On the other
hand, it is known that commensurability of an isolated 1D
CDW system depends on the position of the Fermi level, or
equivalently on the occupation number. In the case of trans-
port through a nanosystem, its properties are determined by
the chemical potentials of the left and right electrodes, which

FIG. 6. Current-voltage characteristics of a 20�6 nanosystem
coupled to the leads, as shown in the inset of Fig. 5. Continuous and
dashed lines show results obtained for UDDW=0 and 1.6t, respec-
tively. The remaining model parameters are the same as described
in the caption of Fig. 5.
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are shifted by the applied voltage. We have shown that in the
case of a 1D CDW system the commensurability changes
with the voltage, whereas the average concentration of elec-
trons remains unchanged. These CDW states occur only for
specific, periodically distributed ranges of the voltage. The
number of the allowed values of the Q vector increases with
increase of the length of the system. Therefore, we expect
that for a sufficiently long nanowire Q should linearly de-
crease with increasing applied voltage. We have shown that
the applied voltage affects also the unconventional density
waves. In particular, it leads to spatial modulation of the
orbital currents, especially in the longitudal direction. It is a
remnant of the voltage-dependent charge modulation that oc-
curs in a 1D system with a conventional CDW. However, in
contrast to the CDW case the period of this modulation de-
creases with increase of V. The difference between the I-V

characteristics obtained for a 2D nanosystem with conven-
tional and unconventional CDWs is attributed to the interfer-
ence between the transport and orbital currents that occurs in
the latter case.

To summarize, we have shown that the properties of
nanosystems with conventional and unconventional density
waves strongly depend on the applied voltage. The discussed
mechanism should be taken into account also in an analysis
based on the sliding CDW mechanism, since the transport
properties depend on the commensurability.
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FIG. 7. �Color online� Spatial distribution of the orbital currents 
i. The voltage is indicated explicitly in the figure, whereas the
remaining model parameters are the same as in Fig. 6.
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