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Electronic transport in an array of quasiparticles in the �=5/2 non-Abelian quantum Hall state
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The Moore-Read Pfaffian �=5/2 quantum Hall state is a p-wave superconductor of composite fermions.
Small deviations from �=5/2 result in the formation of an array of vortices within this superconductor, each
supporting a Majorana zero mode near its core. We consider how tunneling between these cores is reflected in
the electronic response to an electric field of a nonzero wave-vector q and frequency �. We find a mechanism
for dissipative transport at frequencies below the �=5/2 gap, and calculate the q ,� dependence of the
dissipative conductivity. The contributions we find depend exponentially on ��−5/2�−1/2.
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The �=5/2 fractional quantum Hall state is expected to
be characterized by quasiparticles obeying non-Abelian sta-
tistics. There are strong indications that this state is well
described by the Moore-Read Pfaffian wave function,1 which
may be formulated within the composite-fermion theory
�each electron is bound to two flux quanta� as a p-wave
superconductor of composite fermions �CFs� at a zero mag-
netic field. Excitations in this superconductor are vortices
carrying half a flux quantum and an electric charge of e /4,
and fermions created in twos by breaking pairs with an ap-
propriate energy gap.2,3 The Bogoliubov–de Gennes �BdG�
equation describing the fermionic excitations of a two-
dimensional �2D� p-wave superconductor admits zero-energy
solutions in the presence of well-separated vortices, one so-
lution near each vortex’ core; these solutions are Majorana
fermions �, satisfying �†=�. As a consequence, the ground
state is degenerate; for 2N well-separated vortices, the
ground state degeneracy is 2N. The adiabatic interchange of
the two vortices induces a unitary transformation within the
subspace of the degenerate ground states. Two such transfor-
mations do not necessarily commute; hence vortex excita-
tions obey non-Abelian statistics. A related spin model show-
ing similar non-Abelian excitations was recently studied by
Kitaev.4

Experimental support for the Moore-Read theory is still
needed. Relating the theory, and in particular the non-
Abelian nature of the quasiparticles, to measurable observ-
ables, is a major theoretical challenge. Interference experi-
ments may be a venue toward that goal.5–7

In this work, we pursue a different method to probe the
ground-state degeneracy as well as some of the properties of
the Majorana excitations by considering the response of a
quantum Hall system near a filling factor of �=5/2 to an
external electric field of wave-vector q and frequency �. In a
fractional quantum Hall system at a filling factor of �
=5/2±� ���1�, the density deviation from �=5/2 is ac-
commodated by means of quasiparticles �vortices� whose
density is 8�n, where n is the density of electrons. For a
perfectly clean system, these quasiparticles form a lattice,
and when their density is large enough, tunneling between
their cores should be taken into account. The degeneracy of
the ground state is partially removed by this tunneling, and a
band is formed with a width of the order of the tunneling
strength. The tunneling also breaks the particle-hole symme-

try of the localized �i’s.
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We study the electronic transport through that band for
square and triangular lattices. We find that due to the exis-
tence of the band, there is a dissipative part to the conduc-
tivity below the �=5/2 energy gap, with a unique q ,� de-
pendence. This contribution to the conductivity, which does
not involve a motion of the vortices, depends exponentially
on ���−1/2, due to its origin in tunneling. There is a qualitative
difference between the two lattice types. The square lattice is
described by an effective massless Dirac Hamiltonian, while
the triangular lattice shows a gap of a fraction of the band-
width. We calculate the dissipative part of the conductivity of
the CFs using Kubo’s formula,14 and then map it to the elec-
tronic conductivity by a Chern-Simon transformation8

��e�−1= ��cf�−1+ 2h
e2 �̂ �with �̂ being the antisymmetric tensor�.

For the square lattice, we find that the longitudinal and trans-
verse CF conductivities are, respectively,

Re���,�
cf ,��,�

cf � =
e2

�

	2�aq�2

16
� ���


�
1/2 ,

3
�
1/2

��� ���
�� , �1�

where 
�=�2−v0
2q2, a is the lattice constant, v0 is the ve-

locity characterizing the Dirac spectrum, and 	, to be defined
below, is related to the tunneling strength. For the triangular
lattice we find

Re ��,�
cf = Re ��,�

cf =
e2

�

	2�3aq�2
���
��
8�� � ��/�3t�

, �2�

where 
�= ����
�3t

−2− a2q2

4 . As we explain below, the electronic
conductivities are suppressed by a factor of �2 relative to the
CF conductivities.

There are four steps in the calculation leading to these
response functions. First, we specify the Hamiltonian de-
scribing the array. This Hamiltonian turns out to be closely
related to the Azbel-Hofstadter �A-H� Hamiltonian,9,10 de-
scribing electrons on a tight-binding lattice in a magnetic
field. Second, we calculate the spectrum of the Hamiltonian.
Third, we find how the system couples to gauge fields by
expressing the density and current operators in terms of the
Majorana operators �i �with i the vortex index�; we also
present a physical picture of this coupling. Finally, we cal-

culate the response functions.
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Based solely on the requirement of hermiticity and on the
relation �i=�i

†, a lattice of well-separated vortices is gener-
ally described by a tight-binding Hamiltonian

H = it�
ij

sij�i� j , �3�

where �i are the Majorana operators satisfying 	�i ,� j
=�ij,
and where i , j are nearest-neighbor lattice site indices. The
tunneling strength t is real and positive. The matrix sij =± is
antisymmetric and indicates the sign of the tunneling along
the bond �i , j�. While the freedom to redefine �i→−�i makes
the elements sij gauge dependent, the product of sij over
bonds creating a closed path is gauge independent. We now
show that this product is determined by a nontrivial phase, a
Majorana fermion accumulates when encircling a plaquette,
and give a simple formula for the effective flux per plaquette.
This formula fixes the matrix sij up to a choice of gauge.

In the absence of tunneling between vortex cores, the lo-
calized solution to a 2D p-wave BdG equation near a vortex
embedded in a lattice of vortices is given by

i�r� = �e−i�/4+�i/2��Pi

r ��i�l�·dlg�r − Ri�

ei�/4−�i/2��Pi

r ��i�l�·dlg�r − Ri�
 . �4�

This is an approximate zero-energy eigenstate of the first
quantized 2D p-wave Hamiltonian HBdG �see Refs. 2 and 11�
of an order parameter �0�r�exp i��r ; 	Ri
�, where r is the
2D-space coordinate and 	Ri
 are the vortices’ positions and
the phase ��r ; 	Ri
� has the property of increasing by 2�
around any closed path surrounding one vortex �clockwise�.
The phase appearing in the solution �4� is given by
�i�r ; 	Ri
�=��r ; 	Ri
�+arg�r−Ri�, where the first term
originates from the order parameter and the second term
originates from the px+ ipy pairing, which induces a relative
particle-hole angular momentum. The point Pi is arbitrarily
chosen close to the vortex core. The real wave function g�r�
is localized at the vortex core. The tunneling matrix elements
for nearest neighbors are purely imaginary, and are given by
±it where t= �Im�r�r−ax̂��HBdG�r�−HBdG

�0� �r���r�� is the
tunneling strength, and where HBdG

�0� is the Hamiltonian in the
absence of tunneling, of which Eq. �4� is an exact zero-
energy eigenvector. For well-separated vortices, t decreases
exponentially with a��−1/2.

To determine the matrix elements sij, we consider a Ma-
jorana operator hopping between n vortices along a closed
path, which forms a polygon whose edges connect the vorti-
ces. We show that there exists a nontrivial phase related to
this path, given by half the sum of the interior angles of the
polygon. The origin of this phase is in an interplay between
the phase of the order parameter and the p-wave pairing.
First, we calculate the tunneling matrix elements
�i �HBdG � j�= tij exp i�ij, where we use the tight-binding as-
sumption to neglect the spatial dependence of the phase and
explicitly set r= �Ri+R j� /2�Cij. For all bonds tij = t, while

�ij =
1

2
�

P

Pj

���l� · dl +
1

2
�

P

Cij

� arg�l − Ri� · dl

i i
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−
1

2
�

Pj

Cij

� arg�l − R j� · dl . �5�

The first term depends only on the order parameter; it mea-
sures the change of the phase of the spinor due to vortices
enclosed in the path. The second and third terms are the
contributions due to the relative particle-hole angular mo-
mentum induced by the px+ ipy pairing; they measure
changes in the direction of the path. Considering n tunneling
events tn exp i��i1i2

+�i2i3
+ ¯ +�ini1

�, the total phase is given
by 1

2 ����l� ·dl+ 1
2�i=1

n Ai, where Ai is the angle subtended by
the path with respect to the ith vortex, positive for anticlock-
wise traversal. The first term gives a � winding for each
vortex enclosed in the path. For each of these enclosed vor-
tices, Ai is given by minus the exterior angle, which can be
written as −�2�− Ii�, where Ii is the interior angle. For all
other vortices Ai= Ii. Therefore, we get 1

2 ��� ·dl+ 1
2�i=1

n Ai

= 1
2�iIi, i.e., half the sum of interior angles of the polygon.

This result is independent of whether the core of a vortex on
the path is inside or outside of the polygon: if a path is
deformed as to cross a vortex’ core, both the term related to
the order parameter and the relevant angle Ai /2 acquire an
extra �, and these two contributions cancel each other. For a
general polygon of n vortices, we get a phase of �n /2−�;
consequently, for a lattice whose plaquette is a polygon of n
vortices we get n /4−1/2 flux quanta per plaquette.

We note that for the A-H problem of tight-binding elec-
trons on the same lattice with the same flux per plaquette, the
Hamiltonian is

Hh = it�
ij

sijci
†cj . �6�

The Hamiltonians �3� and �6� share the same Harper’s equa-
tion, their spectra are identical, but they differ considerably
in the way they couple to gauge fields. Yet, there exist rela-
tions between their response functions.

Our determination of the effective flux in �3� then singles
out a chain of A-H-type problems, one for each value of n,
where the flux per plaquette is determined by the geometry
of the lattice. There is a qualitative difference between the
triangular lattice, with an odd n, and the square lattice, with
an even n; the former breaks time-reversal symmetry in the
effective A-H problem, while the latter does not. The honey-
comb lattice, for which n=6, was considered in Ref. 4.

In the next step, we calculate the spectrum and eigenvec-
tors of the Hamiltonian �3�. After identifying the flux per
plaquette, we choose a gauge which complies with it, com-
monly breaking translational symmetry. Translational sym-
metry is restored by choosing a unit cell, which contains an
integer multiple of the flux quantum. The sites of the unit cell
are numbered z=1, . . . ,s; in this way, we divide our lattice
into s sublattices. We aim at finding an operator �† satisfying
the equation �H ,�†�=E�†. We expand it in local site opera-

†
tors as � =�i�i�i ending with the following equation
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it�
j

sij� j = E�i. �7�

Using translational symmetry, the solution for each sublattice
z can be written as �i=eik·Ri�z�i��k�, where z�i� is the sublat-
tice to which the site Ri belongs. The equation for �z is given
by

H̃zz��z� � it�
z�

�
j�z

sije
ik·�Rj−Ri��z� = E�z, �8�

where the site i is an arbitrarily chosen lattice site that be-

longs to the z� sublattice. We denote the eigenvectors of H̃ by
�����k�. This results in the following operators

�k
���† = �

i

�i
����k��i = �

z=1

s

�z
����k��

i�z

eik·Ri�i, �9�

which obey the usual fermionic anticommutation relations
	�k

���† ,�k�
���
=�����k−k�� and 	�k

���† ,�k�
���†
=0 for positive

energy modes. In terms of these operators, the Hamiltonian
is diagonal, H=�k�Ek��k

���†�k
���.

For the square lattice, the A-H Hamiltonian has half a
quantum of flux per plaquette. We choose a gauge for which
sij =+ along columns and has alternating signs between adja-
cent rows. Having translational invariance in doubled lattice
vectors, we may split the lattice sites into four sublattices,
numbered z=1, . . . ,4. The Hamiltonian H may be written in
a 4�4 matrix notation as

H̃� = 2t�x � �z sin�akx� + 2t�x � �x sin�aky� . �10�

In the limit �k �a→0, the Hamiltonian �10� has a doubly de-
generate gapless isotropic Dirac spectrum �k�=sgn���v0 �k�,
with �= ±1, ±2 and the characteristic velocity v0=2at.13

The eigenvectors of Eq. �10� are

�−k
�1�* = �k

�−2� = �−k
�2� = �k

�−1�* =
�iei�k,ei�k,− i,1�

2
, �11�

where ei�k = �kx+ iky� / �k�.
For the triangular lattice, the A-H Hamiltonian has a quar-

ter of a flux quantum per plaquette. The Hamiltonian in the
sublattice representation is given by

H̃� = 2t�
i=1

2

�i sin�ai · k� + �3 cos�a3 · k� , �12�

where �1= I � �x, �2=�y � �y, �3=�y � �z, and a1= �ax̂
−�3aŷ� /2, a2= �ax̂+�3aŷ� /2, a3=ax̂ are the three lattice di-
rections. There is a doubly degenerate spectrum indexed
again by �, �k�=sgn�����,k, where

��,k = �2t�3 + cos�2akx� − 2 cos�akx�cos��3aky� . �13�

The spectrum is gapped,12 and there are two minima at k0
= �±� /3a ,0�, around which it is quadratic �k0+�,�

�sgn����3t�1+ 1
2a2�2�. The eigenvectors of Eq. �12� are

�k
�1� = �−k

�−2�* =
1

�iB−k,− iB−k,1,1� , �14�

Nk
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�2� = �−k

�−1�* =
1

Nk
�− iBk,− iBk,− 1,1� , �15�

where Nk is a normalization factor and

Bk =
���k�/2t + sin�a1 · k�

cos�a3 · k� + i sin�a2 · k�
. �16�

The coupling of the Majorana states of the Hamiltonian
�3� to an electric field is very different from that of the elec-
trons in the A-H Hamiltonian �6�, due to the particle-hole
symmetry of the operators �i. While each Majorana state �4�
is electrically neutral, when tunneling between vortex cores
is switched on, a nonzero density of charge appears between
the vortices. Projected to the subspace of the Majorana
states, the density operator may be written as ��r�
=�ij�ij�r� where

�ij�r� = isijg�r − Ri�g�r − R j��i� j . �17�

The operator i�i� j has two eigenvalues ±1, which describe
the sign of the charge mostly sitting at the center of the bond;
however, the operators �ij do not commute if they share a
common Majorana operator, and consequently, one cannot
specify the charge at all bonds simultaneously. The excita-
tions acquire a charge by the following mechanism. When
the Majorana fermions are allowed to tunnel between cores,
the states move away from zero energy and the amplitudes of
the particlelike and the holelike parts of the excitation are no
longer equal.2,11 This asymmetry is maximal at the midpoint
between two vortices. Indeed, two nearest-neighbor spinors
i and  j are exactly orthogonal �i � j�=0 due to a � phase
difference between the overlap of the particles and the over-
lap of the holes; however, they do support nonzero matrix
elements of the charge operator �i ��z � j�= isij	, where 	

=�rg�r−ax̂�g�r�; the charge is proportional to the tunneling
strength, and therefore, to the energy. Consequently, the ex-
citation �k

���†carries a charge of 	�k� / t.
Next, we identify the current operator. At q=0, the current

is found using the identity

jq=0 = i�H,d� = − i	t�
ijl

sijsjl�Rl − Ri

2
��i�l, �18�

where d=�rr��r� is the total dipole operator. The sum
� jsijsjl�0 only for sites i and l separated by a doubled lat-
tice vector. The current may be transformed to a k space by
inverting �9� and substituting it into �18�. The q=0 current is
a conserved quantity. To see that, we examine the commuta-
tor of jq=0 with the Hamiltonian

�H,jq=0� � �
ijlm

sijsjlslm�Ri + Rm

2
−

R j + Rl

2
��i�m,

which is described by paths composed of three consecutive
bonds connecting the vortices given by i , j , l , m. The sum
over all paths is zero, as each path interferes destructively
with a second path formed by starting from one of its ends

and reversing the order of steps to the other end.
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At finite q we find the current by calculating ��q�
=�re

iq·r��r� and using charge conservation. The current op-
erator is, in momentum space,

j�q� = �
k��

ẽkvknk,q
�� �k+q/2

���† �k−q/2
��� , �19�

where nk,q
�� =�k+q/2

���* ·�k−q/2
��� are the density matrix elements of

the associated A-H problem, and ẽk=e	�k / t, vk=�k�k are the
charge and velocity of the quasiparticle, respectively. For
comparison, the longitudinal component of the current in the
A-H Hamiltonian �6� is

j�
h�q� = �

k��

J��
h �k,q�ck+q/2

���† ck−q/2
��� , �20�

where for the relevant transitions J1,−1
h =J2,−2

h* =
ev0

2 �ei�k+q/2

−e−i�k−q/2� for the square lattice, and J1,−2
h =−J2,−1

h = eat
2�2

�3
+3�3i� for the triangular lattice near the bottom of the band.
Over all, the matrix elements of the current operator in the
Majorana problem �19� are smaller by a factor of qa relative
to �20�.

Having calculated the spectrum and identified the relevant
operators, the response functions of the array of Majorana
states is readily calculated employing the Kubo formula,
with the results given by Eqs. �1� and �2�. This result affirms
the existence of dissipative conductivity, hence the flow of
in-phase current, even at frequencies below the �=5/2 en-
ergy gap.

Two steps need to be taken to transform the composite
fermion conductivities �1� and �2� into the measurable elec-
tronic conductivity. First, the imaginary part of the CF con-
ductivity, i�se

2 /� �with �s being the superfluid density of the
CFs�, originating from the superconductivity of the CF con-
201303
densate, should be added to the calculated real part. Second,
the Chern-Simon transformation should be used to transform
the CF conductivity into the electronic one. In the limit �
→0, these steps result in

Re���
e,��

e � = � �

2h�s
�2

Re���
cf,��

cf� . �21�

At finite temperature, assuming v0q��, the conductivity
satisfies ��T�=��T=0�sgn���tanh ��

4kBT .
Before closing, we note that the same methods may be

used to find the response functions of the associated A-H
problems. For the square lattice, the conductivity is

Re���,�
h ,��,�

h �= 1
8

e2

�
� ���


�
1/2 ,


�
1/2

��� ���
��. The value of the con-
ductivity at the q→0 limit is a universal e2 /8� �Ref. 13�; the
origin of the universality lies in an exact cancellation of the
dependence on v0 due to the linear density of states �� /v0

2.
The dependence of the conductivity on temperature is ��

h

= 1
8

e2

� sgn���tanh ��
4kBT . For the triangular lattice, the conduc-

tivity at the bottom of the band is again universal, 3
4

e2

� .
In summary, we calculated the electronic response of an

array of immobile quasiparticles of the �=5/2 state to an
electric field of nonzero q ,�, due to the tunneling of Majo-
rana fermions between their cores. We found a contribution
to the dissipative conductivity, Eq. �21�, that is of a unique
q ,� dependence, and a strong exponential dependence on
the deviation of � from 5/2. Our analysis neglected disorder,
which will be discussed elsewhere.
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