
PHYSICAL REVIEW B 73, 195418 �2006�
Effects of electron-electron interaction and electron spin correlations
on the exchange coupling in mesoscopic rings
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Using the formalism of Lobo, Singwi, and Tosi �LST�, we study the effect of electron-electron interaction
and electron spin correlations on the indirect exchange interaction between two nuclear spins embedded in a
mesoscopic metallic ring, threaded by an Aharonov-Bohm magnetic flux. We first calculate the spin local field
correction and the spin-density response function of the ring in a self-consistent manner. Then, we employ the
Ruderman-Kittel-Kasuga-Yosida �RKKY� theory to determine the variation of the exchange coupling as a
function of the magnetic flux and the angular distance between the two nuclear spins. The LST approach
predicts a reach behavior for the exchange coupling as a function of the magnetic flux. Our numerical results
show that due to the electron-electron interaction and the electron spin-correlations the exchange coupling can
change sign as a function of the magnetic flux, contrary to the prediction of the random phase approximation.
Furthermore, the exchange coupling beside its usual oscillatory behavior acquires an oscillatory envelope
which brings about strong RKKY interaction between the two nuclear spins even at far distances on the ring.
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I. INTRODUCTION

The possibility of using the two-level nature of spin-1
2

magnetic moments such as nuclear spins, to create a solid
state quantum computer is a potentially revolutionary idea
that has been a subject of great interest in the past few
years.1–3 Several spin-based quantum computers have been
proposed and extensively studied.4–15

The basic unit in a quantum computer is the quantum bit
�qubit�, the quantum analog of the binary bit in a classical
digital computer. It is essentially a controllable quantum two
level system.3,16,17 Quantum rings with two spin dependent
impurities are suitable candidates for qubits.18,19 Two nuclear
spins that are embedded in a mesoscopic metallic ring, in-
duce spin polarization in the conduction electrons of the ring
and couple to each other. Such indirect coupling between
nuclear spins mediated by electron spins was studied first by
Ruderman-Kittel-Kasuya-Yosida.20–22 The RKKY interaction
plays an important role in various problems involving the
interaction between localized spins embedded in metals.23,24

Recent progress in semiconductor nanotechnology enables
one to observe the RKKY interaction in coupled semicon-
ductor quantum dot systems.25–27

Theoretical study of the indirect nuclear spin interaction
in mesoscopic rings in the presence of a magnetic flux has
increased hopes that one can use such systems for qubits.
Pershin et al.19 used the single-electron approximation, with-
out considering the electron-electron interaction and the in-
fluence of the electron correlations, and showed that the in-
direct coupling of two nuclear spins embedded in a
mesoscopic ring exhibits sharp maxima as a function of the
magnetic field and nuclear spin positions. They proposed that
mesoscopic rings have all the essential criteria for the qubits
for the realization of a quantum computer.5 Utsumi et al.
have also investigated the RKKY interaction between two
spins located at two quantum dots embedded in an

28
Aharonov-Bohm �AB� ring. Using a noninteracting ap-
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proximation, they assert that by means of an external flux
one can control the amplitude of the RKKY interaction, but it
is not possible to change its sign. However, controlling the
RKKY interaction, acting between local spins embedded in
an AB ring, by an external magnetic field can be used to
construct a universal quantum gate29 and therefore is useful
for spin-based quantum computers.30

In this paper, our main concentration is on the effect of
the electron-electron interaction and the electron spin corre-
lations on the indirect exchange coupling between two
nuclear spins embedded in a mesoscopic metallic ring. We
use the Lobo-Singwi-Tosi �LST� approach to study the de-
pendence of the RKKY interaction between two nuclear
spins on the nuclear spin locations and on the magnetic flux.
We find that the electron-electron interaction and the electron
spin correlation effects lead to a transition from ferromag-
netic to antiferromagnetic coupling. This means that, con-
trary to the assertion of Refs. 19 and 28, the sign of indirect
exchange coupling between two nuclear spins embedded in
the AB ring can be changed by changing the magnetic flux.
Furthermore, our numerical results predict an oscillatory en-
velope for the amplitude of the exchange coupling beside its
usual 2kF oscillatory behavior. These effects which are due
to the quasi-one-dimensionality of the AB ring and its circu-
lar geometry, can be used for the control of the RKKY inter-
action that is important for constructing qubits.

The organization of this paper is as follows: In Sec. II we
present our model. In Sec. III the formalism of the LST
approach is generalized for the AB ring by using the second
quantization technique. The numerical results of the self-
consistent scheme obtained in Sec. III are then used in Sec.
IV to determine the dependence of the RKKY interaction on
the nuclear spin locations and on the magnetic flux. Finally, a
discussion and conclusions are presented in Sec. V.

II. MODEL

Although strictly one-dimensional �1D� fermionic sys-
31–33
tems are Luttinger liquids, real quasi-one-dimensional
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systems due to scattering from impurities show Fermi liquid
behavior.34 We model the mesoscopic ring with a 1D jellium
consisting of the confined electrons and uniformly distrib-
uted positive background charges with a 1D circular shape
geometry, threaded by an Aharonov-Bohm �AB� magnetic
flux �. We also assume that the ring is embedded in a dielec-
tric medium with a dielectric constant, �s, and the electron-
electron interaction is the normal Coulomb interaction
e2 /�sr, down to the classical radius of the electron.

Choosing the xy plane as the plane of the ring and the
magnetic field in the z direction, the Hamiltonian of the jel-
lium can be written as follows:

Ĥ = Ĥel + Ĥb + Ĥel−b, �1�

where

Ĥel = �
0

2�

Rd��̂†���T̂����̂���

+
1

2
�

0

2�

Rd��
0

2�

Rd���̂†����̂†����V��,����̂�����̂���

�2�

is the Hamiltonian of the electrons,

Ĥb =
1

2
�

0

2�

Rd��
0

2�

Rd��n���n����V��,��� �3�

is the energy of the positive background with particle density
n���, and

Ĥel−b = �
0

2�

Rd��
0

2�

Rd��n�����̂†���V��,����̂��� �4�

is the interaction energy between the electrons and the posi-
tive background.

In Eqs. �2�, �3�, and �4�, T̂��� and the V�� ,��� are

T̂��� =
�2

2m*R2�i
�

��
− ��2

�5�

and

V��,��� =
e2

2�sR
�sin2�� − ��

2
� + � rc

R
�2�−1/2

, �6�

respectively. Here, m* is the effective electron mass, R is the
radius of the ring, � is the azimuthal angle in the polar co-
ordinate, L=2�R is the circumference of the ring, � is the
AB flux in terms of quantum flux hc /e, and rc is the classical
radius of the electron.

In terms of the single particle eigenfunctions of the ki-

netic energy operator T̂���, the field operators �̂��� and �̂†���
are given by

�̂��� =
1
�L

	
n,�

ein�	�an,�, �7�
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�̂†��� =
1
�L

	
n,�

e−in�	�
†an,�

† , �8�

where an,�
† ’s and an,�’s are electron creation and destruction

operators, respectively, with angular quantum numbers n
=0, ±1, ±2, . . . , and 	�’s for �=1,2 are the spin wave func-
tions for spin-up and spin-down along the z axis.

Using Eqs. �2�–�8� in Eq. �1�, we obtain the total Hamil-
tonian of the ring in terms of the electron creation and de-
struction operators as follows:

Ĥ = 	
n,�


n���an�
† an�

+
1

2L
	

mnn�
	
�,��

V�m�an+m,�
† an�−m,��

† an���an� −
1

2

N2

L
V�0� ,

�9�

where


n��� =
�2

2m*R2 �n − ��2, �10�

N is the number of the electrons on the ring and V�m� is the
mth Fourier component of the electron-electron interaction
given by

V�m� =
2e2

�s
Q
m
+ 1

2
�1 + 2�rc/R�2� , �11�

where Q��x� is the second kind Legendre function.
If we separate the sum in the second term of the right-

hand side of Eq. �9� into the terms m=0 and m�0, then the
term m=0 can be written as follows:

1

2L
	
nn�

	
�,��

V�0�an,�
† an�,��

† an���an� =
1

2L
V�0��N̂2 − N̂� ,

�12�

where

N̂ = 	
n�

an,�
† an,� �13�

is the electron number operator.

Since N̂ is a constant of motion, we can substitute its
eigenvalue N, i.e., the total number of the electrons on the
ring. This leads to two constant terms N2

2LV�0� and − N
2LV�0�.

The latter term cancels the last term in Eq. �9�, and the
former term is a finite term which shifts all the energy levels
of the ring by an overall constant. Ignoring this term, the
Hamiltonian of the ring simplifies to

Ĥ = 	
n,�


n���an�
† an� +

1

2L
	

mnn�
m�0

	
�,��

V�m�

� an+m,�
† a† an � an�. �14�
n�−m,�� � �
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III. LST FORMALISM

The Lobo-Singwi-Tosi �LST� approach is a powerful the-
oretical tool, going beyond the random phase approximation
�RPA�, in studying the spin correlation effects of an interact-
ing electron gas. It was originally developed for three-
dimensional �3D� electron gas35 and subsequently applied to
two-dimensional �2D�36 and 1D �Ref. 37� electron gas, but
has not been used for 1D mesoscopic rings. In this section
we present the necessary formulas of the LST approach for
an AB ring.

The noninteracting single particle Greens’ function of the
ring is given by

iG�

0 ��t,��t�� = 
�0
T��̂I���t��̂I


† ���t���
�0� , �15�

where the noninteracting ground state vector 
�0� is assumed
to be normalized and the field operators of the system in the
interaction picture are

�̂I���,t� =
1
�L

	
n=−�

+�

an�e−i�n���tein�	�, �16�

�̂I�
† ��,t� =

1
�L

	
n=−�

+�

an�
† ei�n���te−in�	�

† �17�

with �n���=
n��� /�. Substituting Eqs. �16� and �17� in Eq.
�15�, we obtain an expression for the single-particle Greens’
function in the base’s space of the kinetic energy operator as
follows:

G�

0 �n,�,�� = ��
���
kn���
 − 
kF
�

� − �n��� + i	
+

��
kF
 − 
kn���
�
� − �n��� − i	

� ,

�18�

where � is the usual unit step function, kn���= 2�
L �n−�� is

the wave number associated with the angular quantum num-
ber n in the presence of the AB flux, and kF= 2�

L
�nF+ 1

2
� is the

Fermi wave number with the Fermi angular quantum number
nF. The free-electron polarizability is defined by �Ref. 38�

��0��t,��t�� = − iG�

0 ��t,��t��G
�

0 ���t�,�t�

= − 2iG0��t,��t��G0���t�,�t� , �19�

where the sum over � and 
 yields a factor of 2 for elec-
trons. Using Eq. �18�, the expression for the free-electron
polarizability can be written as follows:

�0�n,�,�� = −
2i

�

1

L
	

n�=−�

� �
−�

� d��

2�

�G0�n�,��,��G0�n� + n,�� + �,�� . �20�

Carrying the integration over the frequency we obtain
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�0�n,�,�� =
2

�

1

L
	

m=−�

+� ���
kF
 − 
km���
���
km+n���
 − 
kF
�
� − ��m+n��� − �m���� + i	

−
��
kF − 
km���
���
km−n���
 − 
kF
�

� + ��m−n��� − �m���� − i	
� , �21�

where the summation is over the angular quantum numbers.
It is obvious that only those angular quantum numbers that
make the unit step functions in the numerator simultaneously
nonzero contribute to the sum. Following the idea of LST,
using the free electron polarizability, �0�n ,� ,��, the spin-
density response function for the mesoscopic ring can be
written as �Ref. 39� follows:

�s�n,�,�� = − g2�B
2 �0�n,�,��

1 − I�n,���0�n,�,��
, �22�

where g is the Lande factor, �B is the Bohr magneton and

I�n,�� = V�n�G̃�n,�� �23�

is the spin-antisymmetric effective potential.

In Eq. �22�, G̃�n ,�� is the static spin local-field correction
arising from the short range Coulomb correlation and
exchange-correlation effects for the spin-density response

that is related to the magnetic structure factor, S̃�n ,��, by

G̃�n,�� =
1

N
	

m=−�

�
mV�m�
nV�n�

�S̃�n − m,�� − 1� , �24�

where n0= N
L is the electron gas density. The magnetic struc-

ture factor, S̃�n ,��, is related to the dynamic spin-density
response function by the fluctuation-dissipation theorem as
follows:

S̃�n,�� =
�

�n0g2�B
2�

0

�

d� Im��s�n,�,��� , �25�

where Im��s�n ,� ,���, the imaginary part of the dynamic
spin-density response function, can be written in terms of the
free electron susceptibility, �0�n ,� ,��, as

Im��s�n,��� = −
g2�B

2

I�n,��
Im� 1

1 − I�n,���0�n,��� . �26�

Therefore, we have

S̃�n,�� = −
�

�n0I�n,���0

�

d� Im� 1

1 − I�n,���0�n,�,��� .

�27�

Using the relation

Im� 1

1 − I�n,���0�n,�,���
= ��„1 − I�n,���0�n,�,��…

= �	
�0

� �

��
„1 − I�n,���0�n,�,��…�

�=�0

−1

��� − �0�
�28�
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we can write the magnetic structure factor, S̃�n ,��, as fol-
lows:

S̃�n,�� =
− �

n0I�n,��	�0

� �

��
„1 − I�n,���0�n,�,��…�

�=�0

−1

.

�29�

With a self-consistent calculation of Eqs. �23�, �24�, and
�29�, we can obtain the spin-antisymmetric effective poten-

tial, I�n ,��, the magnetic structure factor, S̃�n ,��, and the
static spin-density response function, �s�n ,��.

IV. RKKY INTERACTION

Now, let us consider two nuclear spins embedded in the
ring. To calculate the RKKY interaction between the nuclear
spins mediated by conductance electrons of the ring, we sup-
pose that the two nuclear spins are located at positions �1 and
�2. The exchange interaction Hamiltonian between the
nuclear spins and the conductance electrons of the ring is

Hint = − J0	
i=1

2 �
−�

�

d���� − �i�s���� . S���i� , �30�

where J0 is the exchange integral, s� is the electron spin, and

S� is the nuclear spin. The effective magnetic field produced
by one of the nuclear spins is

H� ef f = −
J0

g�B
��� − �1�S���1� . �31�

Using the linear response theory, the magnetization induced
in the electron gas by this effective field can be written as

FIG. 1. �Color online� Spin-antisymmetric effective potential,
I�n�, vs angular quantum number, n, for various �s.
follows:

195418
M� ��� = −
J0

2�g�B
	

n=−�

+�

�s�n,��S���1�ein��−�1�, �32�

where �s�n ,�� is the static spin-density response function of
the ring in the presence of the AB flux, �.

The exchange interaction energy between the two nuclear

spins in terms of the induced magnetization, M� ���, has the
form

FIG. 2. �Color online� Magnetic structure factor, S̃�n�, vs angu-
lar quantum number, n, for various �s.

FIG. 3. �Color online� Static spin-density response function as a
function of angular quantum number, n, for various �s in the ab-
sence of the external magnetic flux. The solid line shows the static
spin-density response function in RPA. The parameters of the ring

are N=294 and R=10 nm.
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E =
J0

g�B
M� ��2� . S���1� . �33�

Using Eq. �32�, we have

E =
− J0

2

2�2g2�B
2 	

n=−�

+�

�s�n,��S���1� . S���2�ein��2−�1� �34�

or

E =
− J0

2

2�2g2�B
2 F��,��S�1 . S�2, �35�

FIG. 4. �Color online� Inverse of the effective potential, 1 / I�
2nF+2 �long dashed lines�, and the free-electron polarizability, �0�
�dotted line� are depicted as functions of flux, �, to determine
17.44��s�26.44, and �c� 14��s�17.44. The parameters of the r
where �=�2−�1 and F�� ,�� is

195418
F��,�� = 	
n=−�

+�

�s�n,��ein� = �s�0,�� + 2	
n=1

+�

�s�n,��cos�n�� .

�36�

Equation �36� shows the relation between the Fourier
transform of the static spin-density response function of the
ring and the space dependence of the indirect exchange cou-
pling, F�� ,��, between the two nuclear spins due to the con-
duction electrons of the ring.40

V. DISCUSSION AND CONCLUSIONS

With a self-consistent calculation of Eqs. �23�, �24�, and
�29� for N=294 electrons on the ring with the radius

or n=2nF+1 �dash-dot-dotted lines�, n=2nF �dashed lines�, and
�, for n=2nF+1 �dash-dotted line�, n=2nF �solid line�, and 2nF+2
ntersections of this functions in the intervals �a� �s�26.44, �b�
re N=294 and R=10 nm.
n�, f
n ,�
the i
ing a
-5
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R=10 nm and the density of states at the Fermi energy
��
F�=2m* /��2kF, we obtain the spin-antisymmetric effec-

tive potential, I�n�, the magnetic structure factor, S̃�n�, and
the static spin-density response function, �s�n ,��, of the ring
in the presence of the AB flux. We find that the structure
function and consequently the spin-antisymmetric effective
potential are independent of the external magnetic flux. This
is due to the fact that according to Eq. �29�, the magnetic
structure factor is related to the slope of the denominator of
the dynamic spin-density response function in Eq. �22� at its
poles which is independent of the external magnetic flux.
Physically, this means that the probability of finding two
electrons on the ring at angular separation �; i.e., the spin-
antisymmetric pair correlation function g̃���, is independent
of the AB flux. In Figs. 1 and 2, we have plotted I�n� and

FIG. 5. �Color online� Static spin-density response function dep
presence of the external magnetic flux, �=0.499, �a� �s�17.44, �b�
are N=294 and R=10 nm.
195418
S�n�, respectively, for different values of the dielectric con-
stant �s.

The behavior of the static spin-response function of the
ring in the absence of the AB flux is shown in Fig. 3 for
different values of �s. The peaks close and at 2nF+1 in Figs.
2 and 3 are the characteristic of 1D systems,37,39 which in the
ring geometries they occur not only at 2nF+1 but also at the
angular quantum numbers close to 2nF+1, depending on the
strength of the electron-electron interaction and the spin-
correlations. We will see that this resonance behavior of the
static spin response function at 2nF+1 and angular quantum
numbers close to it, modifies the behavior of the RKKY
interactions when going beyond RPA.

We now consider the behavior of the static spin response

as a function of angular quantum number, n, for various �s in the
4��s�17.44, and �c� 14��s�16.44. The parameters of the ring
icted
16.4
function in the presence of the AB flux
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�s�n,�� = − g2�B
2 �0�n,��

1 − I�n��0�n,��
, �37�

by investigating its denominator in more details. In Fig. 4,
we have plotted the free electron polarizability, �0�n ,��, and
the inverse of the effective potential, 1 / I�n�, as a function of
the flux � for the angular quantum numbers 2nF, 2nF+1, and
2nF+2. The function 1/ I�n�, which is independent of the
flux, behaves as a constant and is shown by horizontal lines
for different values of �s. As can be seen in Fig. 4�a� or 4�b�,
in the absence of the external flux ��=0�, the denominator in
Eq. �37� goes to zero for n=2nF+1 and �s�26.44, but the
right and left limits of �s�n ,�� are different, so we have a
transition from ferromagnetic to antiferromagnetic �Fig. 3�.

In the presence of the AB flux, for example ��0.5 in Fig.
4�c�, the denominator in Eq. �37� goes to zero for two differ-
ent values of n and � , one for n=2n and � �17.44 and the

FIG. 6. �Color online� Indirect exchange coupling J as a functio
�a� �s=80, �b� �s=35, and �c� �s=26.44 for �s�26.44. Next, �d� �
�s=17, �h� �s=16.44, and �i� �s=14 for 14��s�17.44. The param
between the two nuclear spins is �=�.
s F s

195418
other for n=2nF+2 and �s�16.44. In Fig. 5, we have shown
the behavior of the static spin response function of the sys-
tem for ��0.5 as a function of the angular quantum num-
bers close to 2nF+1. In terms of the strength of the spin
antisymmetric effective potential or �s, there are three differ-
ent intervals according to which we can discuss the behavior
of the static spin response function at the angular quantum
numbers 2nF and 2nF+2:

�i� For �s�17.44, the system responds ferromagnetically
at both 2nF and 2nF+2 modes ��s�0�, Fig. 5�a�. In this
interval with decreasing �s, the 2nF mode goes to infinity and
the 2nF+2 mode goes to a large finite value, therefore the
system responds ferromagnetically as �s− →17.44+.

�ii� For 16.44��s�17.44, according to Fig. 5�b�, the sys-
tem responds antiferromagnetically at 2nF and ferromagneti-
cally at 2nF+2. In this interval with decreasing �s, the 2nF
mode goes to lower values and the 2nF+2 mode goes to

the external magnetic flux �, for nine dielectric constants �s. First,
4, �e� �s=20, and �f� �s=17.44 for 17.44��s�26.44. Finally, �g�
s of the ring are N=294 and R=10 nm and the angular distance
n of

s=2
eter
higher values. Therefore the system responds antiferromag-
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netically for �s− →17.44− and ferromagnetically for
�s− →16.44+.

�iii� For 14��s�16.44, the system responds antiferro-
magnetically at both 2nF and 2nF+2 modes ��s�0�, Fig.
5�c�. In this interval with decreasing �s, the modes 2nF and
2nF+2 go to finite lower values. By increasing �s in this
interval, the 2nF mode goes to a large finite value but
2nF+2 mode goes to infinity and the system responds anti-
ferromagnetically as �s− →16.44−.

Using Eqs. �35� and �36� we have investigated the behav-
ior of the RKKY interaction as a function of the external
magnetic flux. The magnetic flux dependence of the RKKY
interaction has been shown in Fig. 6 for various �s in the
LST approximation for the two nuclear spins at the angular
separation �=�.

In RPA, the indirect coupling of the two nuclear spins
exhibits sharp maxima at the half-integer values of the exter-
nal flux, �,19 and the two nuclear spins couple together an-

FIG. 7. �Color online� Indirect exchange coupling J vs angular d
magnetic flux, for eight dielectric constants, �s. First, �a� �s=80, �
�s=24, �f� �s=20, �g� �s=17, and �h� �s=14 for 14��s�26.44. Th
tiferromagnetically so that there is no change in the sign of

195418
the exchange coupling. Contrary to the RPA, the LST ap-
proach predicts transitions from ferromagnetic to antiferro-
magnetic coupling and vice versa between the two nuclear
spins embedded in the ring as a function of the magnetic
flux. Depending on the spin-correlations and on the strength
of the electron-electron interaction which in turn is deter-
mined by the strength of the screening constant �s, there are
three intervals for which we can discuss the behavior of the
exchange coupling between the two nuclear spins:

�1� For �s�26.44, Figs. 6�a�–6�c�, transitions from anti-
ferromagnetic to ferromagnetic coupling and vice versa be-
tween the two nuclear spins occurs at the magnetic fluxes
determined by the intersections of the functions 1/ I�n� and
�0�n ,�� in Fig. 4�a�. In this interval with increasing �s, the
values of � for which a coupling transition occurs tend to the
half-integer values as seen in Fig. 4�a�.

�2� For 17.44��s�26.44, Figs. 6�d�–6�f�, there is no
coupling transition between the two nuclear spins, since ac-

ce �, between the two nuclear spins in the absence of the external

s=35, and �c� �s=26.45 for �s�26.44. Second, �d� �s=26.25, �e�
ameters of the ring are N=294 and R=10 nm.
istan
b� �
e par
cording to Fig. 4�b� in this interval the functions 1/ I�n� and
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�0�n ,�� do not intersect. But, by decreasing �s the sharp
maxima appears at the integer values of � rather than the
half-integer values.

�3� For 14��s�17.44, Figs. 6�g�–6�i�, there are two
kinds of coupling transitions. One occurs at the values of the
magnetic flux which are determined by the intersections of
the functions 1/ I�n� and �0�n ,�� in Fig. 4�c� and the other
occurs at the values of the magnetic flux for which the ex-
change coupling is zero.

We finally discuss the behavior of the indirect exchange
coupling as a function of the angular distance between the
two nuclear spins. Our numerical results are been shown in
Figs. 7 and 8 for �=0 and ��0.5, respectively.

For �s�26.44, we have the normal behavior of the
RKKY interaction as seen in Figs. 7�a� and 7�b�; i.e., it os-
cillates with the period �RKKY =2� /2nF+1 and the amplitude
of the oscillations decays with 1/2nF+1.32 Near �s=26.44,
Fig. 3, the static spin response function of the system has a
ferromagnetic or antiferromagnetic transition depending on
whether we have �s→26.44− or �s→26.44+, respectively. In
this case, by decreasing �s the behavior of the exchange cou-
pling changes from Fig. 7�c� to Fig. 7�d�.

For �s�26.44, Fig. 3, by decreasing �s the system re-
sponds resonantly at the angular quantum numbers 2nF and
2nF+2. Indeed, in this case by decreasing �s the spin-
antisymmetric effective potential increases �Fig. 1� and this
increases the contribution of other modes close to 2nF+1 to
the RKKY amplitude. The interference of these modes
causes the amplitude of the RKKY interaction to acquires an
oscillating envelope beside its usual 2nF+1 oscillation �Figs.
6�e�–6�h��. These new modes which come from the low val-
ues of the denominator of �s�n ,�� in Eq. �37�, are mostly
due to the resonance behavior of the static spin response
function close to 2nF+1. Referring to Fig. 3, we see that at

FIG. 8. �Color online� Indirect exchange coupling, J, vs angular d
magnetic flux, �=0.499, for eight dielectric constants, �s. First, �
�e� �s=17, and �f� �s=16.6 for 16.44��s�17.44. Finally, �g� �s=
N=294 and R=10 nm.
the angular quantum numbers n1=2nF=146 and n2=2nF+2

195418
=148, maximum response of the system occurs. In this case,
the period of the RKKY oscillations is

�RKKY =
�

R�2�

L
��n2 + n1

2
� =

2�

2nF + 1
�38�

and the period of its envelope curve with �s equal to 14 is

�env =
�

R�2�

L
��n2 − n1

2
� = � . �39�

In Fig. 8, we have depicted the three situations �i�, �ii�,
and �iii�, mentioned previously. In Figs. 8�a�–8�c� for
�s�17.44, the interference of 2nF and 2nF+2 modes causes
the amplitude of the RKKY interaction to acquire the oscil-
lating envelope beside its usual 2nF+1 oscillations similar to
Figs. 6�e�–6�h�. In Figs. 8�d�–8�f� for 16.44��s�17.44,
also, the interference of 2nF and 2nF+2 modes causes the
amplitude of the RKKY interaction to acquire the oscillating
envelope beside its usual 2nF+1, but in this case the phase of
the envelope curve shifts by � because of changing the sign
in the static spin response function at 2nF �Figs. 5�a� and
5�b��. The period of the envelope curve is �env=�.

Finally, in Figs. 8�g� and 8�h�, we have depicted the be-
havior of the RKKY interaction for 14��s�16.44. In this
case, too, due to the changing sign of the static spin response
function from ferromagnetic to antiferromagnetic at 2nF+2
�Figs. 5�b� and 5�c��, the phase of the envelope curve shifts
by � and the spin response of the system for 2nF+2 is much
larger than for 2nF. There is a competition between 2nF,
2nF+1, and 2nF+2 modes with decreasing �s. This causes
the period of the envelope curve to be less than �. Also, the
amplitude of the RKKY interaction can increase as a func-

ce, �, between the two nuclear spins in the presence of the external
=80, �b� �s=24 and �c� �s=18 for �s�17.44. Next, �d� �s=17.2,
nd �h� �s=14 for 14��s�16.44. The parameters of the ring are
istan
a� �s

16 a
tion of distance and causes strong coupling between the two
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nuclear spins even at far distances on the ring, Fig. 8�h�.
In conclusion, our numerical results obtained using the

self-consistent method of LST indicate that the electron-
electron interaction and the electron spin correlations in me-
soscopic metallic rings bring about effects on the behavior of
the RKKY interaction that the RPA fails to predict. The fail-
ure of RPA can be traced back to the one-dimensionality and

the circular geometry of the ring. The one-dimensionality

�2005�.

195418-
causes the 2kF singularity of the spin response function and
the circular geometry changes the spectrum from the con-
tinuum to the discrete and brings about the interference of
the modes on the ring. The interplay between this effects and
the effect of the AB flux on the phases of the electron wave
functions produce the reach behavior of the exchange cou-
pling on the ring.
*Email address: eb.heidari@gmail.com
†Email address: ebrahimi@sbu.ac.ir
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