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Theory of optical scattering by achiral carbon nanotubes and their potential
as optical nanoantennas
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The Leontovich-Levin equation for optical scattering by an achiral carbon nanotube �CNT� of finite length
is formulated, based on a quantum-mechanical microscopic model of the conductivity. Both approximate
analytical and numerical solutions of the Leontovich-Levin equation yield a comparable surface current density
distribution and scattering pattern. Applications over a wide frequency range from the terahertz to the ultra-
violet are possible. The CNT polarizability in the low-frequency range and the scattering pattern in the range
of optical interband transitions as well as in the vicinity of plasmon resonance are calculated. Geometric
resonances of strongly retarded surface waves emerge and can be used for the qualitative interpretation of
experimentally observed features in the optical response characteristics of CNT-based composite mediums. The
potential of isolated CNTs as optical nanoantennas of both the receiving and transmitting types is established.
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I. INTRODUCTION

Among a variety of different nanostructures, quasi-
one-dimensional carbon macromolecules called carbon
nanotubes1 �CNTs� are the subject of intense research
worldwide—largely because of their unique electronic prop-
erties. It is well known that, depending on the radius and
folding of the graphite monolayer forming a CNT, it displays
either metallic or semiconducting properties.2,3 Naturally,
their folding geometry and unusual electronic transport prop-
erties dictate the specific features of the interactions of CNTs
with electromagnetic waves. Interesting examples of such
interactions are �i� strongly retarded surface waves,4–6 �ii�
modification of the density of photonic states in the vicinity
of a CNT,7 �iii� highly efficient generation of high-order
harmonics,8–10 and �iv� the possibility of CNT-based tera-
hertz emitters.11–13

An intriguing electromagnetic problem of nanoscience is
the realization of nanoscale antennas for infrared and visible
light. Such an antenna would allow a very desirable modality
of communications between nanoelectronic devices and the
macroscopic world.

Already, various physical principles underlying optical
antennas have been offered14–16 and the idea of CNT nanoan-
tennas is definitely attractive.17–23 Recently, nanoantenna op-
eration of a CNT array was demonstrated experimentally.24

CNTs offer control of the polarization state, radiation pattern,
gain, and other characteristics.21 No wonder, the application
of CNTs as microwave antennas has been suggested,20 based
on electrically connected single-walled CNTs up to 1 cm in
length.25,26 Of course, care must be exercised because CNTs
are not necessarily perfect conductors, unlike wire
antennas.17

Until recently, as virtually a general rule, the electromag-

netic properties of CNTs were modeled under the assumption
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of the nanotubes being infinitely long, thereby neglecting the
edge effects.17 But edge effects crucially determine antenna
properties. Moreover, the infinite-length assumption restricts
the applicability of theoretical results to modeling of the
electromagnetic response properties of CNT ensembles,
which are effectively homogeneous mediums at sufficiently
low frequencies.27–29 At optical frequencies, the lengths of
actual CNTs are comparable to the �free-space� wavelength;
consequently, the polarizability tensors of CNTs—which are
necessary for estimation of the effective constitutive param-
eters of CNT ensembles—are gravely and adversely affected
by the infinite-length assumption.

Thus, the problem of electromagnetic-wave scattering by
an isolated CNT of finite length must be considered a canoni-
cal problem of nanoelectromagnetics. This canonical prob-
lem must be tackled for understanding the potentiality of as
well as for designing CNT nanoantennas.

The role of edge effects in the electromagnetic responses
of isolated semi-infinite CNTs was investigated earlier17 us-
ing the Wiener-Hopf technique �also called the factorization
method�.30,31 But the extension of the Wiener-Hopf tech-
nique to finite-length structures is unfruitful—as discussed
by Mittra and Lee31 —because it does not lead to exact ana-
lytical formulas. Therefore, direct analysis based on the in-
tegral equations of electromagnetics is appealing, which con-
clusion provided the motivation for this paper.

Since the cross-sectional radius of a CNT is much smaller
the wavelength in the optical regime, whereas the CNT
length is comparable in magnitude, by virtue of the scale
invariance of the Maxwell equations,32–34 microwave wire
antennas can serve as macroscopic analogs of CNTs in the
optical regime. An adequate theory of isolated wire antennas
has been developed from an integral equation by Leontovich
and Levin.35 Although that method is suitable for CNTs, its
direct application to CNTs in the optical regime is impossible
©2006 The American Physical Society-1
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for two reasons. First, to a high accuracy, microwave wire
antennas are virtually perfect conductors,35 which underlies
the Lentovich-Levin method. Accounting for the skin effect
modifies, but does not significantly change, the application
of the Leontovich-Levin method. In contrast, the conductiv-
ity of a CNT is influenced by interband transitions and thus
demonstrates complex resonances in the optical regime.4,6

Second, the effective boundary conditions on the electromag-
netic field on the surface of a CNT—which are two-sided
impedance boundary conditions4,6 used in macroscopic elec-
tromagnetics for the characterization of semitransparent grid
screens30—are nontrivially different from those for micro-
wave wire antennas. Therefore, standard approaches for mi-
crowave wire antennas require modification for application
to CNT optical nanoantennas.

To our knowledge, there are just two theoretical treat-
ments of CNT antennas available.20,23 The treatment of
Burke et al.20 contains two basic restrictions. First, it is based
on the telegrapher’s equations: hence, as it neglects the in-
fluence of radiation on the current distribution, it is not self-
consistent. The assumption is often used for macroscopic
wire antenna,36 but its application to CNT antennas appears
dubious. This is because the working modes of a microwave
wire antenna and a CNT optical nanoantenna are essentially
different: Transverse electromagnetic �TEM� modes propa-
gate in macroscopic vibrators, whereas strongly retarded sur-
face waves are characteristic of CNTs.4,6 Therefore the CNT
conductivity and inductance per unit length must be derived
from electronic transport characteristics of CNTs and incor-
porated into the treatment of Burke et al. Second, as that
treatment20 does not take into account interband transitions
of � electrons, its applicability is limited to the low-
frequency regime below the optical �interband� transition
threshold.

A better approach to CNT nanoantennas has recently been
developed by Hanson23 as the numerical solution of the
Hallén integral equation37,38 with effective two-side imped-
ance boundary conditions.4 However, interband transitions
are again beyond the pale of this treatment, which is there-
fore restricted to the low-frequency regime. But in that re-
gime, a CNT behaves similarly to a point dipole antenna,38

and so its radiative pattern has a trivial dependence on the
scattering angle: F����sin �.

We present here a self-consistent theoretical analysis of
scattering by an arbitrary achiral CNT in a wide frequency
range, from terahertz up to ultraviolet frequencies. Our
analysis is free of the restrictions accompanying its predeces-
sor treatments.20,23

This paper is organized as follows. In Sec. II, the
Leontovich-Levin equation is formulated for an isolated
CNT of finite length. In Sec. III, an approximate analytical
solution of that integral equation is found as the first step in
an iterative procedure. The scattering of plane waves by a
finite-length CNT is analyzed in a wide range of frequencies
and angles of incidence in Sec. IV, with ensuing discussions
provided in Sec. V. Numerical and approximate analytical
solutions are compared, and the paper concludes in Sec. VI
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with an assessment of both resonances in CNT-based com-
posite media and an isolated CNT as an optical nanoantenna.

II. INTEGRO-DIFFERENTIAL EQUATIONS
FOR A FINITE-LENGTH CNT

A. Boundary-value problem

Let an isolated single-walled CNT of length L and cross-
sectional radius R, and aligned parallel to the z axis of a
Cartesian coordinate system, be exposed to an externally im-
pressed field Einc�r , t�=E0�r�exp�−i�t�, where � is the an-
gular frequency. This fields induces a surface current density
j�r� in the CNT, which reradiates the scattered field.

The scattered electromagnetic field can be expressed in
terms of the electric Hertz potential �,30 such that

��2 + k2�� = 0, �1�

where k=� /c is the free-space wave number and c is speed
of light in vacuum.

Assuming the CNT radius to be small as compared to the
free-space wavelength �=2� /k, we neglect the transverse
current—that is, we set j�r�= j�r�ez, where ez is the unit vec-
tor along the CNT axis. Furthermore, we set j�r�= j�z�,
thereby neglecting other spatial variations of the axial cur-
rent on the CNT surface. Hence, in the cylindrical coordinate
system �� ,z ,	�, we get

��r� � ���,z�ez. �2�

Accordingly, the only nonzero components of the scattered
electromagnetic fields are as follows:

E�
sc =

�2�

�z � �
, �3�

Ez
sc = � �2

�z2 + k2�� , �4�

H	
sc = ik

��

��
. �5�

Three boundary conditions for �1� emerge from the effective
impedance boundary conditions for CNTs �Ref. 4� as fol-
lows:

� ��

��
�

�=R+0
− � ��

��
�

�=R−0
=

4�
zz

ikc
� �2�

�z2 + k2� + E0z	,


z
 � L/2, �6�

� ��

��
�

�=R+0
= � ��

��
�

�=R−0
, 
z
 � L/2, �7�


�
�=R+0 = 
�
�=R−0, −  � z �  . �8�

Here and hereafter, E0z=E0 ·ez and 
zz is the axial conduc-
tivity of an isolated CNT.

The boundary conditions �6�–�8� actually hold for infi-
4
nitely long CNTs. But these conditions are local and there-
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fore can be applied to finite-length CNTs and other finite
objects such as smooth joints of CNTs of different radii, Y
junctions of CNTs, and CNT ensembles. The situation is the
same as in the theory of the skin effect in three-dimensional
�3D� bulk conductors: although impedance boundary condi-
tions are derived for plane infinite surfaces, they are gener-
alized to finite bodies with curved surfaces, waveguides,
gratings, etc. A negligibly small skin depth in comparison to
the typical body size and radius of curvature is the necessary
condition for the approach to be valid.39 For CNTs the
boundary conditions �6�–�8� remain local if the condition
L�R holds true.

The presence of edges modifies the electron zone struc-
ture in CNTs due to the electron edge states.40 There are two
types of edge states. The first type are due to the direct in-
fluence of the edges in strict analogy with the Tamm levels in
semi-infinite bulk mediums, and the second type are due to
topological defects such as pentagons in a hexagonal carbon
lattice. Since the edge states of both types are strongly local-
ized in the vicinity of the edges,40 we neglected their contri-
bution to the CNT conductivity. However, we do take the
edges into account in Sec. II C and later.

B. Axial conductivity

The axial conductivity 
zz was derived via quantum trans-
port theory as6


zz��� = −
ie2�

�2 � R� 1

��� + i/���s=1

m 
1st BZ

�Fc

�pz

�Ec

�pz
dpz

− 2�
s=1

m 
1st BZ

Ec
Rvc
2
Fc − Fv

�2��� + i/�� − 4Ec
2dpz� ,

�9�

where e is the electron charge, � is the normalized Planck
constant, and pz is the axial projection of quasimomentum.
The integer s=1,2 ,3 , . . . ,m labels the �-electron energy
bands; here, m is an index appearing in the dual index �m ,n�
used to classify CNTs.3,5,6 The time constant of the electronic
mean free path � is assumed to be equal to the inverse relax-
ation frequency.

The first term on the right side of �9� is the Drude term
corresponding to the intraband conductivity, while the sec-
ond term describes the contribution of interband transitions
between the valence and conduction bands. The indexes c
and v refer to the conduction and valence bands, respec-
tively.

The abbreviation “1st BZ” restricts the variable pz to the
first Brillouin zone, and

Fc,v�pz,s� =
1

1 + exp�Ec,v�pz,s� − �ch

kBT
	 �10�

is the equilibrium Fermi distribution function. Here T is the
temperature, kB is the Boltzmann constant, and �ch is the
chemical potential; in graphite and undoped CNTs, � =0.
ch
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The normalized matrix elements of the dipole transition
between conduction and valence bands, denoted by Rvc, are
evaluated in the tight-binding approximation after taking into
account transverse quantization of the charge carriers’ mo-
tion and the hexagonal structure of the graphene lattice.6,10

For zigzag CNTs, which are denoted by the dual index
�m ,0�, we have

Rvc�pz,s� = −
b�0

2

2Ec
2�pz,s�

�1 + cos�apz�cos��s

m
��

− �2 cos2��s

m
�	 , �11�

where b=0.142 nm is the interatomic distance in graphene,
�0�2.7 eV is the overlap integral,41 and a=3b /2�. The
electron energy for zigzag nanotubes is given by3

Ec,v = ± �0�1 + 4 cos�apz�cos��s

m
� + 4 cos2��s

m
� ,

�12�

and explicit expressions for Ec,v and Rvc for armchair �m ,m�
CNTs are also known.3

C. Edge conditions

The boundary conditions �6�–�8� have to be supplemented
by radiation conditions30 as well by edge conditions. The
latter express the absence of the concentrated charges on the
edges z= ±L /2 of the �Ref. 30�—i.e.,

j�±L/2� = 0. �13�

D. Hallén equation for a CNT

Since the axial current in the CNT is assumed to be inde-
pendent of the azimuthal coordinate, we can formulate an
approximate 1D integro-differential equation which is trac-
table both for numerical work and approximate analytical
solution.

In the theory of microwave wire antennas, there are dif-
ferent methods for that averaging. Each method leads to a
specific form of the 1D integrodifferential equation: the
Leontovich-Levin equation,35 the Hallén equation,37,38 the
Pocklington equation,42,43 etc. Although these equations are
physically equivalent to one another, their specific forms
make them suitable for different problems. We chose the
Leontovich-Levin equation35 for application to CNTs, be-
cause it is amenable to both analytical and numerical meth-
ods at different stages of analysis.

The solution of the Helmholtz equation �1� with boundary
conditions �6�–�8� and edge conditions �13� is sought as a
single-layer potential—i.e.,

���,z� =
2iR

�


0

� 
−L/2

L/2

j�z��G�R,�,	,z − z��dz�d	 ,

�14�
-3



SLEPYAN et al. PHYSICAL REVIEW B 73, 195416 �2006�
where j�z� is the unknown surface current density to be
found and

G�R,�,	,z� =
exp�ik�R2 + �2 − 2R� cos 	 + z2�

�R2 + �2 − 2R� cos 	 + z2
�15�

is the free-space Green function. In view of the continuity of
the single-layer potential over the whole space including the
CNT surface, the boundary conditions �7� and �8� are ful-
filled automatically, whereas the boundary condition �6�
gives

j�z� = 
zz� �2��R,z�
�z2 + k2��R,z� + E0z�z�	 . �16�

On the nanotube surface ��=R�, the Green function in �14�
can be rewritten as

G�R,R,	,z − z�� = G�	,z − z�� = exp�ikr�/r , �17�

with r=��z−z��2+�2 and �=2R sin�	 /2�.
Next we define

�̃�z� = ��R,z� + ��z� , �18�

where

��z� =
1

2ik


−L/2

L/2

E0z�z��exp�ik
z − z�
�dz� + C1exp�ikz�

+ C2exp�− ikz� , �19�

with C1 and C2 as arbitrary constants. In terms of �̃�z�, the
surface current density is expressed as

j�z� = 
zz� �2�̃�z�
�z2 + k2�̃�z�	 . �20�

Substitution of �18� and �20� into �14� leads to the Hallén
equation

�̃�z� − ��z� =
2i
zzR

�


0

� 
−L/2

L/2 � �2�̃�z��
�z�2 + k2�̃�z��	G�	,z

− z��dz�d	 . �21�

If we find the Hertz potential from the foregoing equation,
Eq. �20� allows us to obtain the surface current distribution
over the CNT.

The Hallén equation for CNTs was first derived and nu-
merically solved by Hanson.23 The integral in �21� can be
handled by a quadrature formula, thereby transforming �21�
into a matrix equation. The solution of the corresponding
characteristic equation yields the eigenfrequencies and eigen-
modes of a CNT as a high-Q microcavity.

E. Leontovich-Levin equation for a CNT

For further analysis, we consider the inner integral in Eq.
�21�:
195416
T̃�z,	� = 
−L/2

L/2 j�z��
r

exp�ikr�dz�. �22�

Here, z�=z±�r2−�2 and dz�= ±rdr /�r2−�2, where the upper
and lower signs correspond to the regions z��z and z��z,

respectively. As such, T̃�z ,	� can be rewritten as

T̃�z,	� = − 
z�=−L/2

z�=z j�z��exp�ikr�
�r2 − �2

dr

+ 
z�=z

z�=L/2 j�z��exp�ikr�
�r2 − �2

dr . �23�

In view of the condition �13� and the identity dr /�r2−�2

=d ln�q�r+�r2−�2�� with q as an arbitrary constant with the
dimensionality of the inverse length, integration by parts
leads to

T̃�z,	� = − 2j�z�exp�ik��ln�q��

+ 
−L/2

L/2

ln�q�r + �r2 − �2��exp�ikr�

� � z − z�


z − z�

� j�z��
�z�

− ikj�z��

z − z�


r
	dz�. �24�

On the CNT surface the inequality k��1 holds true,
which allows us to exploit the following approximations: r
+�r2−�2�2 
z�−z
 and r�
z�−z
. Then, correct to order kR,
we have

T̃�z,	� = − 2j�z�ln�q�� + V�z, j�z�� , �25�

where

V�z, j�z�� = 
−L/2

L/2

ln�2q
z − z�
�exp�ik
z − z�
�

� � z − z�


z − z�

� j�z��
�z�

− ikj�z��	dz�. �26�

Subject to �20�, substitution of �25� into �21� followed by
integration over the azimuthal coordinate 	 leads to the in-
tegrodifferential equation

� �2

�z2 + �k2 −
i�

2�
zzRX
�	�̃�z�

= −
i�

2�
zzRX
��z� +

1


zzX
V�z, j�z�� , �27�

where

X = 2 ln�2qR� +
2

�


0

�

ln�sin�	/2��d	 = 2 ln�qR� . �28�

Equation �27� includes the arbitrary parameter q. It is rea-
sonable to choose q in such a way as to minimize the con-
tribution of the integral V�z , j�z�� in �27�. For this purpose,
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we assume that the eigenfunctions of the differential operator
on the left side of �27� are identical to the eigenwaves in a
transmission line.

In the case of a perfectly conducting wire antenna, the
eigenfunctions are the forward and counterpropagating T
waves of a single-wire transmission line;30 hence, it is suffi-
cient to set q=k �Ref. 35�.

But the situation is radically different for a CNT in the
optical regime, because the eigenwaves in a CNT are
strongly retarded surface waves.4 From the differential op-
erator on the right side of �27�, we find the corresponding
complex-valued wave numbers

� = ± �k2 − i�/�2�
zzRX� . �29�

An alternative expression for these wave numbers emerges
from a dispersion equation as4

�2 = k2 +
i�

4�R
zzK0���2 − k2R�I0���2 − k2R�
, �30�

where K0�·� and I0�·� are the modified Bessel functions.
Then, X can be obtained from the two foregoing equations as

X = − 2K0���2 − k2R�I0���2 − k2R� �31�

and, correspondingly,

q = R−1exp�X/2� . �32�

Now, let us apply the operator ��2 /�z2+k2� to the right
and left sides of �27�. Then, in view of �20�, Eq. �27� trans-
forms into the integrodifferential equation

� �2

�z2 + �k2 −
i�

2�
zzRX
�	 j�z�

= −
i�

2�RX
E0z�z� +

1

X
� �2

�z2 + k2�V�z, j�z�� �33�

for the axial current density in the CNT.
Equation �33� is the Leontovich-Levin equation for a

CNT in the optical regime. Its solution must take the bound-
ary conditions �13� into account. The first term on the right
side of �33� describes the action of the externally impressed
field, while the second term is due to the influence of the
current distribution over the CNT. As 
zz→, Eq. �33� re-
duces to the Leontovich-Levin equation for a perfectly con-
ducting thin-wire antenna.35

III. APPROXIMATE ANALYTICAL SOLUTION

Let us now obtain an approximate analytical solution of
�33� with an iterative approach. Since the quantity 1 /X de-
termined by �31� is a small parameter as compared with
unity, the axial current density in �33� may be expanded as
the series

j�z� = j�0��z� +
1

X
j�1��z� +

1

X2 j�2��z� + ¯ . �34�

The zeroth-order approximation j�0��z� satisfies the equation
195416
�2j�0��z�
�z2 + �k2 −

i�

2�
zzRX
� j�0��z� = −

i�

2�RX
E0z�z� ,

�35�

whereas the �th-order term ���0� can be obtained from the
recurrence relation

� �2

�z2 + �k2 −
i�

2�
zzRX
�	 j����z� = � �2

�z2 + k2�V�z, j��−1��z�� .

�36�

In the zeroth-order approximation we neglect all terms in
�34� except the first one, so that

j�z� � j�0��z� . �37�

Thus, we neglect the influence of radiation on the current
distribution over the CNT, the relatively small impact of this
neglect being demonstrated in Sec. IV by comparing the pre-
dictions due to �37� with those obtained by direct numerical
solution of the Hallén equation �21�.

The result obtained resembles that from the transmission-
line model formulated by Burke et al.20 for a CNT dipole
antenna. But that formulation is not self-consistent. Indeed,
�35� can be reduced to the standard form of the telegrapher’s
equations with circuit parameters per unit length expressed
in terms of X and 
zz. However, the values of circuit param-
eters evaluated in that way turn out to be significantly differ-
ent from the corresponding parameters in Ref. 20. The rea-
son for the differences is as follows. The formulation of
Burke et al. is based on the intuitive assumption that the
retarded wave in a CNT is constituted by � electrons at the
Fermi level. Therefore, the phase velocity in CNT turns out
to be of the order of the Fermi velocity ���F �Ref. 44�,
which corresponds to the retardation � /c�0.01. A more rig-
orous analysis4,6 demonstrates that the contribution of other
energy levels is also of significance and a more realistic es-
timate of the retardation is � /c�0.02. Thus, the theory pre-
sented in Ref. 20 allows an estimation of the qualitative char-
acteristics of a CNT antenna, but it may lead to incorrect
spectral features. The same conclusion has been arrived at by
Hanson23 from numerical analysis.

The inequality

k2 �
�


2�
zzRX

�38�

holds true for both semiconducting and metallic CNTs in a
wide frequency range from terahertz to ultraviolet, except in
the vicinity of the plasmon resonance.45 We define the plas-
mon resonance as the frequency46

�p = 2�0/ � , �39�

and CNTs satisfying condition �38� are referred to as imped-
ance CNTs from here onwards. The electric current density
in the CNT is derived from �35� with boundary condition

�13� as
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j�z� = D+exp�i�z� + D−exp�− i�z� +

zz��2 − k2�

2i�

� 
−L/2

L/2

E0z�z��exp�i�
z − z�
�dz�, �40�

where

D± =
f� − f±exp�− i�L�
�exp�− 2i�L� − 1�

�41�

and

f± =

zz��2 − k2�

2i�


−L/2

L/2

E0z�z��exp�±i�z��dz�. �42�

The first two terms on the right side of �40� describe strongly
retarded surface waves with wave number ��=Re��� and
damping constant ��=Im���.

When �����, these surface waves are weakly attenuated;
hence, there are surface-wave resonances at frequencies re-
lated to the CNT length by the condition

�����L � �s, s = 1,2, . . . . �43�

Note that this definition differs from the terminology adopted
in Refs. 20 and 23, wherein surface-wave resonances deter-
mined by the condition �43� are referred to as plasmon reso-
nances. Since they are determined solely by the geometry of
CNTs, we prefer to call the surface-wave resonances as geo-
metric resonances. In the vicinity of these resonances, the
surface current density is mainly determined by first two
terms on the right side of �40�.

When �����, the surface wave rapidly attenuates on the
CNT. The current density distribution in the central part of
nanotube is then determined by the third term on the right
side of �40� and thus follows the external field distribution—
because the accompanying first and second terms contribute
significantly only in the vicinity of CNT edges z= ±L /2. In
Sec. IV, a comparison of the approximate analytical solution
�40� with the numerical results presented by Hanson23 shows
that �40� is a quite reasonable approximation for both semi-
conducting and metallic nanotubes.

Knowledge of the surface current density distribution al-
lows determination of the scattered electromagnetic field in
far zone in polar coordinates as36

E�
sc�r,�� = H	

sc�r,�� = −
2i��RL

c2

exp�ikr�
r

F��� , �44�

where r=��2+z2 and �=tan−1�� /z�, and

F��� =
sin �

L


−L/2

L/2

j�z�exp�− ikz cos ��dz �45�

is the scattering pattern.
Let a plane wave epexp�ik ·r− i�t� be incident on a CNT

such that k ·ez=k cos �0 and ep=k� �k�ez� /k2. In this case,

the scattering pattern is given by

195416
F��,�0� � F���

= Af̃��cos �0 − cos ��kL/2� + B+ f̃��k cos � − ��L/2�

+ B− f̃��k cos � + ��L/2� , �46�

where

f̃��� =
sin �

�
, �47�

A = 
zz sin �0
�2 − k2

��2 − k2cos2 �0�
, �48�

and

B± = − A
sin��� ± k cos �0�L/2�

sin��L�
. �49�

Equation �46� satisfies the reciprocity theorem F�� ,�0�
=F��0 ,��.

In the long-wavelength regime �L���, the electromag-
netic properties of a CNT can be characterized by the polar-
izability scalar

� =
2�iR

�


−L/2

L/2

j�z�dz , �50�

and the scattering pattern is the same as for an electrically
small, dipolar scatterer.47

IV. NUMERICAL RESULTS

A. Frequency range of optical transitions

Numerical studies were initially undertaken for the �9,0�
zigzag CNT, with �=3�10−12 s �Ref. 48�. In the frequency
regime of optical transitions �i.e., from near-infrared to ultra-
violet�, �� is sufficiently large and surface waves are strongly
attenuated. Thus, as mentioned in Sec. III, in this regime the
surface current density distribution is described by �40� rea-
sonably well and the scattering pattern is given by �46�. The
scattering pattern of an electrically long CNT �L�1/��� is
mainly determined by the third term in expression �46�,
whereas the first and second terms are significant only near
the CNTs edges—as is evident from Fig. 1. Clearly then, the
first and second terms on the right side of �40� are significant
only for short CNTs �L�1/���.

Figure 2 demonstrates the changes in the scattering pat-
tern with the CNT length and the angle of incidence. Figures
2�a� and 2�b� indicate that the main lobe narrows and be-
comes more pronounces as L increases. As follows from
�46�, the maximum of the main lobe is observed at the angle
�=�0. Therefore, the main lobe rotates and new minor lobes
appear with the change of �0, which is evident from Figs.
2�a� and 2�c�. Equation �46� predicts increase in the scattered
intensity in the vicinity of interband transitions, where 
zz
increases drastically.

Figure 3 depicts the scattering patterns for zigzag CNTs at
the plasmon frequency and different mean-free-path time

constants. Figures 3�a� and 3�b� are drawn for �0=90° and
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�0=55°, respectively. A CNT with even m �=18� was chosen,
because the conductivity of �2l ,0� zigzag tubes in the vicin-
ity of plasmon frequency is 10–100 times larger �dependent
on the mean free pass time magnitude� than the conductivity
of other achiral CNTs, armchair or zigzag, with odd m. That
property follows from the fact that Ec,v�pz ,m /2�= ±�0 for
any even m; see �12�. Therefore, in zigzag CNTs with even
m, the band gap for � electrons Ec−Ev=2�0 is constant over
the entire Brillouin zone and is equal to the plasmon energy

FIG. 1. Normalized distribution of axial current density
j�z� / jmax on a �9,0� zigzag CNT of length L=1.16�, in the fre-
quency regime of optical transitions �solid line�, when �0=30° and
�=432.4 nm. For comparison, the distribution in an infinitely long
CNT, j�z�=
zzE0z�z�, is presented as the dashed line.

FIG. 2. Scattering patterns for a �9,0� zigzag CNT in the fre-
quency regime of optical transitions for different values of L and �0,
when �=432.4 nm. �a� and �c� L=�, �b� L=2�, �a� and �b� �0=90,
and �c� �0=60°. The scattering pattern in the long-wavelength limit
L�� is presented in �d�. The horizontal bold lines show the orien-

tation of the CNT.

195416
��p=2�0. In other words, all electrons in the Brillouin zone
are resonant. The contribution of these resonant electrons to

zz, as described by the term with s=m /2 in the second sum
on the right side of �9�, becomes dominantly large. Thus, for
large �, the scattering patterns of �2l ,0� CNTs turn out to be
similar to those for perfectly conducting wire antennas, as is
confirmed by the dashed lines in Fig. 3. A decrease in �
changes the patterns to the form characteristic for high-
impedance wire antennas; see the solid lines in Fig. 3. We
have observed that the same behavior in the vicinity of the
plasmon frequency is characteristic of other achiral CNTs.

Parenthetically, the special attributes of the scattering pat-
terns of �2l ,0� zigzag CNTs in the vicinity of the plasmon
frequency as functions of � should be useful for the experi-
mental determination of � and the CNT type.

B. Long-wavelength regime

Figure 4 presents spectral dependences of the real and
imaginary parts of the polarizability scalar � of a �9,0� zig-
zag CNT far below the frequency range of interband optical
transitions—i.e., in the long-wavelength regime �L���. The
dashed line corresponds to the approximate analytical solu-
tion �40�, while the solid line is for the numerical solution of
�21� by a method analogous to that of Hanson.23

Resonances of the polarizability scalar occur in Fig. 4 at
frequencies satisfying �43�. The resonance modes are subdi-
vided into symmetric �s odd� and antisymmetric �s even�
types. Antisymmetric modes give minor contributions to �,
because the contributions of different regions of the CNT to
the integral �44� cancel out. As s increases from unity, the
resonances of � become less pronounced.

The dotted line in Fig. 4�b� shows the polarizability of a
perfectly conducting nanotube. Obviously, a CNT is not a
perfect conductor—neither at low frequencies nor off-
resonance.

The polarizability scalar of semiconducting CNTs also
demonstrates resonant behavior with resonances redshifted
in comparison to metallic CNTs. The eigenwaves excited in
semiconducting CNTs have extremely strong retardation
� /c�1.8�10−4 and therefore contribute to the low-
frequency polarizability scalar. As an example, Fig. 5 dem-

FIG. 3. Scattering patterns for a �18,0� zigzag CNT of length
L=1.4� at the plasmon frequency �p. Solid and dashed lines cor-
respond to �=1�10−12 s and �=1�10−11 s, respectively, and �
=432.4 nm. �a� �0=90° and �b� �0=55°.
onstrates the geometric resonance of � at linear frequency
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�=� /2�=25 GHz for a �23,0� semiconducting zigzag CNT
of length L=1000 nm. Obviously, the corresponding free-
space wavelength considerably exceeds the CNT length.
Since surface waves formed on semiconducting CNTs pos-
sess higher retardation and higher attenuation, geometric
resonances in such nanotubes are shifted into the GHz re-
gime.

Strong retardation of electromagnetic waves is character-
istic of various types of nanostructures. For example, Refs.
49 and 50 predict additional geometric resonances �Mie reso-
nances� in the vicinity of the exciton line of a semiconductor
spherical quantum dot �QD�, where the Lorentzian form for
the effective permittivity of a composite medium containing
QD’s holds. As a result, the wavelength in the composite

FIG. 4. Frequency dependences of �a� the imaginary and �b� real
parts of the polarizability scalar � of a �9,0� zigzag metallic CNT of
length L=1 �m. The solid line presents the exact numerical solu-
tion, while the dashed line corresponds to the approximate analyti-
cal solution �40�. The polarizability scalar of a perfectly conducting
nanotube is depicted by the dotted line.

FIG. 5. Frequency dependences of the real �solid line� and
imaginary �dashed line� parts of the polarizability scalar of a �23,0�

semiconducting zigzag CNT of length L=1 �m.

195416
medium becomes comparable to the linear dimensions of the
QD’s, thereby providing strong amplification in the regime
kRQD�1 where RQD is the QD radius. Note that the retarda-
tion of electromagnetic waves in this composite medium is
due to the resonant behavior of the effective permittivity,
while retardation in a CNT is caused by the localization of
the guided waves to the CNT surface.

At frequencies below the first geometric resonance, the
real parts of the polarizability scalar of both semiconducting
and metallic CNTs remain positive and tend to the polariz-
ability scalar of a perfectly conducting cylinder as �→0.
Note that this behavior does not account for the Coulomb
screening of � electrons �see Ref. 5 for details�, which is of
importance in the low-frequency regime. Coulomb screening
leads to the nonlocality of the CNT response, which was
neglected for the derivation the boundary conditions �6�–�8�
and is differently manifested in semiconducting and metallic
CNTs. Thus, Coulomb screening distinguishes the actual
electrostatic properties of semiconducting and metallic
CNTs.

V. ANALYSIS AND DISCUSSION

A. Geometric resonances and CNT-based composite mediums

The geometric resonances can manifest themselves in the
optical characteristics of CNT-based composite media.51–56.
However, the length distributions of CNTs in the composite
mediums studied are unknown and samples of the composite
medium may differ in morphology, orientational statistics,
etc. Thus, only a qualitative comparison of theoretical results
for isolated CNTs with experimental data for CNT-based
composite mediums is possible.

The main feature experimentally observed in Refs. 51–56
is a nonmonotonic frequency dependence of the reflectance
and transmittance of slabs of CNT-based composite mediums
in the spectral range 1–100 THz. This behavior does not
follow from the standard Drude theory57 and, until now, has
not been given a satisfactory theoretical interpretation.
Ugawa et al.52 found empirically that the effective permittiv-
ity of a CNT-based composite medium can be represented as
a superposition, of Drudian and Lorentzian functions, which
allowed them to assume excitation in CNTs of low-frequency
“Lorentz oscillations for the localized transitions.” The spec-
tral width of the resonance is of the order of the resonant
frequency.52 Obviously, it is then inappropriate to classify the
composite medium’s response as a “resonance.”

Nevertheless, the experimentally observed broad low-
frequency peak can be interpreted as a inhomogeneously
broadened geometric resonance in an isolated CNT. Indeed,
with realistic CNT parameters, the calculated magnitude of
the first geometric resonance frequency �1 falls into the ex-
perimentally found spectral range. Furthermore, the magni-
tude of �1 is strongly influenced by the CNT length and type,
as may be concluded from Figs. 4 and 5. Consequently, one
can expect strong inhomogeneous broadening of the reso-
nance due to distributions of the length and type of CNTs.
Our theory predicts the isolated CNT spectral width to be
approximately 50 times less than the resonance frequency

�1. This means that the inhomogeneous broadening of the
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Lorentz line can really dominate over all other possible
broadening mechanisms—thermal broadening, in particular.
That explains the temperature independence of experimental
data obtained by Ugawa et al.52 over a wide temperature
range from 7.8 K to 298 K.

Measurements carried out in thin films containing CNTs
aligned normal to the thickness direction 54,55 demonstrate
strong optical anisotropy of films. The optical response for
axially aligned incident electric field significantly exceeds
the response for transverse alignment �i.e., E0z=0�. This fact
is in complete agreement with the axial conductivity model
used in our paper and resulted in the boundary conditions
�6�–�8�.

In the low-frequency regime ����10−2 eV�,
measurements53–55 show a rapid decrease of the polarizabil-
ity scalar � as the frequency decreases. Such a behavior is in
accordance with theoretical results presented in Figs. 4 and
5, and it is completely inconsistent with the Drude theory for
bulk media, which predicts ��1/���+ i /�� in the low-
frequency regime.57 The reason is that the polarizability sca-
lar of an isolated finite-length CNT—see �50�—with the
axial current-density determined by �40� does not follow the
Drude theory, but tends to follow that theory only as L→.
Thus, the qualitative correlation between experimental obser-
vations and theoretical predictions allows us to recommend
the approach developed for theoretical modeling of the opti-
cal response properties of CNT-based composite media in the
framework of effective medium theories.58

B. CNTs as optical nanoantennas

The results obtained in this paper clearly demonstrate that
CNTs can be used as antennas over the wide spectral range
from terahertz to ultraviolet. Our theory of scattering by a
CNT applies to the use of a CNT as a receiving antenna.
Realistic antennas are characterized by several parameters,36

all of which are dependent on the surface current density
distribution. Therefore, �33�, �34�, and �40� constitute a
mathematical technique for the calculation of the parameters
of an isolated CNT of finite length as a receiving antenna.

The reciprocity theorem59,60 allows us to extend our re-
sults and state the potential of isolated CNTs as transmitting
nanoantennas. The scattering pattern is then referred to as the
radiation pattern. The radiation pattern of an antenna during
transmission and its reception pattern as a receiver are iden-
tical, the difference between transmitting and receiving an-
tennas being in their power-handling capabilities. The trans-
mitting antenna is also described by the same equations as
the receiving antenna, but with E0z replaced by a function
describing the electromotive force �EMF�. As Hanson23

pointed out, the issue of the physical imposition of an EMF
in a CNT is not entirely clear at present. One possible way is
to apply a voltage to a CNT using epitaxially grown metallic
contacts or semiconducting nanowires.19 Another possibility
is electromagnetic excitation using photoluminescence from
quantum emitters placed inside the CNT. As examples of
such quantum emitters, we suggest quantum dots; indeed,
single quantum-dot excitation of a bowtie antenna has been
realized.46
195416
Under certain conditions, intrinsic defects and pinches in
a CNT can also constitute quantum dots. This idea looks
especially intriguing if applied to metallofullerenes encapsu-
lated in a single-wall CNT (e.g., ��Gd@C82�n@SWNT�
peapods61), since such a structure places the metal atoms
very close to the CNT surface and enables the invocation of
the Purcell effect �a drastic decrease of the radiative
lifetime�.7

Probing of an electromagnetically excited CNT by a weak
signal will allow electrical scanning of the radiation pattern.
Such scanning in the field of radio-frequency antennas is
carried out mechanically.

As noted in the predecessor papers,20,23 CNT antennas are
characterized by a low-level antenna efficiency eeff
= Pout / Pin�10−5–10−6, where Pin and Pout denote the input
and output powers, correspondingly. But this may be suffi-
cient for CNT nanoantennas, because nanocircuits do not
consume much power.23 However, small values of eeff lead to
an increased noise temperature of the antennas, which could
be deleterious for satisfactory performance.

Analysis of optical noise in a CNT optical nanoantenna
constitutes a formidable and independent task to be consid-
ered elsewhere. Here, we are content to note that the analysis
will require knowledge of the retarded Green function for the
electromagnetic field in the presence of a CNT and the meth-
odology developed in this paper can be used for that purpose.
Specifically, the desired Green function is defined by the
expressions �14� and �33� with

E0z�z� = � �2

�z2 + k2� 1

2�


0

2� exp�ikr�
r

d	 , �51�

where r= �R2+�0
2−2R�0cos	+ �z−z0�2�1/2 and �0 and z0 are

cylindrical coordinates of the source.
Note also that not only CNTs can be used for the design

of monomolecular carbon-based optical antennas. Carbon
toruses62 may serve as folded nanoantennas with a radiation
pattern resembling that of a point magnetic dipole.

VI. CONCLUDING REMARKS

We presented here a theory of electromagnetic scattering
by isolated, achiral, single-wall CNTs of finite length. The
theory is applicable over a wide frequency range �from tera-
hertz to ultraviolet� and especially in the vicinity of the plas-
mon resonance ��=2�0. The theory is based on a quantum-
mechanical microscopic model of the conductivity of a CNT
and the rigorous solution of electrodynamic boundary value
problem for a finite-length CNT. The Leontovich-Levin
equation for the induced surface current density was ex-
tended to CNTs and numerically solved. An approximate
analytic solution was also found as the first step in an itera-
tion process. The polarizability scalar of an isolated finite-
length CNT in the low-frequency regime was evaluated and
analyzed for potential use in estimating the effective consti-
tutive properties of CNT-based composite media.58 The reso-
nances of strongly retarded surface waves caused by the edge
effects �geometric resonances� were revealed. The radiation

pattern of a CNT optical nanoantenna was calculated, and
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some possibilities for pattern control were examined along
with practical methods of exciting CNT nanoantennas. Thus,
the analysis carried out in the paper forms a basis for the
design and development of CNT nanoantennas in different
frequency ranges.
Kempa, J. Rybczynski, A. Herczynski, and Z. F. Ren, Appl.

195416-
ACKNOWLEDGMENTS

The research was partially supported by INTAS under
Project No. 03-50-4409.
1 S. Iijima, Nature �London� 354, 56 �1991�.
2 Carbon Nanotubes: Preparation and Properties, edited by T. W.

Ebbesen �CRC Press, Boca Raton, FL, 1997�.
3 M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Carbon

Nanotubes �Springer, Berlin, 2001�.
4 G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtush-

enko, and A. V. Gusakov, Phys. Rev. B 60, 17136 �1999�.
5 S. A. Maksimenko and G. Ya. Slepyan, in Electromagnetic Fields

in Unconventional Materials and Structures, edited by O. N.
Singh and A. Lakhtakia �Wiley, New York, 2000�, pp. 217–255.

6 S. A. Maksimenko and G. Ya. Slepyan, in Nanometer Structures:
Theory, modeling, and simulation, edited by A. Lakhtakia �SPIE
Press, Bellingham, WA, 2004�, pp. 145–206.

7 I. V. Bondarev, G. Ya. Slepyan, and S. A. Maksimenko, Phys.
Rev. Lett. 89, 115504 �2002�.

8 G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann,
E. E. B. Campbell, and I. V. Hertel, Phys. Rev. A 60, R777
�1999�.

9 G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, A. V. Gusakov,
and J. Herrmann, Phys. Rev. A 63, 053808 �2001�.

10 G. Ya. Slepyan, A. A. Khrutchinski, A. M. Nemilentsau, S. A.
Maksimenko, and J. Herrmann, Int. J. Nanosci. 3, 343 �2004�.

11 O. V. Kibis, D. G. W. Parfitt, and M. E. Portnoi, Phys. Rev. B 71,
035411 �2005�.

12 O. V. Kibis, S. V. Malevannyy, L. Hugget, D. G. W. Parfitt, and
M. E. Portnoi, Electromagnetics 25, 425 �2005�.

13 O. V. Kibis and M. E. Portnoi, Tech. Phys. Lett. 31, 671 �2005�.
14 C. I. Wilke, W. Herrmann, and F. K. Kneubühl, Appl. Phys. B:

Lasers Opt. 58, 87 �1994�.
15 C. Fumeaux, J. Alda, and G. Boreman, Opt. Lett. 24, 1629

�1999�.
16 C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J.

Gonzalez, and G. Boreman, Infrared Phys. Technol. 41, 271
�2000�.

17 G. Ya. Slepyan, N. A. Krapivin, S. A. Maksimenko, A. Lakhtakia,
and O. M. Yevtushenko, AEU, Int. J. Electron. Commun. 55,
273 �2001�.

18 A. Jorio, A. G. Souza Filho, V. W. Brar, A. K. Swan, M. S. Unlu,
B. B. Goldberg, A. Righi, J. H. Hafner, C. M. Lieber, R. Saito,
G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 65,
121402�R� �2002�.

19 A. Kazunori, M. Chikara, K. Hirotsugu, W. Hiroyuki, and S.
Masaaki, U.S. Patent WO03083993 �10 September 2003�.

20 P. J. Burke, S. Li, and Z. Yu, cond-mat/0408418 �unpublished�.
21 M. S. Dresselhaus, Nature �London� 432, 959 �2004�.
22 Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, Phys.

Rev. Lett. 94, 087402 �2005�.
23 G. W. Hanson, IEEE Trans. Antennas Propag. 53, 3426 �2005�.
24 Y. Wang, K. Kempa, B. Kimball, G. Benham, W. Z. Li, T.
Phys. Lett. 85, 2607 �2004�.
25 Z. Yu, S. Li, and P. J. Burke, Chem. Mater. 16, 3414 �2004�.
26 S. Li, Z. Yu, C. Rutherglan, and P. J. Burke, Nano Lett. 4, 2003

�2004�.
27 A. Lakhtakia, G. Ya. Slepyan, S. A. Maksimenko, O. M. Yevtush-

enko, and A. V. Gusakov, Carbon 36, 1833 �1998�.
28 F. J. Garcia-Vidal, J. M. Pitarke, and J. B. Pendry, Phys. Rev.

Lett. 78, 4289 �1997�.
29 W. Lu, J. Dong, and Z.-Ya. Li, Phys. Rev. B 63, 033401 �2000�.
30 L. A. Weinstein, The Theory of Diffraction and the Factorization

Method �Golem, New York, 1969�.
31 R. Mittra and S. W. Lee, Analytical Techniques in the Theory of

Guided Waves �Macmillan, New York, 1971�.
32 G. Sinclair, E. C. Jordan, and E. W. Vaughan, J. Br. Inst. Radio

Eng. 35, 1451 �1947�.
33 A. Lakhtakia, Microwave Opt. Technol. Lett. 7, 328 �1994�.
34 A. Lakhtakia, in Advanced Electromagnetism—Foundations,

theory and applications, edited by T. W. Barrett and D. M.
Grimes �World Scientific, Singapore, 1995�, pp. 390–410.

35 M. A. Leontovich and M. L. Levin, Int. J. Theor. Phys. 14, 481
�1944�.

36 C. A. Balanis, Antenna Theory: Analysis and design �Wiley, New
York, 1997�.

37 E. Hallén, Nova Acta Regiae Soc. Sci. Ups. 11, 1 �1938�.
38 J. van Bladel, Electromagnetic Fields �Hemisphere, Washington,

DC, 1985�.
39 A. S. Ilyinsky, G. Ya. Slepyan, and A. Ya. Slepyan, Propagation,

Scattering and Dissipation of Electromagnetic Waves �Peter Per-
egrinus, London, 1993�.

40 D. L. Carroll, P. Redlich, P. M. Ajayan, J. C. Charlier, X. Blase,
A. De Vita, and R. Car, Phys. Rev. Lett. 78, 2811 �1997�.

41 J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley,
and C. Dekker, Nature �London� 391, 59 �1998�.

42 H. C. Pocklington, Proc. Cambridge Philos. Soc. 9, 324 �1897�.
43 A. Lakhtakia, Beltrami Fields in Chiral Media �World Scientific,

Singapore, 1994�.
44 �F=3�0b /2� =9.71�105 m/s �see Ref. 5�.
45 M. F. Lin and Kenneth W.-K. Shung, Phys. Rev. B 50, R17744

�1994�.
46 J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, Phys. Rev.

Lett. 95, 017402 �2005�.
47 H. C. van de Hulst, Light Scattering by Small Particles �Dover,

New York, 1981�.
48 O. Hilt, H. B. Brom, and M. Ahlskog, Phys. Rev. B 61, R5129

�2000�.
49 S. A. Maksimenko, G. Ya. Slepyan, V. P. Kalosha, N. N. Le-

dentsov, A. Hoffman, and D. Bimberg, Mater. Sci. Eng., B 82,
215 �2001�.

50 H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, Phys. Rev. B 66,

245322 �2002�.

10



THEORY OF OPTICAL SCATTERING BY ACHIRAL¼ PHYSICAL REVIEW B 73, 195416 �2006�
51 F. Bommeli, L. Degiorgi, P. Wachter, W. S. Bacsa, W. A. de Heer,
and L. Forro, Synth. Met. 86, 2307 �1997�.

52 A. Ugawa, A. G. Rinzler, and D. B. Tanner, Phys. Rev. B 60,
R11305 �1999�.

53 B. Ruzicka, L. Degiorgi, R. Gaal, L. Thien-Nga, R. Bacsa, J. P.
Salvetat, and L. Forro, Phys. Rev. B 61, R2468 �2000�.

54 T.-I. Jeon, K. J. Kim, C.-J. Oh, J.-H. Son, K. H. An, D. J. Bae, and
Y. H. Lee, Appl. Phys. Lett. 80, 3403 �2002�.

55 T.-I. Jeon, K. J. Kim, C. Kang, I. H. Maeng, J.-H. Son, K. H. An,
J. Y. Lee, and Y. H. Lee, J. Appl. Phys. 95, 5736 �2004�.

56 J. Wu and L. Kong, Appl. Phys. Lett. 84, 4956 �2004�.
195416-
57 C. Kittel, Introduction to Solid State Physics, 4th ed �Wiley East-
ern, New Delhi, India, 1971�.

58 Selected Papers on Linear Optical Composite Materials, edited
by A. Lakhtakia �SPIE Press, Bellingham, WA, 1996�.

59 V. H. Rumsey, Phys. Rev. 94, 1483 �1954�.
60 R. F. Harrington, Time-Harmonic Electromagnetic Fields

�McGraw-Hill, New York, 1961�.
61 K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H.

Shinohara, and S. Iijima, Phys. Rev. Lett. 85, 5384 �2000�.
62 M. F. Lin, Phys. Rev. B 58, 3629 �1998�.
11


