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Using a generalized Landauer approach we study the nonlinear transport in mesoscopic graphene with
zigzag and armchair edges. We find that for clean systems, the low-bias low-temperature conductance, G, of an
armchair edge system is quantized as G / t̃=4ne2 /h, whereas for a zigzag edge the quantization changes to
G / t̃=4�n+1/2�e2 /h, where t̃ is the transmission probability and n is an integer. We also study the effects of a
nonzero bias, temperature, and magnetic field on the conductance. The magnetic field dependence of the
quantization plateaus in these systems is somewhat different from the one found in the two-dimensional
electron gas due to a different Landau level quantization.
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I. INTRODUCTION

Graphene, a two-dimensional �2D� carbon system on a
honeycomb lattice presents many anomalous properties
when compared with the well-known 2D electron gas ob-
tained in heterostructures. One of the most striking properties
is an exotic integer quantum Hall effect �IQHE� predicted
theoretically,1,2 and measured recently.3,4 The IQHE shows a
Hall conductivity given by: �xy =2�2n+1�e2 /h, where n is a
positive integer. Interestingly, the electrical properties of the
graphene systems can be considered classical, in the sense
that the measured conductance of the systems is found to
increase with the increase of system width and to decrease
with the increase of the system length.5 This experimental
result can be understood as an evidence for the presence of
disorder in the measured systems. This is further supported
by the difficulty in finding experimental evidence for a frac-
tional quantum Hall effect �FQHE�.1,6

In the closely related field of carbon nanotubes, recent
experiments showed that the conductance of a single wall
carbon nanotube is quantized7 and shows Fabry-Perot inter-
ference patterns. These results can be explained within a gen-
eralized Landauer approach, S matrix theory,7,8 and nonequi-
librium Green’s function methods.9,10 The formulation of the
problem was introduced by Lake et al.,11 after the work of
Caroli et al.12–14 Because carbon nanotubes are essentially
wrapped graphene, we expect conductance quantization and
Fabry-Perot interference patterns to be also observable in
ultraclean graphene. The quantization and the interference
patterns, however, should reflect the different types of edges
a graphene sheet has �see Fig. 1�.

The importance of zigzag and armchair edges in graphene
sheets has been recognized in electron microscopy.15 Clearly,
these two types of edges produce very different electron mi-
croscopy intensity curves. We expect, therefore, that coher-
ent charge transport should be different if measured in sys-
tems with different types of edges. As in carbon nanotubes,16

a simple Landauer approach to determine the quantization of
the conductance, G, can be used for mesoscopic graphene
sheets. The calculations follow the generalization of the Lan-

dauer approach introduced earlier by Bagwell and Orlando.17

This type of approach does not account for a discussion of
interference patterns, since it neglects multiple electronic re-
flection at the contacts,7,9 and it will be discussed
elsewhere.18

This paper is organized as follows: in Sec. II we introduce
the tight-binding solution for electrons in graphene strips
having two different types of edges and the differences and
similarities between graphene and carbon nanotubes are dis-
cussed. Starting from the tight binding solution of laterally

FIG. 1. �Color online� Geometry of a finite-size honeycomb
lattice. Top: Sample with a zigzag edge; Bottom: Sample with an
armchair edge. The thick dotted lines represent the position of the
leads which are assumed to be made out of graphene. The rect-
angles in the top left corner of the figures �close to the left lead�
show the geometry of the unit cell.
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confined electron in graphene strips we introduce a Landauer
analysis allowing for the calculation of the conductance due
to quasi-one-dimensional transport arising from the confine-
ment; this is done at zero temperature and in the zero bias
limit. In Sec. III we discuss the effect of temperature, gate
bias, and magnetic field on the conductance curves. It is
found that conductance has a minimum value as function of
the gate potential �or Fermi energy�, from which a “V-like”
curve develops, in agreement with measured transport prop-
erties in graphene samples. Section IV contains our conclu-
sions.

II. A LANDAUER ANALYSIS

The geometry of the problem is shown in Fig. 1, where
the left and right leads are supposed to be made of
graphene.9 This aspect is not essential in the approach we
develop below, where the contacts to the leads will be mod-
eled by a transmission probability �as done in Refs. 7 and 9
in the context of carbon nanotubes�. The systems studied
here are assumed to have a very asymmetric aspect ratio,
where the length, L, is much larger than their width, W.
These systems have some similarity with carbon nanotubes16

but differ from them in a fundamental way: the absence of
periodic boundary conditions along the direction perpendicu-
lar to the edges �the m direction�. As a consequence, it is
possible to have different kinds of strips, characterized by
different types of edges. In what follows, we discuss the
cases of zigzag and armchair edges although other edge ge-
ometries can be studied with the same methods.

The calculation of the conductance G following a Land-
auer type of approach16,17 requires the solution of a tight-
binding problem in a finite geometry. The tight-binding
Hamiltonian has the form

Ht.b. = − t �
�i,j�,�

�ai,�
† bj,� + H.c.� + t�

� �
��i,j��,�

�ai,�
† aj,� + bi,�

† bj,� + H.c.� , �1�

where ai,�
† �ai,�� creates �annihilates� an electron on site Ri,

with spin � ��= ↑ , ↓ � on sublattice A and bi,�
† �bi,�� creates

�annihilates� and electron on site Ri with spin � ��= ↑ , ↓ � on
sublattice B. t is the nearest neighbor ��i , j�� hopping energy
�t�2.7 eV�, and t� is the next-nearest neighbor ���i , j��� hop-
ping energy �t� / t�0.1�. In what follows we suppress the
spin index since it plays no role �apart from a degeneracy
factor�.

In an infinite system the Hamiltonian �1� can be easily
diagonalized and one can show that the low energy elec-
tronic excitations of the problem reside around the K points
of the Brillouin zone19 and have a dispersion given by �t�
does not remove the Dirac point�

E±�k� = ± vF�k� , �2�

where k= �kx ,ky� is a two-dimensional momentum, and vF

=3ta / �2�� �where a is the lattice spacing� is the Fermi-Dirac
velocity. Equation �2� describes the dispersion relation of
Dirac electrons with a speed vF. One of the consequences of

the Dirac dispersion is that the fermions in the system have
zero effective mass, and a linearly vanishing density of
states, N�E� �N�E�� �E�	, at low energies. The linearly dis-
persing electrons and the vanishing of the density of states
lead to a very anomalous metallic behavior with many non-
Fermi liquid properties.1 These anomalous properties are re-
flected in the experimentally measurable quantities, such as
the Hall conductivity in the IQHE.3,4 We are going to show
that the presence of Dirac fermions in the spectrum has also
a strong effect in the conductance of finite graphene strips.

In a finite system the boundary conditions �and hence, the
type of edges� become important in order to define the en-
ergy spectrum. In Fig. 2 we establish the labeling of the
carbon sites in the bulk of the honeycomb lattice, and in Fig.
3 we present the labels for the carbon atoms close to the free
edges of the system. Notice that each unit cell in Figs. 2 and
3 contains four carbon atoms, labeled by wave function am-
plitudes a�n ,m�, b�n ,m�, c�n ,m�, and d�n ,m�, where n and
m are integers that label each unit cell. Since we are assum-
ing that in each system only the edges are different, we im-
pose periodic boundary conditions along the direction paral-
lel to the edges �the n direction� leading to one-dimensional
�1D� transport where the electronic states can be labeled by
the momentum qx. If Ny is the number of unit cells along the
m direction, then the the tight-binding problem with zigzag
edges has a dimension given by �4Ny +2�� �4Ny +2�, while
for the armchair edge its dimension is �4Ny +4�� �4Ny +4�.
For a nanotube, with periodic boundary conditions, the prob-
lem can be formulated in terms of two amplitudes instead of
four.

The calculation of the conductance of a two-dimensional
lattice system with a very asymmetric aspect ratio16 requires
the identification of the number of transverse modes, M���,
at a given energy, �. M��� can be obtained from the solution
of the corresponding tight-binding problem. In Fig. 4 we
show the energy bands obtained from the diagonalization of
the tight-binding Hamiltonian �1� with t�=0 for the zigzag
and armchair edges. It is clear that the two different types of
edges lead to two very different band structures, especially
close to zero energy.

FIG. 2. �Color online� Label of the carbon atoms for Hamil-
tonian �1� in the bulk of the system �only the case t�=0 is shown for
simplicity�. The reader is referred to Fig. 1 where the unit cell is
shown in each case. The black circles, labeled a, b, c, and d, inside
the rectangle or on the rectangle edges, belong to same unit cell; the
other circles represent lattice points in adjacent unit cells connect by
the hopping matrix t.
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It is important to mention the similarities and the differ-
ences between planar systems20 and carbon nanotubes.21 An
armchair nanotube has the hexagons having two sides per-
pendicular to the tube axis, in the zigzag nanotube the hexa-
gons have two sides parallel to the tube axis. A graphene
sample with a zigzag edge has an energy spectrum present-
ing some similarities with an armchair nanotube. It has two
bands crossing the chemical potential at zero energy �and
finite momentum�. A graphene sample with an armchair edge
has a gap at zero energy �near qx=0� and hence is insulating,

except when Ny, the number of unit cells in the m direction,
is a multiple of 3, in which case the gap goes to zero and the
material is metallic �in fact a zero gap semiconductor; see
Fig. 4�.20

A generalized Landauer approach17 shows that the tunnel-
ing current is given by

I�V,T� =
2e

h

 d�M���t̃��,V��f�� − �1� − f�� − �2�	 , �3�

where t̃�� ,V� is the transmission probability per conducting
mode at the energy �, f���=1/ �e�/T+1� is the Fermi-Dirac
distribution �T is the temperature and we have put kB=1�, V
is the bias voltage applied to the system, and �1 ��2� is the
chemical potential at right �left� lead ��1=�2+eV�.

In a clean system, all 1D modes can carry electric current,
as long as they have a finite velocity in the direction parallel
to the edge. Although the zigzag edge system has zero en-
ergy modes with finite qx momentum, the group velocity of
these modes is zero when t�=0, and therefore they do not
contribute to the conductance. If we neglect the effect of the
next nearest neighbor hopping �t�=0�, both edge systems
have two conducting zero energy modes �choosing a metallic
armchair edge system, Ny multiple of three�, and as a conse-
quence the small bias conductance is given by 4e2t̃ /h, at zero
chemical potential.

With the addition of a next nearest neighbor hopping �t�
�0� the picture for the zigzag edge changes substantially:
�1� the half filling case occurs at finite energy �not at zero
energy�; �2� the flat band states located at zero energy, for
t�=0, become dispersive for t��0, and therefore the conduc-
tance is modified. Figure 5 shows the energy levels as func-
tion of the momentum qx for a zigzag system with t�=0 and
t�=0.2t, for Ny =3 �this rather small Ny value allows the in-
dividual visualization of the transverse modes over the full
bandwidth, as it does in Fig. 4 as well�.

FIG. 3. �Color online� This figure shows how to deal with the
tight-binding boundary conditions introduced by the free edges of
the sample. The cells on the right refer to top free edge and the
bottom free edge of a zigzag sample �top of Fig. 1�. The cells on the
left refer to the top free edge and the bottom free edge of an arm-
chair sample �bottom of Fig. 1�. As in Fig. 2, only the sites con-
nected by t are shown.

FIG. 4. �Color online� Energy levels for t�
=0 �in units of t� as function of qx �in units of the
lattice spacing along the n direction� for the two
different types of edges. Ny is the number of unit
cells perpendicular to the edges �along the m di-
rection� and Nx gives the number of momenta
used in the abscissa �it also corresponds to the
number of unit cells along the n direction�. The
horizontal line at zero energy on the right panels
has an interception with zero energy modes in the
upper panel �metallic behavior� and no intercep-
tion in the lower panel �semiconducting
behavior�.
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In order to determine the conductance it is necessary to
know how many 1D transverse modes are active for trans-
port at a given energy. For an armchair edge with Ny multiple
of 3 �and hence a metallic system� one has two conducting
modes at zero energy �see Fig. 6�. As one moves away from
zero energy the number of modes increases as shown in Fig.
6. Hence, the zero-bias zero-temperature conductance of a
clean metallic armchair system is given by

G =
4ne2

h
t̃ , �4�

with n a positive integer. The value of n depends on the value
of the gate potential controlling the electronic density. The
conductance also depends on t̃, the transmission probability,
assumed to be energy independent for simplicity.

A zigzag clean system with t�=0 shows a different depen-
dence. At zero energy G is given by 4e2t̃ /h because of the
presence of the two conducting zero-energy modes �see Fig.
6�. However, as the gate potential moves slightly away from
zero the value of the conductance drops to 2e2t̃ /h, since only
one transverse mode is available. So the situation with a
zigzag system is somewhat ill defined. It is reasonable to
expect that this sudden change on the conductance is difficult
to be experimentally observed, since it would require an ex-
treme fine tuning of the experimental parameters. Therefore,
we expect that the zero-bias zero-temperature conductance of
a system with a zigzag edge to be given by

G =
2�2n + 1�e2

h
t̃ , �5�

with n depending also on the value of the gate potential.

FIG. 5. Energy levels �in units of t� as func-
tion of qx �in units of the lattice spacing along the
n �or x� direction	 for a zigzag system. Right: t�
=0; left: t�=0.2t.

FIG. 6. �Color online� Lower panels: one-
dimensional energy bands �energy in units of t�
associated with a zigzag �left� and a armchair
edge �right� systems for t�=0. Upper panels:
number of 1D channels, M, as a function of en-
ergy �in units of t�.
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The special value of G we found exactly at zero energy
�in the zigzag case� does not survive, however, when
electron-hole symmetry �by this it is understood that the en-
ergy spectrum is not symmetric around zero energy� is bro-
ken by the presence of a finite t�. When t��0 the zero mode
acquires dispersion and the conductance is given by Eq. �5�.
In Fig. 7, the effect of t� in the low-energy band structure and
in M��� is visible. Clearly the zero energy modes have been
removed, leading to two degenerate dispersive bands, and an
asymmetry in energy in the steps of M is introduced. The
asymmetry in energy of M��� is an experimental way of
measuring the value of t� in these systems. In the armchair
case, the effect of t� on G is not as dramatic as in the case of
the zigzag edge system, since in this case the conductance
does not have an abrupt change around zero energy.

In a system with several graphene planes each plane con-
tributes to the conductance almost independently because of
the weak coupling between graphene sheets. Therefore, the
resulting conductance should be, at least approximately,
given by the above results multiplied by the number of lay-
ers.

III. TEMPERATURE, MAGNETIC FIELD, AND VOLTAGE
BIAS EFFECTS

In this section we discuss how the zero-bias and zero-
temperature results are modified by considering the more
general case of a finite bias, temperature, and magnetic field
applied perpendicular to the graphene plane.

Close to equilibrium �where �1��2=EF� the conduc-
tance can be obtained from �3� as

G�V � 0,T� =
2e2

h

 d�M���t̃�E,V��−

df�� − EF�
d�


 . �6�

For finite bias the conductance is determined from Eq. �3�
after a simple numerical derivative in relative to the bias
potential. Notice that in equilibrium, the changes in EF can

be obtained by simple changes in the value of the gate volt-
age. The results for G�V ,T� as function of EF, V, and T, are
shown in Fig. 8. One can clearly see that, as predicted, the
conductance is quantized in units of 2t̃e2 /h, being even in
the case of the armchair edge and odd in the case of the
zigzag edge. The temperature makes the plateaus in the con-
ductance smooth. Application of a bias voltage V shifts the
position of the conductance plateaus, as expected.

The effect of an external magnetic field in the conduc-
tance quantization of the 2D electron gas was experimentally
studied in the past23 and discussed in general terms by
Büttiker.24 We consider only the case of systems with zigzag
edges for simplicity since, with periodic boundary conditions
along the n direction, a unit cell with only two atoms can be
chosen. In the presence of an applied perpendicular magnetic
field B the hopping integrals change to

tij → tije
i�ij , �7�

where the phases �ij =2��i
jA ·dl /	0, and 	0=h /e is the

quantum of flux. The sum of �ij over a close path defined by
the hopping integrals must equal the value 2�	P /	0
=2�BAP /	0, where AP is the area enclosed by the path P.
For the honeycomb lattice, the equation for the amplitudes of
the tight-binding Hamiltonian �1� can be written as

�an,m = − t�bn,m + bn−1,m + ei2�	mbn,m−1	 − t��ei�	/3an,m−1

+ e−i2�	�m−5/6�an+1,m−1 + e−i2�	�m−1/6�an+1,m

+ e−i�	/3an,m+1 + ei2�	�m+1−5/6�an−1,m+1

+ ei2�	�m−1/6�an−1,m	 , �8�

�bn,m = − t�an,m + an,m+1 + e−i2�	man+1,m	 − t��e−i�	/3bn,m−1

+ e−i2�	�m−1/6�bn+1,m−1 + e−i2�	�m−5/6�bn+1,m

+ ei�	/3bn,m+1 + bn−1,m+1ei2�	�m+1−1/6�

+ ei2�	�m−5/6�bn−1,m	 , �9�

FIG. 7. �Color online� Left panel: one-
dimensional energy band �energy in units of t�,
for a zigzag edge system with t�=0.2t. Right
panel: number of 1D channels, M, as a function
of energy �in units of t�. The horizontal dashed
line helps in stressing the fact that M��� is asym-
metric as a consequence of a finite t�.
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where 	=BAc /	0, and Ac is the area of an hexagon �Ac
=3�3a2 /2 with a�1.4 Å in graphene�. For 	=0 we obtain
the results of Sec. II.

In the presence of a magnetic field the states of the bulk
graphene are described in terms of Landau levels. At low
energies, when the Dirac fermion description �2� is valid, the
energy levels are given by

E±�n� = − 3t� +
2


�B
2 n ±�
2

�B
4 +

2�2

�B
2 n , �10�

where we have assumed t�� t, and defined �B=�� /eB as the
magnetic length, 
=9t�a2 /4, and �=3ta /2 �n=1,2 , . . . �. For
t�=0, the energy levels are given by: E±�n�= ±�2��B

−1�n.
This result shows that, for the case of Dirac fermions, and

unlike the ordinary 2D electron gas, the Landau levels are
not equally spaced.22 Notice that the cyclotron energy, �
c

=�2vF� / lB, is much larger than the Zeeman energy, g�BB
�g�2, �B is the Bohr magneton, for B=12 T, �
c

�0.142 eV, and g�BB�7�10−4 eV�. Thus, we disregard
the Zeeman energy in what follows.

In a finite system the energy levels given by �10� are
modified by the lattice structure and by the presence of
edges. This can be clearly seen in Fig. 9, where we plot the
solution of �9� for a graphene strip with a zigzag edge.
Clearly at B=10 T the Landau level structure predicted by
�10� is seen to develop close to the Dirac point. The effect of
the magnetic field on G is two fold: �1� the magnetic field
leads to nondispersive magnetic levels, with a large degen-
eracy; �2� the energy level spacing is modified giving rise to

FIG. 8. �Color online� Conductance �in units
of 2t̃e2 /h� for armchair and zigzag systems as
function of EF, for various values of T and V �t
=2.7 eV�.

FIG. 9. �Color online� Energy spectrum �en-
ergy in units of t� of a graphene strip with a zig-
zag edge in a magnetic field B �Left: B=10 T;
Right: B=1 T�. Lower left panel: number 1D
transverse modes M for B=10 T.
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a piling up of energy levels as one moves away from the
Dirac point.

Notice that our discussion is valid for weak magnetic
fields and hence does not apply to the quantum Hall regime
that was discussed in Refs. 1 and 2. We observe that states
with values of qx away from the system edges cannot con-
tribute to the conductance, since their group velocity is zero.
Only those levels having nonzero group velocity can act as
1D channels for electron transport. The piling up of energy
levels has the experimental consequence that the observation
of many quantized plateaus becomes difficult. In addition,
the increase of the degeneracy of each Landau level with the
increase of the field reduces the number of observable pla-
teaus, as in the normal electron gas.23 On the one hand, when
we compare M��� for B=0 and B=10 T we see that energy
width of the M =1 step in the latter case has a much larger
value. On the other hand, the piling up of the Landau levels
leads to the reduction of the energy value of plateaus �see
Figs. 7 and 9�. A small field B does not lead the formation of
Landau levels, but removes the degeneracy of the band
formed from the flat band of zero modes when t� is consid-
ered, and leads to a M =1 energy step width of a larger value
when compared with the B=0 case.

IV. SUMMARY AND CONCLUDING REMARKS

We have discussed the tunneling transport in clean meso-
scopic graphene strips. We show that different graphene
strips have different conductance values due to different
types of edges. As a general consequence of the graphene
band structure, and at odds to the usual 2D electron gas
systems, the conductance always increase as we move away
from the Dirac point, and therefore the conductance assumes
a “V”-shape form as a function of the gate potential. The
lowest value of G / t̃ in the zigzag edge system is 2e2 /h �for a

nonzero, albeit small, t��, whereas in an armchair edge sys-
tem we find 4e2 /h.

We have studied in detail the plateaus in the conductance
of graphene strips as a function of temperature, applied gate
voltage, and external magnetic field. We have seen that the
temperature smoothes out the plateaus and that applied gate
voltages shift the plateaus in energy. We have also discussed
the effect of next nearest neighbor hopping energy t�, that
breaks the particle-hole symmetry of the problem and intro-
duces dispersion for in the zero modes. The effect of a finite
magnetic field is quite interesting in these systems because of
the unusual relation between the energy and the Landau level
index. We show that a magnetic field has effect in piling up
the conductance steps and modify their size in energy. These
effects should be easily observable in ultraclean mesoscopic
graphene strips.

For graphene samples of 10–100 �m size25 it was found
that the conductivity, given by �=GL /W, has the universal
value of �4e2 /h. This result can be understood using a bulk
calculation of the effect of vacancies on the electric linear
response �Kubo formula� of Dirac fermions.1 From the point
of view of coherent tunneling, these experimental results in-
dicate that these samples are in the ohmic regime, having a
mean free path shorter than the system size. We believe,
however, that in ultraclean graphene samples it will be pos-
sible to observe conductance quantization and interference
patterns, as it is the case of carbon nanotubes. We hope that
our results will stimulate further studies of transport in these
amazing systems.
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