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We study edges states of graphene ribbons in the quantized Hall regime, and show that they can be described
within a continuum model �the Dirac equation� when appropriate boundary conditions are adopted. The two
simplest terminations, zigzag and armchair edges, are studied in detail. For zigzag edges, we find that the
lowest-Landau-level states terminate in two types of edge states, dispersionless and current-carrying surface
states. The latter involve components on different sublattices that may be separated by distances far greater
than the magnetic length. For armchair edges, the boundary conditions are met by admixing states from
different valleys, and we show that this leads to a single set of edges states for the lowest Landau level and two
sets for all higher Landau levels. In both cases, the resulting Hall conductance step for the lowest Landau level
is half that between higher Landau levels, as observed in experiment.
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I. INTRODUCTION

Recent progress in the processing of graphite have made
possible the isolation of two-dimensional carbon sheets,
known as graphene.1 This system has been studied theoreti-
cally for a number of years, because when rolled up the
sheets form carbon nanotubes.2 The material is unique be-
cause the underlying honeycomb lattice has a band structure
with Dirac points at the corners of the Brillouin zone, two of
which are inequivalent. Undoped, the system has one elec-
tron per atom and the Fermi energy surface passes directly
through the Dirac points. For low energies and dopings the
system may be described by the Dirac equation.

The stabilization of flat graphene sheets has allowed the
application of perpendicular magnetic fields and the observa-
tion of the integer quantized Hall effect.3,4 The striking result
in these experiments is that the first step height in the Hall
conductance as a function of filling factor, corresponding to
filling the lowest Landau level �with electrons or holes�, is
half that of all subsequent steps. This behavior was expected5

based on the bulk energy spectrum of graphene in a magnetic
field: for a given spin species, there are pairs of Landau level
bands at positive energies, each with partners at negative
energies due to particle-hole symmetry. The lowest Landau
level �LLL� has two levels precisely at zero energy, each of
which is its own particle-hole conjugate.2 This property of
the LLL results in its smaller contribution to the Hall con-
ductance.

The recent experiments on graphene studied ribbons that
were relatively narrow, with widths in the micrometer4 or
submicrometer3 range. Under such circumstances, transport
in the quantum Hall regime is typically dominated by edge
states.6 In this work we study edge states for graphene rib-
bons in detail, focusing on the simplest cases of a zigzag
edge and an armchair edge. We demonstrate that a con-
tinuum description of edge states based on the Dirac equa-
tion is possible with the adoption of appropriate boundary
conditions. In an edge-state description, the quantization of
the Hall conductance is determined by the number of edge-
state bands crossing the Fermi level. The Hall conductance

results imply that the LLL supports only a single particle-like
and a single hole-like band �per spin� at each edge, while the
higher Landau levels have twice as many. Our goal is to
understand how and why this happens, in a noninteracting
picture. �Because real spin plays no role in this study, we will
from here on assume that all the electrons are spin polarized,
and refrain from explicitly noting the spin degree of freedom
in our discussions.�

We now summarize our results. For zigzag edges, we
show that the correct boundary condition is for the wave
function to vanish on a single sublattice across the edge. In
this case the LLL supports two types of edge states, which
we call current-carrying and dispersionless surface states.
Both states have strong components at the boundary of the
system, but the former has equal weights on both types of
sites of the honeycomb lattice, whereas the latter exists es-
sentially only on one sublattice and has precisely zero-
energy. Such zero-energy surface states are well known to
exist in graphene ribbons in the absence of a magnetic
field,7,8 and have been shown in tight-binding calculations to
persist when a field is applied.9 In the quantum Hall context
we find that the dispersionless surface states play a special
role in forming two branches of edge states that do not pass
through the Fermi level for any nonzero doping. The current-
carrying edge states are also remarkable in that the surface
contribution on one sublattice can be highly separated from a
component well inside the bulk of the sample, on the other
sublattice. An interesting consequence of this is that a par-
ticle injected near a zigzag edge should oscillate back and
forth between the edge and bulk, although presumably such
oscillations would be damped by many-body effects not in-
cluded in our study.

For armchair edges, we find that the correct boundary
condition is vanishing of the wave function on both sublat-
tices at the edge. This is achieved by mixing of wave func-
tions from both Dirac points. In this case, there are no dis-
persionless surface states, and the LLL edge states behave
differently from the higher Landau levels for other reasons.
As we shall see, the energetics of states from one of these
valleys is generically higher than from the other on a given
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sublattice, so that in the LLL only one band of edge states
can meet the boundary condition, whereas in higher Landau
levels there are two such bands. The admixing of the two
valleys leads to wave functions with a characteristic spatial
oscillation of the electron density with wave vector equal to
�Kx, the difference between the Dirac point wave vectors
along the direction perpendicular to the edge. Such oscilla-
tions should be observable in scanning tunneling microscopy
�STM� measurements.

II. PRELIMINARIES

We begin by reviewing some generalities about electrons
in graphene. The lattice structure is a triangular lattice whose
primitive lattice vectors are a=a0�1,0� and b
=a0�1/2 ,�3/2�. There are two atoms per unit cell located at
�0,0� and at d=a0�0,1 /�3�. A simple tight-binding model
with only nearest-neighbor hopping t leads to a Hamiltonian
with Dirac points at the six corners of the Brillouin zone,
only two of which are inequivalent, and we take these to be
K= 2�

a0
� 1

3 , 1
�3

� and K�= 2�
a0

�− 1
3 , 1

�3
�. Wave functions can be ex-

pressed via the k ·P approximation2,10 in terms of envelope
functions ��A�r� ,�B�r�� and ��A��r� ,�B��r�� for states near the
K and K� points, respectively. These can be conveniently
combined into a four-vector �= ��A ,�B ,−�A� ,−�B��. �The
reason for this sign convention will become apparent when
we discuss the armchair edge.� This satisfies a Dirac equation
H�=��,

H = �a0�
0 − kx + iky 0 0

− kx − iky 0 0 0

0 0 0 kx + iky

0 0 kx − iky 0
� , �1�

with �=�3t /2. Note that k denotes the separation in recip-
rocal space of the wave function from the K�K�� point in the
upper left �lower right� block of the Hamiltonian. To apply
this Hamiltonian in the presence of a magnetic field, one
makes2 the Peierls substitution k→−i� +eA /c where A is
the vector potential.

Before applying this procedure to systems with an edge,
we point out some interesting and useful properties of H.
First, H �and the more exact tight-binding Hamiltonian from
which it descended� has8 chiral �i.e., particle-hole� symmetry,
�H�=−H, where �= � 	z

0
0
	z

�, and 	z is the Pauli matrix. This
tells us that a solution to the Dirac equation � with energy �
has a particle-hole conjugate partner �� with energy −�.
Because of this, the wave functions must be normalized on
each sublattice separately: �dr�	�
�r�	2+ 	�
� �r�	2�=1/2, for

=A ,B. The solutions for states well away from the edge are
well known.2 Taking A=−Bxŷ, �= 1

�Ly
eikyy�, and �
� ��

= 1
�Ly

eikyy�
� �� with Ly the ŷ extension of the sample, the
wave functions retain their valley index as a good quantum
number, and the positive-energy wave functions may be writ-
ten as �= �n−1(x− �ky +Ky��2) ,n(x− �ky +Ky��2) ,0 ,0� for
the K valley, and �= �0,0 ,n(x− �ky +Ky���

2) ,−n−1(x− �ky

+Ky���
2)� for the K� valley, with energies �n=

�a0

�
�2n. In

these expressions, n is the nth harmonic oscillator state and
�=�eB /c is the magnetic length. The negative-energy states
are easily obtained by reversing the signs of the wave func-
tions on the B sublattice. For the case of the LLL, n=0, and
only one component of the four-vectors for each valley is
nonzero. This means the particle-hole conjugates of these
wave functions are themselves. The bulk LLL wave func-
tions do not have a clear particle- or hole-like character.

III. ZIGZAG EDGE

The geometry for a zigzag edge is illustrated on the top
and bottom edges of Fig. 1. It is interesting to note that each
atom at the edge is of the same sublattice �say A�. We shall
see below that the appropriate boundary condition is to set
the wave function to zero on a single sublattice �B�, which
we can understand to be the line of lattice sites that would lie
just above or below the system if the bonds had not been cut
to form the edge. In our discussions we will work with edges
that lie along the ŷ direction, so in what follows the coordi-
nate axes in Fig. 1 will be rotated by 90°. We begin by
computing the band structure for a tight-binding model of a
graphene ribbon with zigzag edges, an example of which is
illustrated in Fig. 2. The flat degenerate bands over a range
of ky are Landau levels, and, in the case of the LLL, disper-
sionless surface states which we discuss below. In a wide
sample, there is generically a large degeneracy within each
Landau band, because for the K�K�� valley there are wave
functions peaked at Xp= �ky +Ky� ��+nGy��2, where Gy is a
reciprocal lattice vector for the ribbon, and the integer n can
take any value such that Xp is between the sample edges.
One may conveniently reorganize the states by allowing all
values of ky such that −Lx /2� �ky +Ky� ����2�Lx /2, with Lx

the ribbon width, and assigning one state for each ky in the
extended zone.

The prominent structure in Fig. 2 is the appearance of
dispersing energy bands, which occur when the wave func-
tions approach the edges. For the higher Landau levels one
observes two pairs of such bands, whereas for the LLL there
is only one such pair. This means that a Fermi energy cross-
ing between the nth and �n+1�th Landau levels yields a Hall
conductance 	xy = �2n+1�e2 /h, as observed in experiment.3,4

The unique behavior of the LLL edge states may be un-
derstood in terms of eigenstates of the Dirac Hamiltonian

FIG. 1. Ilustration of a graphene system with edges. Top and
bottom edges are zigzag edges, left and right are armchair edges.
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with vanishing boundary conditions on a single sublattice.
We begin by rotating the wave vectors in Eq. �1�, kx→ky,
ky→−kx, so that the zigzag edge lies along ŷ, and our wave
functions then exist in the space x�0. Taking A=−Bxŷ in
this coordinate system, and defining the ladder operator a

= �
�2

�−k̃y +x /�2+�x�, with k̃y =ky +Ky� �� for the K�K�� valley,
the wave functions obey

2�2a0
2

�2 aa†�A = �2�A,
2�2a0

2

�2 a†a�B = �2�B, �2�

2�2a0
2

�2 a†a�A� = �2�A� ,
2�2a0

2

�2 aa†�B� = �2�B� . �3�

It is easy to see that if one solves the equations for �B and
�A� , the remaining wave functions are determined by �A
=a�B /� and �B� =−a�A� /�.

For the zigzag edge, the boundary condition does not ad-
mix valleys, and we can meet it for each type of wave func-
tion separately: �B�x=0�=�B��x=0�=0. Thus for the K valley
the spectrum �n

2�ky� is identical to that of a quantum Hall
edge with a sharp boundary.11 The wave functions �B,n simi-
larly are identical to their standard Hall edge counterparts,
turning into states in the nth Landau level as ky�

2 moves well
away from the edge. For n�1, �A,n is quite similar to a state
in the �n−1�th Landau level provided the center of the wave
function is not too close to the edge.

In the LLL �n=0�, �A is qualitatively different. Because
LLL states are annihilated by the ladder operator a, and �B is
similar to a bulk LLL state when the center of the wave
function is not too close to the edge, �A is extremely small,
except close to x=0 where �B vanishes and is forced to de-
viate from a bulk LLL state. The result is that �A is strongly
confined to the surface, and as the center of the �B moves
further into the interior of the sample, �A becomes increas-
ingly so confined. Despite this strongly localized form, the
normalization of the wave functions discussed in the previ-
ous section requires that fully half the probability of finding
the electron resides in this surface contribution. We note that,
because � disperses with ky, these surface states carry current
and contribute to the Hall conductivity.

Within the Dirac equation, the existence and form of these
current-carrying surface states can be examined with a varia-
tional approach. We adopt a trial wave function �B�x�
=w�x�0�x−ky�

2� and require w�x→0�=0. One may easily
confirm that �̃2=2�0

�dx� dw
dx

�2	0	2, where �̃= �� /�2�a0��. A
simple choice for w is w=cB�1−e−�x�, where cB is a normal-
ization constant and our variational parameter is �. With this
choice one finds �A�x��exp
−�x− �ky −���2�2 /2�2�, so that if
��ky, �A is confined to the surface. The result of minimiz-
ing �̃2 is illustrated in Fig. 3, where in the inset one sees that
� increases faster than ky, so that �A becomes more confined
to the surface of the sample as ky increases and �B penetrates
into the bulk.

Direct examination of wave functions from the tight-
binding model confirms this basic picture, except in one im-
portant respect. Whereas the Dirac equation allows current-
carrying states with �A increasingly localized to the surface
as ky grows �and the peak position Xp of �B moves into the
bulk�, the tight-binding results show that for Xp�

1
2 	Ky

−Ky�	�
2 the LLL wave function on sublattice A and the sur-

face state on sublattice B appear as separate states, and that
the surface state now moves back into the interior of the
system with further increase in ky. The current-carrying sur-
face state evolves into a dispersionless surface state which

FIG. 2. Examples of energy bands for a graphene ribbon with
periodic boundary conditions in the ŷ direction and edges in the x̂
direction. B=100 T �0.001 26 flux quanta per unit cell�. Unit of
energy �1=�2�a0 /�. �a� Ribbon with zigzag edges, 500 sites
�530 Å� wide. �b� Ribbon with armchair edges, 1000 sites �460 Å�
wide.

FIG. 3. Surface part of current-carrying edge state for zigzag
edge from variational method described in text. Main figure: �A for
two different choices of ky. Inset: �min �solid line� vs ky �dashed
line�, demonstrating that �A becomes increasingly localized on the
surface with increasing ky.
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we describe below, and the number of allowed current-
carrying surface states is limited. This is clearly an effect of
the discreteness of the lattice that is not captured by the
Dirac equation: independent, highly localized surface states
can be written down for any ky in the continuum, but on the
lattice states at ky and ky +Gy have the same periodicity along
the ŷ direction, and so cannot be made independent. Thus the
number of current-carrying surface states is limited to
�Ly	Ky −Ky�	 /4�. For any practical purpose, this may be im-
posed by introducing a cutoff kc in the allowed ky’s for the
current-carrying surface states. For ky �kc, one may take the
K valley wave function to have its bulk form.

The edge state wave functions of the K� valley on the A
sublattice are analogously identical to the well-known
ones,11 although �n

2 is shifted upward by a single unit
�2�2a0

2 /�2� due to the ordering of the operators in the last of
Eqs. �3�. For the LLL, the bulk states �A� �0�x−Xp��, �B�
=0, with Xp�=ky�

2−Ky��
2, exactly satisfy Eqs. �3� with zero

energy. Remarkably, these states are unaffected by the edge.
Moreover, because Ky��Ky, there are values of ky in the ex-
tended zone for which Xp��0, and the state is confined to the
surface. These are the dispersionless surface states: they do
not contribute to the Hall conductivity. The LLL wave func-
tions of the tight-binding results around the center of the
bands in Fig. 2�a� behave precisely as the Dirac equation
results suggest: they are strongly confined to the surface, and
continuously evolve into bulk LLL states on the A sublattice
as ky increases. The dispersionless surface states supported
by the LLL are the reason that it carries only half the Hall
conductivity of the higher Landau levels for the zigzag
edge.12

IV. ARMCHAIR EDGE

The armchair edge is illustrated as the left and right edges
in Fig. 1, and the corresponding band structure from a rep-
resentative tight-binding calculation appears in Fig. 2�b�.
Here the edge runs along the ŷ direction, and no rotation of
the figure is needed to represent our calculations. Unlike the
zigzag edge, the Landau bands all have dispersing states in
the same regions of ky, but the LLL has one pair each of
holelike and particlelike edge states, while all the higher
Landau levels have two.

To understand this from the viewpoint of the Dirac equa-
tion, we need to impose appropriate boundary conditions. In
Fig. 1 one may see that the termination consists of a line of
A-B dimers, so it is natural to have the wave function ampli-
tude vanish on both sublattices at x=0. To do this we must
admix valleys, and require �B�x=0�=�B��x=0� and �A�x
=0�=�A��x=0�. Using the Dirac equation, and the fact that
Ky =Ky�, this second condition implies 	�x�B	x=0= 	−�x�B� 	x=0.
To understand the effect of this on the solutions, it is conve-
nient to combine the �B’s into a single wave function defined
for −��x��: ��x�=�B�x���x�+�B��−x���−x�, with ��x� the
step function. The boundary conditions then amount to ��x�
and its derivative being continuous at x=0. �This was the
reason for our choice of relative sign in the four-vectors of
Sec. II.� From Eqs. �2� and �3� it is easy to see that � obeys

a Schrödinger equation �− 1
2�x

2+U�x����x�= �̃2��x�, with
U�x�= �2

2 ��	x	 /�2−ky�2−1/�2+ �2/�2���−x��. For large ky�
2,

this double-well potential, illustrated in Fig. 4, has low-
energy states associated with the left well at �̃2

3/2 ,5 /2 , . . ., while for the right well one has states at �̃2

1/2 ,3 /2 ,5 /2 , . . .. We thus see there will be hybridization
leading to pairs of edge states for all the higher Landau lev-
els, whereas for the LLL there will be just a single such state.

The admixing of different valley states to meet the bound-
ary condition means that the wave function will oscillate
with period 2� / 	Kx−Kx�	. The behavior can explicitly be seen
in Fig. 5, which illustrates a LLL edge state from the tight-
binding calculation. The apparent oscillation has precisely
the period one expects for the valley mixing we introduced
in the Dirac equation to meet the boundary condition. Al-
though the period of this oscillation is very short �3.69 Å�, it
is in principle observable by STM measurements because the
samples can be open to their environment,3 in contrast to
GaAs systems.

V. CONCLUSION

In this paper we have studied the edge states of graphene
ribbons with zigzag and armchair terminations. We found in
both these cases that a continuum description in the form of

FIG. 4. Potential U�x� for an armchair edge. See text.

FIG. 5. Squared wave function for an edge state of the armchair
edge from tight-binding calculation. ky =2.1� /a0 and � /�1=
−0.202. Wave function penetrates sample over length scale �, while
oscillations due to valley mixing occur on a much smaller length
scale �3a0 /2�.
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the Dirac equation captures most features of the states found
in tight-binding calculations, provided the wave function
vanishes at the termination of the sample. For zigzag edges,
we found that the boundary condition can be met by wave
functions within a single valley, leading to two types of edge
states in the lowest-Landau-level, current-carrying surface
states and dispersionless surface states. The latter of these
explains why the contribution to the quantized Hall coeffi-
cient from the LLL is only half that of higher Landau levels.
For the armchair edge, we found that admixing of valleys is
necessary to satisfy the boundary condition. For higher Lan-
dau levels, there are two hybridizations of the valley states

for which this is possible, whereas in the LLL there is only
one. This again leads to a contribution to the Hall coefficient
from the LLL half the size of those from other occupied
Landau levels.
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