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Although the conductance of a closed Aharonov-Bohm interferometer, with a quantum dot on one branch,
obeys the Onsager symmetry under magnetic field reversal, it needs not be a periodic function of this field: The
conductance maxima move with both the field and the gate voltage on the dot, in an apparent breakdown of
“phase rigidity.” These experimental findings are explained theoretically as resulting from multiple electronic
paths around the interferometer ring. Data containing several Coulomb blockade peaks, whose shapes change
with the magnetic flux, are fitted to a simple model, in which each resonant level on the dot couples to a

different path around the ring.
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I. INTRODUCTION

The mesoscopic Aharonov-Bohm interferometer (ABI)
has been used widely in attempts to measure both the mag-
nitude and the phase of the quantum transmission amplitude
for an electron traversing a quantum dot (QD). Many of
these experiments have been done on the closed ABI, where
the QD is placed on one of the two paths which surround an
area which is penetrated by a magnetic flux ®, and the two
paths are connected to two reservoirs via only two
terminals.!? In some experiments, the states on the whole
path replace the QD.? Unlike for the multi-terminal open
ABI, for small fluxes the conductance of the closed interfer-
ometer turned out to be an even and periodic function of the
Aharonov-Bohm (AB) phase ¢p=P/D,, with ®y=hc/e and
with the period A¢=27. Away from resonances of the trans-
mission, and for relatively small magnetic fields, the conduc-
tance of the “ideal” closed ABI could be fitted to the simple
(two-slit-like) formula G=A+Bcos ¢ and, therefore, its
maxima (and minima) remained fixed at integer multiples of
7, independent of the gate voltage on the QD (which only
affected the values of A and B). This phenomenon, called
“phase rigidity,” has been accepted as a landmark of the
closed ABL*> Closer to a resonance, G becomes a more
complicated function of ¢, which contains higher harmonics
in the flux, but continues to depend only on powers of cos ¢
(and not of sin ¢). Indeed, the symmetry G(¢)=G(-¢) is
now well understood, due to the Onsager relations.® The pe-
riodicity of G with ¢, and the resulting phase rigidity, have
also been reproduced theoretically, in models which describe
both the paths around the ABI ring and the leads to the
reservoirs as being one-dimensional (1D).”8 However, al-
though phase rigidity obeys the Onsager symmetry, this ri-
gidity does not really follow from this symmetry. In fact,
many of the measurements at higher fluxes break phase ri-
gidity.

The breakdown of phase rigidity in experiments on closed
ABI’s shows up as deviations from the simple pure oscilla-
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tion G=A+B cos ¢, even far away from resonances. Such
deviations already appeared in the pioneering work of Webb
et al.,’ which demonstrated the AB oscillations in normal
metal rings. In these experiments (and in practically all the
other experiments mentioned above), the AB oscillations ap-
pear on top of a background, whose slow variation with the
magnetic flux has been described as an aperiodic fluctuation,
due to the penetration of the magnetic field into conducting
parts of the ABI ring. Indeed, numerical simulations have
shown that such fluctuations do result from the fluxes which
penetrate small areas within the finite width of the ring,
whose properties fluctuate randomly.'>!! As noted by Imry,'?
such fluctuations can be observed only at high fluxes, ®
>®,/x, where x is the ratio of the area of the conducting
ring to the area of the hole inside it. As Stone and Imry!'!
note, this background may also contain beats. However, we
are not aware of a detailed theoretical analysis of such beats,
or of any other periodic aspect of the deviations from a
simple Aharonov-Bohm oscillation.

In the first part of this paper we concentrate on two as-
pects of the breakdown of phase rigidity. First, the “beats.”
Figure 2 of Ref. 9 already showed two main peaks in the
power spectrum of the flux-dependent conductance: One at
the Aharonov-Bohm period and the other at a much smaller
period (higher field). Ignoring the aperiodic fluctuations,
both periods are clearly visible in the flux dependence of the
conductance. The ratio of the two periods is presumably re-
lated to the ratio between the areas of the ring and of the
hole, x. Similar “beats” show up in practically all the experi-
ments on closed ABI’s.? The second aspect concerns the lo-
cation of the conductance maxima and the related phase
shift. Figure 4 Ref. 2 shows a contour plot of the conduc-
tance versus the gate voltage and the magnetic field. In its
restricted sense, phase rigidity implies that (except close to
resonances) the maxima should be at fixed fields, namely on
lines parallel to the gate voltage axis. However, in the data
(taken at relatively high fields) these lines have a nonzero
slope relative to that axis. Similar slopes show up in many
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similar experimental plots (see, e.g., Fig. 4 in Ref. 13, or Fig.
4 of Ref. 14). A slow change of the location of the maxima
with increasing magnetic fields is visible even in the original
papers by Yacoby et al.'* Analysis of the data within a finite
narrow window of fields (away from zero) would thus be

described by G~ A +B cos(¢+ ), with a nonzero phase shift
6, which depends on both the flux and the gate voltage, ap-
parently contradicting phase rigidity. (This behavior holds
only at large fields; as the field goes to zero, & also vanishes,
in accord with the Onsager requirement.) All of these papers
also exhibit a slow variation of the Aharonov-Bohm oscilla-

tion amplitude B with increasing field, which is related to the
“beats.” Below we present some additional experimental
data, and give a theoretical discussion of these observations.
In particular, we propose a simple theoretical model which
captures all the observed phenomena.

The second part of this paper concerns the Fano shape of
the Coulomb blockade resonances. In the Coulomb blockade
regime, the QD exhibits a sequence of resonances as function
of the gate voltage, whenever another electron is added to its
bound states. The interference between these states and the
continuum of the electrons in the leads then results in the
Fano effect,’>!'® which modifies the shape of these reso-
nances. These resonances are further modified once the QD
is placed in the ABI.? In the experimental papers,? each reso-
nance has been fitted to the ‘“standard” Fano asymmetric
Breit-Wigner form, G |e+¢|*/(e*+1), where e is the nor-
malized distance of the gate voltage from its resonance value
and ¢ is the so-called “Fano asymmetry parameter,” which
can become complex at nonzero magnetic fluxes, when time-
reversal symmetry is broken. Below we show that all the
asymmetric resonances can be described by a single unified
expression for the transmission amplitude, and present fits to
the data which demonstrate the utility of this representation
for many resonances.!”

Section II presents some new data, taken from the same
mesoscopic closed ABI described in Ref. 2. Section III then
proceeds to describe a simple theory, which takes account of
the finite width of the ring. Finally, Sec. IV uses this theory
to fit experimental data from the ABI.

II. EXPERIMENTAL DATA

For a quantitative discussion of the points listed above,
we start by presenting some new data, taken from the same
sample described in Refs. 2. As explained there, the closed
ring-shaped ABI, shown in Fig. 1, was fabricated by wet
etching the 2DEG at an AlGaAs/GaAs heterostructure.
Au/Ti metallic gates define the QD and control the gate
voltages on the QD (sitting on the lower branch of the ring)
and on the reference (upper) branch. The sample was cooled
by a dilution refrigerator, the base temperature of which was
30 mK though the electron temperature measured from the
line shape of the Coulomb oscillation was around 100 mK.

All our data are found to be symmetric under ¢— —¢, in
agreement with the Onsager relations. In order to investigate
the nature of electronic paths in the ring geometry, we first
connected all the gates to ground. The sample was hence a
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FIG. 1. Scanning electron micrograph of the ABI. White regions
are the Au/Ti gates and the corresponding voltages Vi, Vg, Vg, Ve

are indicated. The contours A, B, and C indicate possible paths of
the electrons.

simple ring without a dot at this stage. Figure 2 shows a
typical flux dependence of the conductance through the ABI,
for these grounding conditions. The data clearly show the
Aharonov-Bohm oscillations, with a small period as demon-
strated in the insets. In addition, apart from some aperiodic
fluctuations, the data exhibit oscillations on a larger scale. To
quantify these oscillations, Fig. 3 shows the fast Fourier
transform (FFT) of these data. The top graph shows the FFT
of all the data. Interestingly, the results between ~250 and
~280 T~! seem to contain several separable peaks. The top
graph also shows arrows for the Aharonov-Bohm periods
associated with the contours A, B, and C in Fig. 1, indicating
that all the frequencies in this range can be associated with
electron paths which surround the ring between contours A
and C. The inset in the top frame shows the same FFT on a
semi-logarithmic scale. It is interesting to note that the data
contain many higher harmonics, roughly at integer multiples
of the first one. The graph in the middle shows fits to these
high frequency data with four and with eight Lorentzians,
confirming the impression that the fast oscillations are domi-
nated by only a few electron paths. The decomposed peaks
are still much broader than the width corresponding to the
field range of the whole measurement. This large width prob-
ably comes from a bounded range of the field in which a
looped path has a larger amplitude in the transmission coef-
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FIG. 2. The conductance of the ABI, with all the gates at zero
voltage. The insets are blowups in two different regions of magnetic
field.
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FIG. 3. (Color online) Fourier power spectrum of the data in
Fig. 2 (see text). (a) FFT result for the entire field region in Fig. 2.
A-C are the frequencies, which correspond to the areas indicated by
the contours A—C in Fig. 1. The inset is a log-plot of the same data,
enhancing the higher harmonics. (b) Results of the fitting to the
main peak in (a) by 4 Lorentzians (solid line) and by 8 Lorentzians
(broken line). (c) Result of the same analysis as in (a) for the field
region from 0.8 to 1 T.

ficient. Such a slow modulation of amplitude by magnetic
field can be caused by, e.g., variation of the boundary scat-
tering probability. The lower graph in Fig. 3 shows the FFT
of the data with fields between 0.8 and 1 T. Interestingly,
these data exhibit even fewer peaks, implying that these re-
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FIG. 4. (Color online) False color image plots of the conduc-
tance, versus gate voltage V, and magnetic field. See the text for
other voltages. The linear baseline from 5.3 to 5.7 in (e*/h) was
subtracted.

stricted data can be described by “beats” of a few neighbor-
ing frequencies. This supports the above interpretation.

We have then formed a quantum dot in the lower branch,
by applying the gate voltages —0.255 V, —0.215 V for V, Vi
in Fig. 1, respectively. We also reduced the conductance of
the upper (reference) arm, with V-=-0.26 V. Figure 4 is an
image plot of the conductance as function of the gate voltage
V, and the magnetic field. The slowly varying background
conductance, which is almost linear in this region from 5.3 to
5.7 in conductance quantum units (e?>/h), was subtracted.
Figure 4 clearly demonstrates the breakdown of phase rigid-
ity. Although a similar plot was presented in Ref. 2, the
present figure emphasizes several features which we wish to
discuss.

In Fig. 4, each resonance is characterized by a narrow
region (parallel to the field axis) through which the maxima
(red or bright) and minima (black or dark) interchange
places. In the ideal 1D model, between resonances the
maxima remain fixed at integer multiples of the flux unit, as
follows from phase rigidity. In addition, maxima and minima
can suddenly interchange between resonances, in a “phase
lapse” which is attributed to a Fano vanishing of the conduc-
tance. In contrast, the maxima in Fig. 4 never stay on lines
parallel to the gate voltage axis. Instead, they move continu-
ously towards larger fields, indicating a nonzero phase shift
6. The variation of the maxima can be characterized by three
typical forms, indicated by white arrows: In form A, the
maximum moves almost linearly with the gate voltage, so
that ¢ changes by , returning to the value it had before the
previous resonance. In form B, one observes a fast change in
the location of the maximum, about half way between the
resonances. Although reminiscent of the Fano jump by m,
this change has a finite width and seems continuous. Finally,
in form C the maximum moves by 7 over the resonance, but
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very soon it moves quickly back to its location before the
resonance, so that the line of this maximum remains almost
parallel to the gate voltage axis for a range of gate voltages.

More experimental data are presented below, in Sec. IV.

III. THEORY

As stated, most of the existing theoretical descriptions of
the ABI use models in which all the links are 1D. This means
that the ABI “ring” surrounds a well defined unique area,
which is penetrated by a single valued magnetic flux ®. It is
this uniqueness that then results in the periodicity of G with
¢, resulting with phase rigidity. To explain the deviation of
our (and practically everyone else’s) data from this periodic-
ity, we note that the real rings are never 1D (see Fig. 1).” Due
to the finite width of the ABI ring, electrons which move on
different paths within the ring surround different areas, and
therefore different magnetic fluxes.””'> We demonstrate the
implications of these different fluxes by a simple tight-
binding model, which generalizes models used earlier to de-
scribe the ABI in the Coulomb blockade regime.”® Our
model is a simplified version of that discussed in Refs. 10
and 11: Instead of the aperiodic random fluctuations, we em-
phasize the periodic influence of the flux through the con-
ducting ring.

One basic difference between our device and that of Webb
et al® is that our ring is semiconducting, while theirs was
metallic. In a semiconductor, we expect the electron to have
much fewer possible paths for traversing the ring. This point
of view is supported by our discussion of Fig. 3, which
shows that the data are dominated by a small number of
frequencies. In view of this, our model assumes that each
resonance on the quantum dot couples strongly only to a
single wave function on the ring, and that each such wave
function can be associated with a distinct area and, therefore,
with a distinct magnetic flux. Since our theoretical discussion
aims to capture the main physical phenomena observed in
the experiments, we construct the simplest possible theoreti-
cal model which reproduces these phenomena. Surprisingly,
this model turns out to also give a good qualitative fit to our
data. Below we comment on why various possible generali-
zations are not expected to have strong effects on these fits.

In our model, shown in Fig. 5, the QD has N equidistant
resonances, at effective energies Ep(n)=¢;+(n—1)U, n
=1,2,...,N, where €, is controlled by the gate voltage.
(Here, U represents the Coulomb repulsion, within a Hartree
approximation, and n represents the nth Coulomb blockade
resonance.®) Each resonant level is connected to the left and
right terminals (L and R) via separate single paths, which
may surround different areas. Using gauge invariance, we
include the possibly different magnetic fluxes associated
with each resonant level in the respective hopping matrix
elements, J,(n)=J)(n)e'*"™ and real J(n) and J,(n).'"® The
phase ¢(n) is associated with the area surrounded by the
wave function which couples to the nth resonance. For sim-
plicity, the “reference” site on the lower path of the ABI ring
has only one state, with energy E,, which couples to the
sites L and R via real hopping matrix elements j, and j,. As
we show below, the interference between these different
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FIG. 5. The model for the ABI: all the tight-binding bonds on
the external 1D leads have the same real hopping energy —J. L and
R connect to each other indirectly, via (N+1) branches (here we
show N=2): One connects to the reference site, via real hopping
coefficients j, and j,, while each of the other N connect from L and

from R to the quantum dot (D), via hopping coefficients Jy(n)
=J%n)e’®™ and a real J,(n).

paths gives a conductance which is an even function of the
magnetic field (all the ¢(n)’s are of course proportional to
this field), but has a more complex field-dependence at high
fields—similar to the experimental data.

We next solve the model shown in Fig. 5. The bonds on
the semi-infinite external 1D leads have hopping matrix ele-
ments —J (below we measure all energies in units of J). For
an electron with wave number k and energy e=-2J cos ka
(a is the lattice constant on the leads), we write the wave
functions on the left and right leads as u(e*"+ re~*¢) and
ute'*na (below we present results in the center of the band,
ka=1/2), and then solve the N+5 linear equations in the N
wave amplitudes at D, those at L, R and “ref” and in ¢ and r.
The resulting transmission amplitude is'®

B S¢,21 sin ka
(See+e7*)(S,, + e ™) = |S,,

t

3 (1)

where

IENRAQIAON Jidy
So= 2 e pyl t Te-Eo) @

(x,y stand for €,r). Using the Landauer formula,?® we thus
obtain the zero-temperature conductance,
G 4 sin? kalS,,|*

=T= . -
GO ||S€r|2 - (SH’ + e_lka)(Srr + e—tka)

2 (3)

where Gy=2¢?/h is the basic conductance unit and 7= |¢? is
the transmission.

It is interesting to note that the transmission 7" depends on
the magnetic field only via the combination

jir

Jz( €- Eref)2
R REAGL RV

= Ple-Epn)]le-Ep(n)]

2jejy Jo(n)J (n) o
J(f— Eref) n J[é'— ED(”)]

|S€r|2 =

cos[ () - ¢(n')]

s ¢(n). (4)

Indeed, away from a resonance one has |Sxy|< 1, the field
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FIG. 6. Transmission through the closed ABI of Fig. 5, vs ¢, at
€,==5.1,-4,1,...,0.9 for the parameters given in the text. Graphs
are shifted up by 1 as €, increases by 1.

dependence of G in Eq. (3) is dominated by the numerator
there, and the maxima (or minima) coincide with those of
|S¢,|>. For N=2, this has the form

[Se,]>=A+ B, cos ¢(1) + B, cos (2) + C cos[ (1) — ¢(2)].
(5)

Since both ¢(1) and ¢(2) correspond to paths through the
“upper” branch of the ABI, it is reasonable to expect that
these two fluxes are quite close to each other. Assuming a
ratio (1+x) between the areas surrounded by the two paths,
we denote ¢(1)=¢ and ¢(2)=(1+x)¢, and then Eq. (5) has
the form

IS¢, > =A +[B; + B, cos(x¢)]cos ¢ — B, sin(x)sin ¢
+Ccos(xp) =A + B cos(¢p+ &), (6)
with
tan 6= B, sin(x®)/[B, + B, cos(x¢)],

B= \J’/B% + B% +2B,B, cos(x¢),

A=A+ Ccos(xp). (7)

For |x|<1, the parameters A, B, and & vary slowly with ¢
and, therefore, within a limited window of magnetic fields
the data look like in the two-slit open ABI, with a phase shift
o which varies with ¢ and with the gate voltage, represented
by €, On larger field ranges, Eq. (6) exhibits beats, similar to
those observed experimentally. Note that the parameters in
Eq. (7) may change quite significantly as ¢ changes from
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(b)

FIG. 7. The location of the maxima of 7 in the ¢/7— €, plane.
Top: x=0.1. Bottom: x=0.

zero to 7r/x. Needless to say, the expression in Eq. (4) and,
therefore, also G, is symmetric under field reversal [¢(n)
— —¢p(n) for all n], as expected from the Onsager relations.

When x=0, one has 6=0 and K, B remain constant, as for
the simple 1D model. In that limit, the maxima between
resonances remain fixed, with possible jumps by 7 when
(B, +B,) changes sign as function of the gate voltage €.

The above simple results change close to a resonance. To
demonstrate the full behavior of the conductance, we present
an example with N=2, with the parameters ka=7/2, j,=j,
=J)(n)=J(n)=0.5J, E,,=J, U=3J, and x=0.1. Figure 6
shows the calculated transmission, Eq. (3), for several values
of the gate voltage €, In addition to seeing the beats away
from resonances, we note the asymmetric beats closer to
resonances. We also note the gradual shifts in the maxima.
These shifts are highlighted in Fig. 7 (top), which shows
only the locations of the maxima. This figure contrasts the
behavior of the maxima between the ideal 1D case, with x
=0 (bottom) and the case described above, x=0.1 (top). Note
particularly the qualitative flux dependence of the maxima
locations for gate voltages around e€;,~-1.5, i.e., midway
between the two resonances: for x=0 one observes a sharp
“phase lapse,” where the maxima jump from even to odd
multiples of 7, due to an exact vanishing of the conductance
which results from the Fano interference between the two
resonances. These “lapses” are no longer sharp when x # 0:
In the range 1<¢/m<<2 there appears a relatively fast
change of the maximum from around ¢=27 down to ¢
~ 1, similar to form B in Fig. 4. However, as ¢ increases
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FIG. 8. Transmission through the ABI of Fig. 5, vs gate voltage
€, at ¢=mar. The graphs shift up by 1 as ¢ increases.

this lapse becomes smoother, and near ¢=7 one no longer
sees such a lapse at all, as in form A in Fig. 4. At fluxes of
order 7/x, the interplay between the two phases ¢(1) and
¢(2) destroys the exact vanishing of the transmission be-
tween resonances, and thus also destroys the phase lapses.

The interplay between the two fluxes also affects the de-
pendence of the transmission on the gate voltage at fixed
magnetic flux. Figure 8 shows this dependence for ¢ equal to
integer multiples of . Although qualitatively similar, the
curves are not periodic in ¢, and one can see variations of
the Fano asymmetric shapes of the resonances with increas-
ing flux.
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FIG. 9. (Color online) Conductance from the pinched off ABIL
Red (circles): Experiment. Blue (full line): Fit to theory (see text).

Similar graphs also arise when one considers larger num-
bers of resonances. As long as one has ¢(n)=[1+x(n)]e,
with |x(n)| <1, the overall shapes of the graphs are found to
be similar to those presented above. Apparently, in the vicin-
ity of a specific resonance the results are mainly affected by
neighboring resonances, so that only a small number of dif-
ferent fluxes participate in the “beats.”

Before proceeding to fits of real data, we comment on the
assumptions of our theoretical model. As stated, our aim is
not to present a full description of the specific system, but
rather to construct the simplest theoretical model which cap-
tures the relevant physics. Future work can include the fol-
lowing extensions: (i) One can shift the Fermi energy of the
electrons, €, away from the band center of the leads, e=0. In
real experiments, the leads are not really one dimensional,
and the Fermi energy is usually far away from the edges of
the energy band, so that one does not expect a strong depen-
dence of the results on €. Indeed, Eq. (2) shows that a shift in
€ can be replaced by a shift of all the other energies in our
model [i.e., Ep(n), E,.]. In addition, for ka near /2 the
overall conductance in Eq. (3) has a relatively slow variation
with ka, which becomes negligible near resonances. (ii) One

TABLE I. The parameters of our fits to Eq. (3). The conductance G is also assumed to have a background,

a+bV,, and the zero of V, for the ABI is shifted by c relative to that of the pinched off case.
J?(n)/ Ved J,(n)/ Vel (Ep(n)—¢y)/e x(n)
n (X1072v172) (X1072v172) (V) (X1072)
1 0.5886 3.860 0.0008 0
2 -3.761 0.3806 -0.0159 -5.913
3 3.708 0.4211 —-0.0350 —-0.069
4 3.876 0.2988 —-0.0543 —-0.085
5 3.716 0.3073 —-0.0752 5.669
6 3.161 0.4030 —-0.0956 —-0.058
7 3.420 0.4155 —-0.1168 —-0.006
8 4.170 0.2934 —-0.1353 0.069
o a b c JINTErey T
(rad) (e*/h) (e*/hV) (V) 0.4224 0.1003
1639.13 0.5392 0.7391 —-0.01768
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FIG. 10. (Color online) Conductance from the ABI. Red (dots):
Experiment. Blue (full lines): Fit to theory (see text). Curves corre-
spond to fields B between 0.9100 and 0.9132 T, each graph is
shifted 0.15¢%/h

can replace each branch in Fig. 5 (e.g., the bond between L
and the n’s resonance on the dot) by a tight binding chain,
representing some internal structure. In practice, such a
structure will only renormalize the effective hopping matrix
element through such a chain.'” We absorb any such struc-
ture into our parameters J,(n) and j,. (iii) One can allow the
quantum dot to have some internal structure, which might
end up with some flux dependence of the corresponding
eigenenergies Ep(n). However, the small area of the dot
would imply that the corresponding flux dependence only
shows up at much higher fluxes, which are irrelevant for the
experimentally interesting range. (iv) One can also replace
the reference branch by a more complex structure. In prac-
tice, this branch only enters via the last term in Eq. (2),
which could be replaced by a constant. Again, a modified
structure would only renormalize this constant, thus requir-
ing a different set of parameters in our fits. (v) Finally, one
can allow for more internal structure to the ABI branches,
e.g., replacing each branch by a lattice with a finite width.'®
Again, the small loops of such a lattice will only affect the
results at very high fluxes. For the specific fits presented
below, our simple model already requires many parameters
(four parameters per resonance, plus the reference arm).
Adding any of the above changes might add many more
parameters, and probably improve the fits. However, as we
show below, our minimal model already represents the data
very well.
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FIG. 11. (Color online) Calculated color scale plot of the con-
ductance, using the parameters from Table I.

IV. FITS TO EXPERIMENTAL DATA

Equation (3) should represent a good approximation for
any sequence of Coulomb blockade peaks, with and without
a magnetic flux. Indeed, in Ref. 17 this equation has been
applied to produce a reasonable imitation of the data found
by Gores et al.?! for a mesoscopic single electron transistor.
The Fano asymmetry parameter for each resonance is in fact
determined by the influence of all the other resonances and,
therefore, there is no need for individual fits of ¢ for each
resonance and each set of parameters.

To demonstrate the effectiveness of Eq. (3), we have fitted
it to data from Ref. 2 and to similar new data, which exhibit
a sequence of Coulomb blockade resonances of the ABI, at
various values of the magnetic flux. Here we chose a se-
quence of measurements, done on the device shown in Fig. 1
for gate voltages between —0.142 and —0.014 V and mag-
netic fields in the range 0.9100—0.9132 T. Figures 9 and 10
show fits to our data, using Eq. (3). As explained in Ref. 2,
our device allows the pinch off of the reference path. Fitting
Eq. (3) with j,=;,=0 to the pinched off data, we have deter-
mined Ep(n), J(g)(n), and J,(n), with ¢(n)=0. The results of
this fit are shown in Fig. 9. Clearly, the fit is excellent. We
have then added the reference path, and used the data from
the ABI to determine j,/ \fErqf, Ji! \Eef (As discussed above,
we use €=0, to represent electrons at the Fermi level, deep
inside the band.) and the phases ¢(n)=[1+x(n)]¢, for one
particular value of the magnetic field, B;=0.9116 T. The re-
sults of this fit appear as the fifth graph from the bottom in
Fig. 10. Repeating this fit for B,=0.9100 T (the bottom
curve in Fig. 10), using the same parameters except for re-
placing ¢; by a fitted ¢,, we then found the coefficient C in
the relation ¢=¢;+C(B-B;), C=976.9T~'.?> In addition,
our fit allows a background conductance which contains a
component linear in the gate voltage, in addition to a con-
stant. The resulting parameters are listed in Table I. Using
these parameters, we have then produced the theoretical
curves for all the other values of B, with no further adjust-
ments (Fig. 10). The fits clearly capture all the qualitative
changes in the shapes of the resonances at different magnetic
fluxes. We find the results quite satisfactory, confirming the
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assumptions of our theoretical model. We note that the fitted
parameters have practically equidistant resonances, with U
~(.02 V. This Coulomb energy is consistent with the ca-
pacitance and area of the quantum dot.

Having obtained the parameters in Table I, we have then
plotted the theoretical contour plot of the conductance, see
Fig. 11. Qualitatively, this figure is similar to Fig. 4 (taken at
a slightly different range of parameters): The maxima move
continuously with the magnetic flux and with the gate volt-
age, imitating typical experimental data.

V. CONCLUSION

In this paper we have concentrated on the periodic effects
of having a closed ABI with a ring which has a finite width.
For a semiconductor ring, we argue that each resonance on
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the quantum dot can be associated with a single magnetic
flux, which penetrates the wave function in the ring which
couples to that resonance. A simple theoretical formula then
captures all the qualitative features observed in many experi-
ments. Adding more ingredients into the model would only
add more parameters, potentially improving the (already ex-
cellent) fits.
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