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On the basis of quantum dot exciton states and selection rules for their excitation, a microscopic picture of
a nonlinear optical spectroscopy that provides a direct probe of spin relaxation among quantum dot exciton
states is described. Equations of motion which govern the evolution of the third order exciton population
density are solved numerically to simulate the measured signals. It is shown how cross linearly-polarized pulse
sequences in three-pulse transient grating experiments form a polarization grating that monitors the history of
the bright exciton �F= ±1� spin states. Spin flips among those states lead to a decay of the grating, and
consequently the diffracted probe signal. In the microscopic picture elucidated from the simulations, destruc-
tive interference between the third-order polarizations radiated by populations of excitons with flipped and
conserved spin states causes the signal decay. The experiment permits the direct observation of the kinetics of
exciton spin state flips in an isotropic ensemble of quantum dots. Such measurements are demonstrated for
colloidal CdSe quantum dots at room temperature, and compared with results for a control experiment. The
relationship between this experiment and a difference measurement based on circularly-polarized pump and
probe pulses is established.
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I. INTRODUCTION

The prospect of employing quantum spin states as a
means of conveying, manipulating, or encrypting informa-
tion has inspired recent advances in spintronics and quantum
computation.1–17 Quantum dots �QDs� are envisioned as key
component materials for such technologies owing to their
well defined electronic states.18–23 One means of establishing
a spin population is to use optical pumping, whereby the
photon angular momentum of circularly polarized is trans-
ferred to excitons in a semiconductor.24–28 There has been a
resurgence of interest in such optical orientation,29–34 in par-
ticular its application to QDs,35–40 owing to applications for
the study and implementation of schemes for quantum com-
putation. In the present work we describe a means for mea-
suring ultrafast exciton spin relaxation in an ensemble of
randomly oriented quantum dots.

QD spectroscopy is described in terms of single-
excitation configurations mapping the possible ways that an
electron can be promoted from the fourfold degenerate va-
lence band to the doubly-degenerate conduction band.41–43

Those configurations are mixed by the exchange interaction,
leading to an exciton fine structure.43–64 The fine structure
manifold spans approximately 40 meV for small colloidal
QDs and is therefore obscured in frequency domain en-
semble spectroscopies by inhomogeneous line broadening.
Evidence for the existence of the exciton fine structure
comes from careful photoluminescence studies of ensembles
and single QDs.44,65–68 It has been proposed that these fine
structure states can be further mixed by the nonanalytic, or
long-range, exchange interaction.58,62,69,70 In that case the
lowest dark excitons are perturbed little, but the lowest
bright excitons mix, removing their degeneracy and chang-
ing the selection rules for their excitation. At higher tempera-

tures, rather than a splitting in the frequency domain, the
perturbation attributed to the long-range exchange may flip
the spin from one bright exciton state to another. In other
words, the total angular momentum of an exciton state may
flip from F= +1 to F=−1 and vice versa subsequent to pho-
toexcitation. The time scale of those dynamics determines
the relaxation time of exciton spin states in QDs.

In recent work an ultrafast coherent spectroscopy was
proposed that could, in principle, monitor the dynamics of
spin relaxation among F= ±1 excitons in ensembles of ran-
domly oriented QDs.71 Despite the degeneracy of those ex-
citon states, the dynamics can be probed through a change in
sign of the radiated third-order polarization, thus providing a
means of keeping track of the history of the QD exciton.
That is, whether the exciton state being probed has the same
total angular momentum as that initially photoexcited. As
such, optical orientation of the exciton states is unnecessary
for the success of the experiment. Subsequently we applied
the method to examine the size dependence of exciton spin
relaxation in CdSe QDs.72 In that work we discovered that
the rate of spin relaxation is strongly size dependent, ranging
from �100 fs to 1.2 ps for samples with mean diameters
ranging from 3.1 nm to 5.0 nm. The way that the polariza-
tion grating 3-TG experiment works is nonintuitive because
it is a coherent nonlinear process. Furthermore, the necessary
consideration of selection rules, particularly those for QD
excitons, in the nonlinear response formalism for orientation-
ally isotropic ensembles is new. The aim of the present report
is to clarify aspects of the polarization grating 3-TG experi-
ment by providing a detailed examination of the method, QD
selection rules and their orientation dependence, and an ex-
perimental verification of the theory.

The organization of the paper is as follows. In the next
section we describe the exciton states, selection rules, and
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the principle of optical orientation for QDs. That establishes
the essential background for for the remainder of the paper,
which is concerned with the measurement of exciton spin
relaxation among the quantum dot bright exciton states that
have total angular momentum F= ±1. The spin relaxation
detected in the experiments described in this contribution is
caused by flipping among those bright exciton states. Relax-
ation to the dark states does not contribute to the signal de-
cay. In Sec. III the linear cross-polarized third-order transient
grating �3-TG�, or transient polarization grating, experiment
is described and signals are simulated by solving the equa-
tions of motion that dictate the temporal evolution of the
third-order density matrix. Thus a microscopic picture of
precisely how the polarization grating 3-TG experiment mea-
sures spin relaxation is presented. Importantly, the theory has
been derived to model experiments on ensembles of colloidal
quantum dots, where each QD in the ensemble is oriented
randomly relative to the laboratory frame. Significant rota-
tional diffusion does not occur on the time scale of the mea-
surements described in this work. In Sec. IV we describe the
experimental setup, then in Sec. V the results of experiments
that demonstrate and test the theory are reported. In Sec. VI
we discuss the interpretation of optical orientation by circu-
larly polarized light of excitons in isotropic quantum dot
ensembles. It is shown that information equivalent to the
linear crossed polarized 3-TG experiment can be obtained as
a difference measurement between two pulse sequences with
permutations of circular polarizations. That result provides
an alternative picture for understanding the measurement of
spin relaxation, providing a closer connection to established
concepts of optical orientation. In the Appendixes the orien-
tation dependence of QD absorption is examined and the
conclusion that optical orientation is reversed when the QD
is oppositely-facing relative to the propagation of the inci-
dent light is derived and justified.

II. OPTICAL EXCITATION OF QUANTUM DOTS

The valence and conduction band states of semiconduc-
tors are characterized according to their total angular mo-
mentum and its projection onto the positive z axis, mj. In
typical binary semiconductors with zinc blende or wurtzite
structures, the z axis has a particular orientation because
those crystals lack inversion symmetry.73 Ignoring exchange
interactions for the moment, excitons with total angular mo-
mentum F= ±1 can be prepared by photoexciting a valence
band electron to the conduction band using circularly-
polarized light, as indicated in Fig. 1. That idea underpins
optical orientation, whereby a majority of a specified spin
state can be established by photoexcitation of a suitably ori-
ented semiconductor crystal with respect to the propagation
direction of the incident circularly-polarized �CP� light.24–26

That is because CP light with momentum k has an angular
momentum component ±� along k according to whether it is
right-or left-CP respectively. The spatial distribution of the
electric field vector of CP light maps a right spiral onto the
�x ,y ,z� coordinate system,74 thus

��+� = êR = �êx + iêy�/�2, �1a�

��−� = êL = �êx − iêy�/�2, �1b�

where the ê� are polarization unit vectors of right-hand �RH�
and left-hand �LH� CP light, �=R ,L, or light that is linearly
polarized in the plane normal to the propagation direction,
�=x ,y. There is inconsistency in the literature regarding the
labeling of ��+� and ��−� as RH or LH CP light. Here the
definition of Jones75 is used.

The principle of optical orientation may also be applied to
suitably oriented semiconductor quantum dots �QDs�. Since
the exchange interaction is significant in magnitude for small
QDs relative to the bulk, its influence on the mixing between
single-excitation configurations needs to be considered.76

The single-excitation configurations are written as products
of electron and hole wave functions43

��,M�re,rh� = 	��re�	M�rh� . �2�

The electron and hole wave functions are each written as the
product of an envelope function 
�r� and a Bloch function
41–43,77

	��re� = 
�re��S�� , �3�

FIG. 1. �Color online� Upper panel: The valence and conduction
band states of a prototypical semiconductor are charcterized accord-
ing to the projection of the total angular momentum onto the posi-
tive z axis, mj. Solid lines depict valence to conduction band exci-
tations of an electron that are promoted by absorption of left-hand
circularly polarized light ���−�= êL= �êx− iêy� /�2�, while dashed
lines indicate the absorption of right-hand circularly polarized light
���+�= êR= �êx+ iêy� /�2�. Lower panel: Two relative orientations of
the QD local reference frame �x� ,y� ,z�� relative to the fixed �labo-
ratory� axis system �x ,y ,z� are shown. In each case the incoming
photon propagates along ẑ. Considering the selection rules for one-
photon absorption, it can be shown that in �a� left-hand circularly
polarized light excites the �−1 QD exciton. However, when the QD
is rotated 180° right-hand circularly polarized light excites that
same exciton.
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	M�rh� = � 
�� �rh�u�, �4�

where u�, with �= ± 1
2 , ± 3

2 , are Bloch functions of the va-
lence band at 
8, written according to the Luttinger-Kohn
convention as

u3/2 =
1
�2

�X + iY�↑ , �5a�

u−3/2 =
i

�2
�X − iY�↓ , �5b�

u1/2 =
i

�6
��X + iY�↓− 2Z↑� , �5c�

u−1/2 =
1
�6

��X − iY�↑ + 2Z↓� . �5d�

In the present work we are concerned with electric-dipole
transition matrix elements for excitation of excitons in QDs.
They are obtained as a product of an overlap integral over
the slowly-varying envelope functions, K�	�K, with a ma-
trix element between Bloch functions.41 The angular integral
over the product of spherical harmonics 
d�YlmY00=�l0 that
contributes to K� simplifies the hole wave functions. Then
the electric-dipole transition matrix element for one-photon
absorption from valence band to conduction band in the
electron-electron representation is

�M,� = �	��− er�	M� = K��S���̂�u�=M� . �6�

The states ��,M are mixed by the short-range exchange inter-
action to form the manifold of QD exciton states �F with
total angular momentum F=sz+M and energies that form the
QD exciton fine structure

�+2 = �↑,3/2, �7a�

�−2 = �↓,−3/2, �7b�

�+1
L = iC+�↑,1/2 + C−�↓,3/2, �7c�

�−1
L = iC−�↑,−3/2 + C+�↓,−1/2, �7d�

�0
L = �i�↑,−1/2 + �↓,1/2�/�2, �7e�

�+1
U = − iC+�↑,1/2 + C−�↓,3/2, �7f�

�−1
U = − iC−�↑,−3/2 + C+�↓,−1/2, �7g�

�0
U = �− i�↑,−1/2 + �↓,1/2�/�2, �7h�

where C± are mixing coefficients defined by Efros et al.43

The electric dipole transition moment vectors for excitation
of each of these exciton states ��� from the ground state �0�,
��0	��, are

�±2 = 0, �8a�

�±1�L� =
C+K��2 + C−K��6

2�3
��� x � i�� y� , �8b�

�0�L� = 0, �8c�

�±1�U� =
�C+K��2 ± C−K��6

2�3
��� x � i�� y� , �8d�

�0�U� = − i
K�
�3

�� z. �8e�

The matrix element for one-photon absorption from the
QD ground state �0� to the exciton state ��� in the electric
dipole approximation is78

M�0 = ����n − 1��k,��� − �0
−1� · d��R��n�k,���0� , �9�

where n�k ,�� is the occupation number for the quantized
radiation field for photons of wave vector k and polarization
�. The QD is located at R. That expression is evaluated using
the mode expansion for the transverse displacement vector

d��r� = i�
k,�

��ck�0

2V

1/2

�e����k�a����k�eik·r − ē����k�a†���

��k�e−ik·r� , �10�

where V is the quantization volume, e����k� denotes the pho-
ton polarization, a and a† are annihilation and creation op-
erators for the radiation field, and the bar indicates complex
conjugate. The matrix element for absorption is therefore

M�0 = − i�n�ck

2�0V

1/2

e����k� · ��0eik·R. �11�

The absorption probability depends on �M�0�2. Similarly we
can evaluate the matrix element for one-photon emission,
obtaining

M0� = i� �ck

2�0V

1/2

ē j
����k� · � j

0�e−ik·R. �12�

where it is necessary to sum over all possible photon direc-
tions and polarizations �hence the index j� in a solid angle
relevant to the detection direction. Note that �0� equals the
complex conjugate of ��0 �i.e. ���0�*�.

Considering Eqs. �8� in conjunction with Eq. �11� it is
deduced that �+1

U,L are exclusively photoexcited by RH CP
light ���+�� propagating along the QD z direction, while �−1

U,L

states are excited by LH CP light ���−��. Light that is linearly
polarized in the �x ,y� plane may excite any of the �±1

U,L

states.

III. TRANSIENT POLARIZATION GRATINGS AND
QUANTUM DOT EXCITON SPIN RELAXATION

Many spectroscopic investigations of QDs are undertaken
for colloidal samples, which are typically randomly oriented.
In such samples the exciton fine structure is obscured by
inhomogeneous line broadening, so individual states cannot
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be selected by tuning the frequency of the excitation light.
Polarized excitation light may allow one to probe the fine
structure exciton states with greater selectivity. In that case,
resonant nonlinear optical spectroscopy has great potential;
the higher the order of the spectroscopy, the more diverse the
opportunities for using polarization to gather information
from an isotropic ensemble.71,79–83 On that basis an analysis
of polarization sequences for various resonant third-order
nonlinear spectroscopies and their application to QDs was
reported.71 It was found that cross-linear polarized pulses
could be used to detect exciton spin relaxation among the
F= ±1 exciton states. That idea is scrutinized more closely in
this section.

In third-order resonant transient grating �3-TG� spectros-
copy two time-coincident laser pulses with wave vectors k1
and k2 are crossed at a small angle � in a medium.84,85 We
use an angle ��2.2°, which means that the beams can be
treated as approximately colinear for the purposes of the mi-
croscopic theory described below. Interference between these
two laser beams at their crossing point in the sample creates
a population grating—a sinusoidal modulation of the prob-
ability of finding QD excitons. A variably delayed probe
pulse with wave vector k3 interrogates the temporal evolu-
tion of the QD excitons via the time-integrated intensity I�tp�
of an induced third-order polarization P�3��0, tp , t� scattered
in the ks=−k1+k2+k3 signal direction. The time variables
correspond to the delay among the pump pulse pair, set to
zero, the delay between those pulses and the probe, tp, and
the subsequent time evolution of the radiated polarization
over t. The experimental detection scheme integrates over t.
The experiments described here detect phenomena that occur
on a time-scale orders of magnitude faster than decay of the
grating caused by spatial diffusion processes. Thus only dy-
namics intrinsic to the QDs are probed.

Two basic varieties of 3-TG experiment are possible, as
determined by the polarization configuration of the pump
pulses. These are known as intensity �or population� grating
and polarization grating experiments. In an intensity grating
experiment the intensity of the induced polarization radiated
in the ks direction depends on the modulation depth. The
signal therefore decays as the excitons recombine, thereby
revealing much that same kind of information as a pump
probe experiment. The polarization sequence of the pump
pair, electric fields E1, E2, probe E3, and signal E4 is written
as ê1ê2ê3ê4. Intensity grating experiments then include 3-TG
experiments carried out using the polarization sequences
RRRR, LLLL, RRLL, VVVV, RRVV, and VVHH, where R
means RH CP light and L means LH CP light �Eq. �1��, V
denotes linear vertically-polarization light �êV= êx�, and H is
horizontally-polarized light �êH= êy�. The light is propagating
in the z direction.

When the pump pulses are orthogonally polarized, that is
ê1 · ê2=0, then a polarization grating is formed in the sample.
In that case there is no spatially-modulated intensity grating,
but QDs in the beam crossing volume may be photoexcited.
The distinguishing feature of this experiment is that the po-
larization of the grating varies spatially according to the
phase delay between E1 and E2. A suitably polarized probe
beam can detect the decay of this polarization, which might

be instigated by phenomena such as rotational diffusion,
resonance energy transfer, and so on. That can be understood
in the context of the grating decomposition method proposed
by Fourkas et al.86 Polarization sequences for this experi-
ment include VHVH, VHHV, RLRL. Sequences such as
VHVV yield zero signal, as is obvious from inspection of the
row vector in Eq. �B5�.

A characteristic of the crossed-linear polarization grating
is that the spatial polarization modulation spans LH CP to
RH CP via elliptical and linear polarization.87 Such an intui-
tive understanding of polarization and population gratings
has enabled the method to be applied to a diverse range of
systems.84–95 Hence one might surmise that the origin of the
signal decay when the experiment is applied to quantum dots
relates to the selection rules for exciton photoexcitation and
the circular-polarization character of the grating. However, it
does not seem that the VHVH and VHHV experiments for
QDs can be easily comprehended by considering the pump
pulse sequence in isolation from the probe/analyzer. Actu-
ally, that conclusion is generally true for coherent nonlinear
spectroscopies.96,97 To comprehend the relationship between
the VHVH and VHHV 3-TG experiments and the QD exci-
ton states it must be realized that the populations of �+1 and
�−1 excitons are equal and contiguous across the grating,
despite the polarization modulation. Recall that those exciton
states cannot be oriented in an isotropic ensemble. The ex-
periment can best be understood by considering the full
third-order response, and it thus emerges that the manner by
which the grating is probed is crucial. This will be shown
here through simulations of the experiment.

The heterodyne-detected and homodyne 3-TG signal in-
tensities as a function of probe delay tp are given by

IHET�tp� � �
0

�

dt Re�ELO
* �tp,�	� · �P�3��0,tp,t��� ,

�13a�

IHOM�tp� � �
0

�

dt��P�3��0,tp,t���2, �13b�

where �	 is the phase delay between the local oscillator
field ELO

* and the probe field E3. The angle brackets indicate
a rotational average. The electric field of the laser pulse j has
the form

E j��,t� = êjA�t�cos��0t� , �14�

where �0 is the carrier frequency, êj is the polarization and
A�t�=exp�−4 ln 2t2 /�E

2� is the pulse envelope. At low excita-
tion intensities the third-order polarization radiated by the
sample is determined by a perturbation expansion of the den-
sity matrix � to third-order in the field-matter interactions96

P�3��0,tp,t� = Tr�N� · ��3�� . �15�

Here a model system is considered in order to communi-
cate the cross-polarized 3-TG experiment for probing QD
exciton spin relaxation. To that end, a ground state �0�	�g�
and two excited states corresponding to the F= ±1 exciton
states ��+1�	�p� and ��−1�	�m� are considered, Fig. 2.
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Spin flips between the QD �p� and �m� states may occur with
a rate ks. More specifically, the �p� to �m� spin relaxation rate
is designated to be kpm and the reverse rate to be kmp. To keep
track of the selection rules applying to excitation of the ex-
citon versus those for probing the final state, a population
that has flipped from its original exciton state is designated
by a dash. For example, �m�� means ��−1� population at
some time after the pump sequence that was originally pho-
toexcited to the �p� state.

The time-ordered sequence of incident laser pulses is
E1�−tp�, E2�−tp�, and E3�0�. An analyzer exerts the final po-
larization control on the radiated signal via ê4. The calculated
signal includes equal contributions from pulse time orderings
1-2-3 and 2-1-3, since the pump pulses are temporally over-
lapped. To simplify the presentation, just the normal time
ordering and one representative rephasing pathway is de-
scribed here explicitly.

At any time after the pump sequence, two reservoirs of
each of the �p� and �m� exciton population densities are con-
sidered: those that have the same spin as originally prepared
by the optical excitation, �pp= �p��p� and �mm= �m��m�, and
those excitons that are in an opposite spin state to that origi-
nally prepared, �p�p� and �m�m�. It is important to keep track
of the QD transition moments, which of course change after
a spin flip during the delay tp over which the exciton popu-
lations evolve. A simplified way of envisioning the conse-
quences of that spin flip is to imagine that the final incident
field “sees” an opposite transition moment to that which en-
abled absorption of the incident light.

The contribution to the density matrix at third-order with
respect to radiation-matter interactions ��3� is obtained by
solving coupled differential equations that describe how the
material system interacts with the incident electromagnetic
field, thus obtaining the induced third-order polarization of
Eq. �15�. A more detailed description of this well-known
theory can be found in Refs. 96 and 97. Thus ��3� is calcu-
lated by solving the following coupled differential equations
�and four others where p→m�:

�

�t
�gp

�1� =
i

�
��pg

1*E1�gg
�0� + �p�gp

�1�� − ��gp
�1�, �16a�

�

�t
�pp

�2� = −
i

�
�pg

2 E2�gp
�1� − kpm��pp

�2� + km�p�m�m�
�2� − 
�pp

�2�,

�16b�

�

�t
�m�m�

�2� = kpm��pp
�2� − km�p�m�m�

�2� − 
�m�m�
�2� , �16c�

�

�t
�gg

�2� =
i

�
��gp

2 E2�gp
�1� + �gm

2 E2�gm
�1�� + 
��pp

�2� + �m�m�
�2� + �mm

�2�

+ �p�p�
�2� � , �16d�

�

�t
�pg

�3� =
i

�
��gp

3 E3�pp
�2� + �p�pg

�3�� − ��pg
�3�, �16e�

where �p=�m are the transition energies for excitation of �p�
and �m�, � is the dephasing time of a coherence, 
 is the
decay time of the exciton states, Ej =A�t�cos��0t� and the
couplings between the incident polarizations and the QD
transition moments are written as

� ji
n = �j�− en · ��i� , �17a�

� ji
n* = �i�− en

* · ��j� , �17b�

as is discerned from M�0 in Eq. �11�. These terms need to be
collected and rotationally averaged, as shown below in Eq.
�18�.

According to the factorization approximation,98 Eq. �15�
together with Eqs. �16� yield the macroscopic polarization
radiated by the sample in the ks=−k1+k2+k3 phase-matched
direction

P�3��0,tp,t� = ��pg
1*�pg

2 �gp
3 �gp

4*��1
�3��0,tp,t� + ��pg

1*�pg
2 �gm�

3 �gm�
4* ��2

�3�

��0,tp,t� + ��mg
1* �mg

2 �gm
3 �gm

4* ��3
�3��0,tp,t�

+ ��mg
1* �mg

2 �gp�
3 �gp�

4* ��4
�3��0,tp,t� �18�

=P1
�3��0,tp,t� + P2

�3��0,tp,t� + P3
�3��0,tp,t�

+ P4
�3��0,tp,t� , �19�

where the angle brackets indicate that rotational averages are
to be taken over the polarization—dipole transition matrix
element products and the asterisk means complex conjugate.
The method for performing the tensoral rotational averaging
is described in Appendix B. Using the results reported pre-
viously in Table 2 of Ref. 71, the stimulated emission con-
tributions to the VHVH 3-TG signals result from

P1
�3��0,tp,t� =

2

15
��pg�4�1

�3��0,tp,t� , �20a�

P2
�3��0,tp,t� = −

2

15
��pg�2��mg�2�2

�3��0,tp,t� , �20b�

P3
�3��0,tp,t� =

2

15
��mg�4�3

�3��0,tp,t� , �20c�

P4
�3��0,tp,t� = −

2

15
��mg�2��pg�2�4

�3��0,tp,t� . �20d�

Other polarization sequences may be considered in the
scheme, as has been reported previously. The coefficients
C�4� relevant to Eqs. �20�, were reported in Ref. 71 and are
collected here in Table 1 of Appendix B.

FIG. 2. Kinetic scheme used for simulations of the 3-TG sig-
nals. The exciton states interconvert according to the rate constants
kpm and kmp.
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In Fig. 3 calculated VHVH 3-TG signals are shown.
Curve �i� represents a model heterodyne-detected signal in
the absence of spin flip transitions �ks=0�. The population
relaxation time 
 is arbitrarily set to 50 ps for the purposes
of the present model simulations. That decay time is evident
as the decaying component of the simulated 3-TG curve �i�
since the signal intensity is proportional to the exciton popu-
lation density �pp+�mm. Curve �ii� shows the imaginary com-
ponent of the heterodyne-detected 3-TG signal calculated
with kpm=kmp=ks=1 ps−1. The markedly different decay is

evident, and is clearly dictated by a relaxation rate 2ks rather
than 
. Curves �iii� shows the corresponding homodyned sig-
nal, which decays twice as fast as �ii� owing to the modulus
squared in Eq. �13b�.

To understand the origin of the 3-TG signal decay as a
function of delay time tp it is helpful to isolate individual
pathways contributing to P�3��0, tp , t� in Eq. �19�. In Fig. 4�a�
we show each of P1

�3��0, tp , t� to P4
�3��0, tp , t� at tp=500 fs,

plotted versus t to show the time evolving field. At this delay
time �500 fs� the total 3-TG signal intensity in Fig. 3 �curve
�ii�� still has a substantial magnitude. By comparing these
radiated polarizations with those calculated for tp=3.5 ps,
shown in Fig. 4�b�, when the total time-integrated VHVH
3-TG signal in Fig. 3 has decayed to a negligible intensity, it
becomes apparent that the decay of the VHVH 3-TG signal
does not correspond to diminishing radiated polarizations
from sources in the ensemble that reflect population relax-
ation. Instead, the 3-TG signal decay is actually caused by
destructive interference of the P1

�3��0, tp , t� and P3
�3��0, tp , t�

polarizations with P2
�3��0, tp , t� and P4

�3��0, tp , t�. The reason
for this is that the exciton spin flip is associated with a sign
change in C�4� �see Eq. �B5��, and that sign change is mani-
fest as a � phase shift of those latter two induced polariza-
tions compared to P1

�3��0, tp , t� and P3
�3��0, tp , t�.

Several VHVH 3-TG simulations are compared in Fig. 5.
It is clear that the decay of the signal is directly related to the
spin flip dynamics, consistent with our recent experimental
results. Comparison of the 3-TG signal �iv� in Fig. 5�a� with
the time evolution of the population densities plotted in Fig.
5�b� shows that the 3-TG signal decay is related to the popu-
lation difference ��pp+�mm�− ��m�m�+�p�p��. Hence the kinet-

FIG. 3. �Color online� Calculated imaginary �absorptive� contri-
bution to the heterodyne-detected VHVH 3-TG signals for cases of
�i� no spin flips, where the decay of the signal follows exciton
population recombination, and �ii� a spin flip time 1/ks of 1 ps. The
dashed line �iii� shows the homodyne-detected signal calculated for
the same conditions as �ii�.

FIG. 4. Synopsis of the generation of a 3-TG signal for the VHVH experiment, showing the signal evolution for two population times.
The initial pump pulse sequence �VH� creates equal numbers of F= +1 and F=−1 excitons, with corresponding densities �pp and �mm,
respectively. If those population densities are probed at some time delay tp later, then the corresponding third-order polarizations P1

�3� and
P3

�3� are induced and radiate from the sample to be detected as a signal. That signal intensity decays with tp according to the usual kinetics
of exciton trapping and recombination. Exciton spin flips are monitored by the population densities �m�m� and �p�p�. The state m� is
physically indistinguishable from m, but is differentiated because while m was directly excited by the pump sequence, m� was formed by a
spin flip from the state p. The VHVH 3-TG experiment can monitor the history of the exciton populations because the third-order
polarizations radiated by �m�m� and �p�p�, P2

�3� and P4
�3�, are phase shifted by � from P1

�3� and P3
�3�. The four radiated polarizations thus

interfere destructively and the total signal intensity decays according to the increasing ratio of ��pp+�mm� to ��m�m�+�p�p�� To illustrate that,
the time-resolved polarizations radiated at tp=500 fs and tp=3500 fs are compared in �a� and �b� respectively. Those conditions correspond
to the circled points on the time-integrated signal shown in Fig. 3. It is clear that even though the total time-integrated signal is zero at
tp=3500 fs, the exciton populations are still significant. The total signal is zero because of interference between the the radiated polarizations
P1

�3��0, tp , t� to P4
�3��0, tp , t�.
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ics dictating the formation of �m�m� and �p�p� via exciton spin
flips dictate the VHVH 3-TG decay. It might be possible that
kpm�kmp, for example under the influence of an applied
magnetic field. According to curve �iii� in Fig. 4�a� the
VHVH 3-TG signal still decays to zero amplitude once the
populations shown in Fig. 4�c� equilibrate.

IV. EXPERIMENTAL SECTION

Details of the laser setup have been described
previously.99 Briefly, 130 fs pulses with 800 �J of pulse
energy were generated at 775 nm from a 1 kHz-repetition
rate Ti:sapphire amplified laser �Clark-MXR, CPA-2001�.
They were converted into visible light, tunable from
450 to 650 nm by a noncollinear optical parametric amplifier
�NOPA�. The NOPA output pulses were sent to a pair of
quartz prisms for dispersion compensation, and then split
by a beamsplitter into two beams, a strong pump, and a
weak probe. A time delay between the two pulses was
controlled by a motor-driven translation stage �Newport,
UTM150PP.1�. Both pump and probe beams separately
passed through a combination of a half-wave plate and po-
larizer in order to control their relative intensities.

Our experimental setup of optical heterodyne detected
transient grating �OHD-TG� using a diffractive optic �DO�,
shown in Fig. 6, is similar to those developed by Miller
group100 and Fleming group101 with a few modifications. The
DO �from INO� was designed to diffract 70% of input energy
into ±1 diffractive orders. The pump and probe beams were
spatially overlapped on the DO with a 10 cm focal length
achromatic lens to give a pair of replicas for each pulse. The
resulting four beams were achromatically collimated and fo-
cused into the sample by a pair of 10 cm focal length para-
bolic mirrors. Half-wave plates were inserted in order to con-
trol the polarization of each beam. To avoid any pump-probe
signal contributed by the DO itself, the pump and probe
beams arrive at the DO at a relative time delay shifted from
tp by 6.7 ps. A glass plate inserted into each replica of the
pump beam after the DO corrects the relative time delay to
tp, simultaneously shifting the instantaneous DO pump-probe
signal to tp=−6.7 ps and hence shifting it out of our mea-
surement window. To prevent any dipersion mismatch
caused by insertion of the glass material in the path of the
pump beam, another glass plate of the same thickness was
inserted into the probe beam before the DO.

Owing to the phase matching boxcar geometry of the four
incident beams, the signal field �ks=−k1+k2+k3� was radi-
ated along the same direction as the local oscillator �kLO�.
The spatial and temporal overlap of the radiated signal field
with the LO enabled the passively phase-locked optical het-
erodyne detection. In order to adjust accurately the phase

FIG. 5. �a� Simulated VHVH 3-TG decays for various spin flip
rates: �i� no spin flips, �ii� ks

−1=5 ps, �iv� ks
−1=1 ps, �v� ks

−1

=0.5 ps. For the simulation result �iii� the forward and reverse spin
flip rates differ: kpm

−1 =1 ps and kmp
−1 =2.5 ps. �b� Plot of the exciton

population densities �pp �solid line� and �p�p� �dashed line� for the
simulation with ks

−1=1 ps. �c� Similar to �b�, but for simulation �iii�.

FIG. 6. Experimental setup for optical heterodyne detected tran-
sient grating �OHD-TG� measurements. � /2: half-wave plate, P:
polarizer, L: lens, DO: diffractive optics, M: PM: parabolic mirror,
CS: cover slip, G: glass plate, S: sample, PD: photodiode, C:
chopper.

EXCITON SPIN RELAXATION IN QUANTUM DOTS¼ PHYSICAL REVIEW B 73, 195325 �2006�

195325-7



difference between the LO and signal fields, two identical
cover slips were inserted into the probe and LO beams and
one of them was adjusted by a motor-driven rotator �Thor-
labs, CR1-Z6�. This capability of arbitrary phase setting en-
ables selective measurement of absorptive �imaginary� and
refractive �real� components of the third-order polarization.
Imaginary and real components can each be measured when
the phase of LO field is set in quadruture or in phase with the
signal field, respectively. To determine the phase between the
two fields, the signal of a pure solvent �e.g., CS2 or toluene�
was measured while varying the relative angles between two
cover slips. The nonresonant signal from pure, transparent
solvent has a nearly zero absorptive contribution at visible
wavelengths, so the relative phase for measuring imaginary
and real components correspond to zero and maximum �or
minimum� amplitude of the solvent signal, respectively. To
prevent contamination from unwanted pump-probe signals
induced by the LO and the pump beams, the probe beam �k3�
was chopped at 250 Hz in front of the sample. To obtain the
OHD-TG signal free of any homodyne signal, two signals
phase shifted by � were measured, then subtracted from each
other. For the measurements shown in this paper, we define
the phase such that the real component of the pure solvent is
positive.

The OHD-TG signal was detected using a silicon photo-
diode �Thorlabs, DET210� and a lock-in amplifier �Stanford
Research, SR810�. To ensure that only the signal and LO
fields were incident on the detector, all unwanted beams and
scattered light were blocked by a mask after the sample. A
third polarizer was mounted after the mask to set the signal
polarization. Depending on the laser center frequency, pulse
durations of 30 to 40 fs were obtained from autocorrelation
measurements at the sample position. In order to prevent any
sample degradation and thermal grating contributions to the
signal, the pulse energy was kept at less than 5 nJ/pulse.
Both pump and probe beams were attenuated until the early-
time signal shape was independent of pulse energy. To ensure
that the samples were not photodegrading, the absorption
spectrum of each sample was measured before and after the
3-TG scans.

V. EXPERIMENTAL RESULTS

The rotational averaging factors collected in Table 2 of
Ref. 71 provide a means of testing the theory experimentally
by examining different polarizaton sequences. That is only
possible for heterodyne-detected 3-TG data, since then the
sign of the signal can be resolved. For the polarization se-
quence VVVV we have C1,3

�4� =C2,4
�4� = 1

5 , for VVHH C1,3
�4�

=C2,4
�4� = 2

15. That is, the signals that reflect exciton population
relaxation and recombination are always positive signed. For
VHVH we find C1,3

�4� = 2
15 while C2,4

�4� =− 2
15. Thus the VHVH

signal is positive signed, and its intensity diminishes as ex-
citon spin relaxation increases the proportion of polarization
radiated as P2

�3� and P4
�3�. On the other hand, for VHHV we

obtain C1,3
�4� =− 2

15 and C2,4
�4� = 2

15. That is, this signal is uniquely
negative in sign, and its magnitude decreases with spin re-
laxation. Hence the theory for these experiments may be
verified by measuring the sign of the 3-TG signals, which

should always be positive except for VHHV. The corre-
sponding experimental results are shown in Fig. 7�a�. It is
also seen in the figure that the VHHV signal acquires a posi-
tive sign after �300 fs. That is because some QDs are ex-
cited to the F=0 states, as discussed in a future report. Note
that in the present paper we report only the imaginary, that is,
the absorptive, 3-TG signals.

In Fig. 7�b� the heterodyne-detected 3-TG data collected
for CdSe quantum dots with average radius R=1.72 nm at
293 K in toluene solution are compared to homodyne-
detected data for CdSe QDs with R=1.70 nm at 293 K in a
poly�methylmethacrylate� polymer film. The latter data were
reported in Ref. 72. Comparable data to the homodyne de-
tected measurement are reconstructed from the real and
imaginary parts of the heterodyne-detected data by taking the
appropriate modulus squared.

In Fig. 8 we show the results of a control experiment—the
heterodyne-detected data analogous to the homodyne-
detected control experiment reported in the supporting infor-
mation for Ref. 72. 3-TG traces were recorded for a dilute

FIG. 7. �Color online� �a� Imaginary part of the heterodyne-
detected 3-TG signals for CdSe quantum dots with average radius
R=1.72 nm. The VVVV, VHVH, and VHHV signals are compared.
The intensity scale for this plot is linear. �b� Comparison of �i� the
VHVH signal for the R=1.72 nm CdSe sample shown in �a� with
�ii� the homodyne-detected VHVH 3-TG data for CdSe with R
=1.70 nm. Curve �iii� is the homodyne signal reconstructed from
the real and imaginary parts of the heterodyne-detected 3-TG data,
which is evidently qualitatively similar to curve �ii�.
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solution of the dye rhodamine 6G in ethanol. Like most mol-
ecules, rhodamine 6G has a simple dipolar transition moment
oriented along an axis through the molecule. In that case the
theory predicts that the only difference between the various
polarization configurations should be an intensity factor. In-
deed, that is what is observed in the comparison between
3-TG data recorded for the VVVV, VHVH, and VHHV po-
larization sequences, as shown in Fig. 8. It is noted that the
change in sign of C�4� concomitant with an exciton spin flip
is unique to QDs.

In order to extract the spin relaxation dynamics from the
experimental VHVH �or VHHV� 3-TG data, account must be
taken of the signal decay caused by population dynamics, as
well as the spin relaxation contribution to the signal decay.
The population dynamics are observed cleanly in the VVVV
3-TG data, so that information can be obtained indepen-
dently from the cross-polarized 3-TG traces. If exciton re-
combination, which is very long compared to spin relaxation,
were not complicated by fast surface trapping effects,102–105

then the VHVH data could be fit directly with an exponential
function to retrieve the spin relaxation rate, as we employed
in a previous report.72 A more accurate procedure that is well
justified for the heterodyne-detected data, is to fit the cross-
polarized 3-TG data with the function

IVHVH�tp� = �A1 exp�− 2kstp� + A2�IVVVV�tp� , �21�

where IVVVV�tp� is the decay profile of the VVVV 3-TG data
as a function of pump-probe delay time tp. The fitting proce-
dure was undertaken for the data for CdSe quantum dots
shown in Fig. 7�a�. The VVVV signal was fit from tp=
�100 fs, thus avoiding the coherent spike, to three exponen-
tials: one nanosecond component �too long to be resolved by
our experiments� that represents exciton population relax-
ation, and two exponentials with relaxation rates of 0.28 and
2.2 ps−1 associated with surface trapping dynamics. The
VHVH signal was then fit using Eq. �21�, yielding an exciton

spin relaxation rate of 4.9 ps−1��s=200 fs�. We have ob-
served that these spin relaxation times rapidly lengthen as the
QD size is increased.72

In the theory section we explicitly described only the
stimulated emission contribution to the 3-TG signals. The
ground state recovery contribution follows the same tempo-
ral behavior, as is easily surmised. However, excited state
absorption signals have an opposite sign to these former con-
tributions to the signal. In other words, in a frequency dis-
persed pump-probe experiment there are two notable fea-
tures: the negative changes in optical density, representing
stimulated emission and ground state recovery of exciton
populations, and the positive changes in optical density due
to probe absorption into biexciton states.102,103 The effect of
transient absorption signals on the 3-TG experiments with
VVVV polarization sequences is to diminish the overall sig-
nal intensity. It might be expected that the implications for
the VHVH and VHHV signals would be more problematic
because measurement of exciton spin relaxation relies on
sign changes, manifest through C1

�4� through C1
�4� �Table 1�, in

the induced polarizations. However, it turns out that while
the polarizations radiated through signal pathways that in-
volve probe absorption acquire a negative sign, as usual, the
rotational average factors in the VHVH and VHHV signals
also reverse sign.71 Hence the net effect is that the VHVH
and VHHV signals are entirely unaffected by the relative
proportion of ground state recovery, stimulated emission, and
excited state absorption contributions to the signal.

VI. OPTICAL ORIENTATION USING CIRCULARLY-
POLARIZED LIGHT

Circularly polarized �CP� light projects angular momen-
tum onto the quantum dot exciton states. The result of that
projection—whether the F= +1 or F=−1 exciton is
photoexcited—depends on the handedness of the CP light, its
propagation direction, and the orientation of the QD absorb-
ing the photon. Colloidal QDs in an ensemble typically have
no preferred orientation of their c axes in the laboratory
frame axis system, so specific exciton states cannot be ori-
ented by circularly polarized light. That is because the opti-
cal orientation is reversed when the QD is oppositely-facing
relative to the propagation of the incident light. For example,
Fig. 1 shows that the nominal selection rule for excitation of
the �−1 QD exciton involves using left-hand circularly po-
larized light. But, when the QD absorbs light from the oppo-
site direction, then right-hand circularly polarized light ex-
cites the �−1 exciton. However, the net projection of angular
momentum onto the ensemble can be used to detect exciton
relaxation. That can be achieved, for heterodyne detected
measurements, by comparing the RRRR 3-TG signal inten-
sity, where RRRR means the pump pulse pair, the probe, and
the analyzer are right-circularly polarized, with correspond-
ing RRLL 3-TG data.

For a QD ensemble, where the QDs are each oriented
randomly with respect to a fixed axis system, the difference
intensity experiment can be understood through the rota-
tional averaging approach reported previously.71 In this case,
rather than the induced polarization changing sign �phase

FIG. 8. �Color online� Results of a control experiment showing
the heterodyne-detected 3-TG signals for VVVV, VHVH, and
VHHV polarization sequences. These signals all contain the same
information for this laser dye �rhodamine 6G� because its excited
states obey selection rules for linearly-polarized light.
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shifting� when population density flips spin state, it changes
magnitude. For example, in the RRRR 3-TG signal, C�4�

changes from 1
5 to 1

30. In the complementary experiment,
RRLL 3-TG, C�4� changes from 1

30 to 1
5 . That can be more

clearly seen in the four representative equations contributing
to the total third-order polarization radiated in the RRRR
3-TG experiment

P1
�3��0,tp,t� = 1

5 ��pg�4�1
�3��0,tp,t� , �22a�

P2
�3��0,tp,t� = 1

30 ��pg�2��mg�2�2
�3��0,tp,t� , �22b�

P3
�3��0,tp,t� = 1

5 ��mg�4�3
�3��0,tp,t� , �22c�

P4
�3��0,tp,t� = 1

30 ��mg�2��pg�2�4
�3��0,tp,t� . �22d�

Simulations of the 3-TG experiments employing CP light
obtained using Eqs. �22� and the corresponding equations for
the RRLL 3-TG experiment show clearly that the difference
signal contains the same information as the VHVH and
VHHV 3-TG experiments. Representative results of a calcu-
lation are shown in Fig. 9. Such an experiment can also be
carried out using two pulses in a pump-probe
configuration.36 In practice, the difference measurement will
have poor signal-to-noise compared to the direct measure-
ment based on the linear polarization grating.

VII. DISCUSSION

Many semiconductors absorb light according to optical
selection rules by which states can be selected by circularly

polarized light. The interesting aspect of such photoexcita-
tion by circularly polarized light is that electrons are excited
to defined spin states in the conduction band.24 That, in turn,
provides a route for defining the spin of electrons. We sought
a means of using similar selection rules to investigate exciton
fine structure in colloidal quantum dot ensembles; where the
dots are oriented randomly with respect to the incident laser
polarization. By using certain sequences of cross-linearly po-
larized light in a nonlinear optical experiment, we showed
that the kinetics of exciton spin state flips can be measured
directly in an isotropic ensemble of quantum dots.71,72 In the
present work we examined that experiment further using
simulations and a modified experimental set-up that uses
heterodyne-detection of the third-order transient grating �3-
TG� signal field.

For an oriented system the dynamics of exciton recombi-
nation versus spin relaxation can be probed using either cir-
cularly polarized light, or the crossed linear-polarized 3-TG
experiment described here. Such experiments are relatively
intuitive, and an elegant demonstration can be found reported
in Ref. 34. For randomly oriented QDs, this clarity is lost. It
was shown here that an understanding of the experimental
data can only be grasped through a careful analysis of the
appropriately averaged third-order response functions. In the
present work we established a clear relationship between the
VHVH/VHHV 3-TG polarization grating experiments and
the difference measurement between the RRRR and RRLL
3-TG signal intensities for the case when the signal field is
heterodyne detected.

The simulations reported in Sec. III were dissected to re-
veal that the decay of the VHVH 3-TG signal does not cor-
respond to diminishing radiated polarizations from sources in
the ensemble; typically caused by population relaxation. The
exciton spin flip is associated with a sign change C�4� that is
manifest as a � phase shift of the induced polarizations
P2

�3��0, tp , t� and P4
�3��0, tp , t�, that emerge concomitant with

spin relaxation, compared to P1
�3��0, tp , t� and P3

�3��0, tp , t�.
Hence the 3-TG signal decay is actually caused by destruc-
tive interference of the P1

�3��0, tp , t� and P3
�3��0, tp , t� polariza-

tions with P2
�3��0, tp , t� and P4

�3��0, tp , t�. To understand the
way this works one needs to carry out the rotational averag-
ing for the third-order spectroscopy. In doing so, each path-
way from excitation to induced polarization needs to be
separately considered to account for each transition dipole
moment in the QD reference frame that interacts with the
incident excitation pulses. That procedure emphasizes the co-
herent nature of the cross-polarized 3-TG spectroscopy, since
the outcome of the experiment cannot be predicted by con-
sidering the independent action of the pump pulse pair and
the probe.

The cross-polarized 3-TG experimental method we have
described here measures spin relaxation among the QD �±1
exciton states. We emphasize that the experiment measures
bright exciton spin relaxation, not spin relaxation of dark
excitons or electrons which can be detected in time-resolved
Faraday rotation, for instance.35,36 Furthermore, all our ex-
perimental results were obtained at room temperature in the
absence of an external magnetic field. It works because the
transition dipole moments for these transitions are complex.

FIG. 9. Simulated RRRR and RRLL 3-TG decays for a spin flip
rate ks

−1=1 ps. The inset compares the difference between the
RRRR and RRLL signal intensity to a comparable simulation of the
VHVH 3-TG signal.
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The precise means by which the exciton spin flip is promoted
does not matter in terms of the success of the experiment, but
systematic studies of size-, shape-, or material-dependent
spin relaxation times may help to elucidate the mechanism.
Possible mechanisms include the nonanalytic �long range�
contribution to the electron-hole exchange interaction.57,62

Alternatively or additionally, spin-orbit coupling and
exciton-phonon interactions can mediate a sequential elec-
tron and hole flip, via the dark exciton states for example.106

Because of the rapid time-scale we find for exciton relax-
ation in CdSe QDs, possibilities such as spin randomization
caused by trapping and detrapping of the electron in surface
states are unlikely.

The experiments we have reported are for samples at
293 K, whereas most studies of QD fine structure are carried
out at low temperatures, usually around 4 K, so that the ho-
mogenous line broadening is narrowed. When kT is much
greater than the magnitude of the perturbation that mixes the
�±1 states, then electron-phonon coupling will tend to local-
ize the exciton. In that case can we detect exciton spin relax-
ation using the cross-polarized 3-TG experiment. On the
other hand, at low temperatures the interaction leads to
mixed stationary states that would be observed in the fre-
quency domain as a splitting of the �±1 states. We reported
here heterodyne-detected data for a CdSe QD and it was
shown that those data can be used to reconstruct the
homodyne-detected 3-TG data communicated by us
recently.72 Results were also reported demonstrating that the
sign of the 3-TG signal conforms to the sign dependence
predicted by the theory.71 The initial sign of the VHVH 3-TG
signal for QDs is positive, while that for the VHHV 3-TG
signal is negative. Furthermore, control experiments on a
model dye solution showed that for a linearly-polarized tran-
sition moment the 3-TG data show the same decay profile
regardless of polarization sequence.

VIII. CONCLUSIONS

It was shown how cross linearly-polarized pulse se-
quences in three-pulse transient grating experiments form a
polarization grating that monitors flipping among popula-
tions of quantum dot bright exciton spin states �those with
total angular momentum F= ±1�. Spin flips among those
states lead to a decay of the grating, and consequently the
diffracted probe signal. The experiment was simulated by
solving the equations of motion that dictate the temporal
evolution of the third-order density matrix. In the micro-
scopic picture elucidated from the simulations, destructive
interference between the third-order polarizations radiated by
populations of excitons with flipped and conserved spin
states causes the signal decay. Hence the signal provides a
means to detect the history of the quantum dot exciton states.
The results of experiments based on heterodyne detection of
the radiated polarization that demonstrate and test the theory
were reported. Those data, reported for a CdSe quantum dot
sample, test the theory by confirming the sign dependence of
the VHHV signal compared to VHVH and VVVV. It was
found that exciton spin relaxation among the F= ±1 states
occurs on a time scale of hundreds of femtoseconds, depend-

ing strongly on the quantum dot size. A control experiment
on a laser dye in solution confirmed that the decay attributed
to exciton spin relaxation is unique to quantum dots.
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APPENDIX A: ORIENTATION DEPENDENCE OF
QUANTUM DOT SPECTROSCOPY

In order to understand the rotational averaging and the
nature of the transient grating experiment, it is useful to con-
sider how the absorption of polarized light depends on the
orientation of a QD. To that end we consider Eq. �A1�, the
matrix element for absorption, written in tensor form as

M�0 � C = SiTi. �A1�

In general, the polarization vector of the incident radiation
Si is defined in a fixed �laboratory� axis system i=x ,y ,z,
whereas the QD selection rules, Eqs. �8�, refer to a local QD
reference frame �=x� ,y� ,z�. Those reference frames can be
related via Euler transformation

C = SiLi�T�, �A2�

where Li� is the matrix of direction cosines. As the QD is
rotated about the x� or y� axis by an angle 0���� /2 the
�+1 and �−1 exciton states may both be excited to some
extent by either RH or LH CP light because an elliptical
polarization is projected onto the QD. In addition, the �0
exciton state may be excited. Consider excitation of the QD
exciton states by RH CP light when the local QD axis system
is oppositely oriented with respect to z, for example the QD
is rotated by �=� about x� or y�, as shown in Fig. 1. Then
Eq. �A2� becomes, in matrix form

C = � êx

iêy

0
�

T

�1 0 0

0 − 1 0

0 0 − 1
�� �x�

�i�y�

0
� , �A3�

where T indicates matrix transpose.
Recalling that the electric dipole transition moments for

the �±1 exciton states are �±1� ��x� , � i�y� ,0� it is evident
that, upon rotation by � about either the x� or y� axes, the
selection rules for optical orientation are reversed. In this
case RH CP light excites the �−1

U,L states exclusively, while
LH CP light excites only the �+1

U,L states. A diagram showing
the change in selection rules for excitation of the �−1

U,L states
is provided in Fig. 1. The implication of this result is that
specific QD exciton states cannot be oriented by CP light if
the ensemble is rotationally isotropic, such as colloidal
samples. Nevertheless, a net angular momentum is projected
onto the ensemble, which might be used to study the relax-
ation of free carrier spins.

The result stated above is consistent with the well-known
concept from molecular spectroscopy that molecular transi-
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tions cannot be photoselected from isotropic ensembles using
absorption of polarized light. The origin of the reversed mo-
mentum projection when the CP light counterpropagates
along the QD z� axis can be understood by considering the
time-reversal symmetry of the interaction between CP light
and the QD. Under time-reversal k→−k, but the polarization
of the CP light is unchanged �helices are chiral�. That is
analogous to exciting the QD with light propagating from the
opposite z� direction. To consider how the electric dipole
transition moment changes it is sufficient to consider how
each of the single-excitation configuration wave functions
changes. For instance, using spinor notation

T̂�↑,1/2 � T̂� s

u1/2

 = �u1/2

*

− s* 
 = − i�↓,−1/2, �A4�

where T̂ is the time-reversal operator. It can thereby be de-
duced that, while RH CP light propagating such that k= ẑ�
excites only exciton states with F= +1, when it propagates
along the direction k=−ẑ�, RH CP light excites only the F
=−1 excitons.

APPENDIX B: SPECTROSCOPY OF ISOTROPIC
QUANTUM DOT ENSEMBLES

Equation �A2� may be generalized to accommodate non-
linear spectroscopies of �n−1�th order by taking T�1,. . .,�n

to
be a tensor of rank n denoting the QD response, in its local
reference frame, to the action of n radiation-QD
interactions.71,79–83 The latter interactions are described by
Si1,. . .,in

, where polarizations are defined in the fixed axis sys-
tem. Thus

C�n� = �Si1,. . .,in
�i1�1

¯ �in�n
T�1,. . .,�n

� , �B1�

where �ij�j
are direction cosines and the angle brackets indi-

cate that a rotational average will be taken.
Typically the tensor describing the QD response can be

decomposed into a product of lower rank tensors. For ex-
ample, for resonant �n−1�th order nonlinear spectroscopies
that tensor is written as a product of n electric dipole transi-
tion moments by using the factorization approximation.98 In
the present work a third-order spectroscopy is considered. A
signal with wave vector ks=−k1+k2+k3 is induced to radi-
ate from the sample and we can write T����=��

*������
* for

normal time-ordering of the radiation-matter interactions. In
the case of a multilevel system the sequence of electric di-
pole transition moments is defined though a diagrammatic
expansion of the induced polarization.96,97

Rotational averaging of Eq. �B1� can be accomplished in
a few different ways. Results for up to eighth rank tensors
are known.81 Here the method of Andrews and
Thirunamachandran79 is applied. Each �ij�j

element in the
product �i1�1

¯�in�n
is an element in the Euler matrix, so Eq.

�B1� can be written

C�n� = Si1,. . .,in
T�1,. . .,�n

Ii1,. . .,in;�1,. . .,�n

�n� , �B2�

where

Ii1,. . .,in;�1,. . .,�n

�n� =
1

8�2�
0

2� �
0

� �
0

2�

�i1�1
¯ �in�n

sin �d	d�d�

�B3�

and 	 ,� ,� are the Euler angles relating the fixed axis system
to the local QD axis. As shown by Andrews and
Thirunamachandran,79 it is possible to express Ii1,. . .,in;�1,. . .,�n

�n�

as a linear combination of isotropic tensors. In that case Nn
=n! / �2n/2�n /2�!� isomers of each tensor must be considered
�for even values of n�. It can thereby be shown that
Ii1,. . .,in;�1,. . .,�n

�n� may be written as a row vector of these isotro-
pic tensors pertaining to the fixed axis system, times a matrix
of coefficients, times a column vector of isotropic tensors
relating to the local QD axis system. The isotropic tensors in
the row and column vectors are products of n /2 Kronecker
deltas. Hence for any third-order spectroscopy

Iabcd;����
�4� =

1

30��ab�cd

�ac�bd

�ad�bc
�

T

� 4 − 1 − 1

− 1 4 − 1

− 1 − 1 4
��������

������

������

� .

�B4�

By combining Eq. �B4� with Eq. �B2� and considering a
signal in the ks=−k1+k2+k3 phase-matched direction, one
obtains for a resonant spectroscopy

C�4� = ���
1*��

2��
3��

4*�/������������������

=
1

30��êa
*êb��êcêd

*�
�êa

*êc��êbêd
*�

�êa
*êd

*��êbêc�
�

T

� 4 − 1 − 1

− 1 4 − 1

− 1 − 1 4
�

����̂�
*�̂����̂��̂�

*�
��̂�

*�̂����̂��̂�
*�

��̂�
*�̂�

*���̂��̂��
� , �B5�

where the * indicates complex conjugate, as dictated by the
phase-matching conditions. Laser pulses are labeled in order,
a–c and d labels the radiated polarization. Greek subscripts
label the corresponding response of the QD in its reference
frame. Values of C�4� determined for various polarization se-
quences discussed in this paper are collected in Table I.

TABLE I. Rotational average weightings C�4�, as defined in Eq.
�B5�. These are used, for example, in Eqs. �18�–�20� and �22�. The
values are taken from Ref. 71.

Polarization
sequence C1

�4� C2
�4� C3

�4� C4
�4�

VVVV 1
5

1
5

1
5

1
5

VHVH 2
15 − 2

15
2

15 − 2
15

VHHV − 2
15

2
15 − 2

15
2

15

RRRR 1
5

1
30

1
5

1
30

RRLL 1
30

1
5

1
30

1
5

SCHOLES, KIM, AND WONG PHYSICAL REVIEW B 73, 195325 �2006�

195325-12



*Author to whom correspondence should be addressed. Electronic
address: gscholes@chem.utoronto.ca

1 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton,
S. von Molnr, M. L. Roukes, A. Y. Chtchelkanova, and D. M.
Treger, Science 294, 1488 �2001�.

2 H. Ohno, Science 281, 951 �1998�.
3 J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awscha-

lom, Science 277, 1284 �1997�.
4 J. Hubner, W. W. Ruhle, M. Klude, D. Hommel, R. D. R. Bhat, J.

E. Sipe, and H. M. van Driel, Phys. Rev. Lett. 90, 216601
�2003�.

5 Semiconductor Spintronics and Quantum Computation, edited by
D. D. Awschalom, N. Samarth, and D. Loss �Springer-Verlag,
Berlin, 2002�.

6 D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 �1998�.
7 A. Mizel and D. A. Lidar, Phys. Rev. Lett. 92, 077903 �2004�.
8 G. Burkard, H.-A. Engel, and D. Loss, Fortschr. Phys. 48, 965

�2000�.
9 I. Zutic, J. Fabian, and S. Das Sama, Rev. Mod. Phys. 76, 323

�2004�.
10 T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, Phys.

Rev. A 68, 012310 �2003�.
11 S. Sangu, K. Kobayashi, A. Shojiguchi, and M. Ohtsu, Phys. Rev.

B 69, 115334 �2004�.
12 B. W. Lovett, J. H. Reina, A. Nazir, B. Kothari, and G. A. Briggs,

Phys. Lett. A 315, 136 �2003�.
13 D. D. Awschalom, Physica E �Amsterdam� 10, 1 �2001�.
14 H. Kamada and H. Gotoh, Semicond. Sci. Technol. 19, S392

�2004�.
15 D. K. Young, J. A. Gupta, E. Johnston-Halperin, Y. Kato, and D.

D. Awschalom, Semicond. Sci. Technol. 17, 275 �2002�.
16 E. Pazy, E. Biolatti, T. Calcarco, I. D’Amico, P. Zanardi, F. Rossi,

and P. Zoller, Europhys. Lett. 62, 175 �2003�.
17 X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer,

D. Park, C. Piermarocchi, and L. J. Sham, Science 301, 809
�2003�.

18 D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot
Heterostructures �Wiley, Chichester, 1999�.

19 Al. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16, 772
�1982�.

20 L. E. Brus, J. Chem. Phys. 80, 4403 �1984�.
21 S. V. Gaponenko, Optical Properties of Semiconductor Nanocrys-

tals �Cambridge University Press, Cambridge, 1998�.
22 L. Bányai and S. W. Koch, Semiconductor Quantum Dots �World

Scientific, Singapore, 1993�.
23 A. P. Alivisatos, J. Phys. Chem. 100, 13226 �1996�.
24 F. Meier and B. P. Zachachrenya, Optical Orientation �North Hol-

land, Amsterdam, 1984�.
25 R. R. Parsons, Phys. Rev. Lett. 23, 1152 �1969�.
26 E. F. Gross, A. I. Ekimov, B. S. Razbirin, and V. I. Safarov, JETP

Lett. 14, 70 �1971�.
27 C. Weisbuch and B. Vinter, Quantum Semiconductor Structures:

Fundamentals and Applications �Academic, San Diego, 1991�.
28 R. I. Dzhioev, B. P. Zakharchenya, E. L. Ivchenko, V. L. Korenev,

Yu. G. Kusraev, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov,
and A. F. Tsatsul’nikov, Phys. Solid State 40, 790 �1998�.

29 J. J. Baumberg, S. A. Crooker, D. D. Awschalom, N. Samarth, H.
Luo, and J. K. Furdyna, Phys. Rev. B 50, 7689 �1994�.

30 S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N.
Samarth, Phys. Rev. B 56, 7574 �1997�.

31 C. Y. Hu, K. Morita, H. Sanada, S. Matsuzaka, Y. Ohno, and H.
Ohno, Phys. Rev. B 72, 121203�R� �2005�.

32 M. Z. Maialle, E. A. de Andrada e Silva, and L. J. Sham, Phys.
Rev. B 47, 15776 �1993�.

33 A. Vinattieri, J. Shah, T. C. Damen, D. S. Kim, L. N. Pfeiffer, M.
Z. Maialle, and L. J. Sham, Phys. Rev. B 50, 10868 �1994�.

34 O. Ikeuchi, S. Adachi, H. Sasakura, and S. Muto, J. Appl. Phys.
93, 9634 �2003�.

35 J. A. Gupta, D. D. Awschalom, X. Peng, and A. P. Alivisatos,
Phys. Rev. B 59, R10421 �1999�.

36 J. A. Gupta, D. D. Awschalom, Al. L. Efros, and A. V. Rodina,
Phys. Rev. B 66, 125307 �2002�.

37 E. Tsitsishvili, R. v. Baltz, and H. Kalt, Phys. Rev. B 67,
205330�R� �2003�.

38 M. Furis, J. A. Hollingsworth, V. I. Klimov, and S. A. Crooker, J.
Phys. Chem. B 109, 15332 �2005�.

39 R. I. Dzhioev, B. P. Zakharchenya, E. L. Ivchenko, V. L. Korenev,
Yu. G. Kusraev, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov,
and A. F. Tsatsul’nikov, Phys. Solid State 40, 790 �1998�.

40 Yu. G. Kusrayev, A. V. Koudinov, B. P. Zakharchenya, S. Lee, J.
K. Furdyna, and M. Dobrowolska, Phys. Rev. B 72, 155301
�2005�.

41 Al. L. Efros, Phys. Rev. B 46, 7448 �1992�.
42 J.-B. Xia, Phys. Rev. B 40, 8500 �1989�.
43 Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M.

Bawendi, Phys. Rev. B 54, 4843 �1996�.
44 M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, Al. L. Efros,

and M. Rosen, Phys. Rev. Lett. 75, 3728 �1995�.
45 E. Lifshitz, L. Fradkin, A. Glozman, and L. Langhof, Annu. Rev.

Phys. Chem. 55, 509 �2004�.
46 M. Chamarro, C. Gourdon, P. Lavallard, O. Lublinskaya, and A.

I. Ekimov, Phys. Rev. B 53, 1336 �1996�.
47 M. Furis, T. Barrick, P. Robbins, and S. A. Crooker, Int. J. Mod.

Phys. B 18, 3769 �2004�.
48 U. Woggon, F. Gindele, O. Wind, and C. Klingshirn, Phys. Rev. B

54, 1506 �1996�.
49 R. T. Phillips, A. G. Steffan, S. R. Newton, T. L. Reinecke, and R.

Kotlyar, Phys. Status Solidi B 238, 601 �2003�.
50 Y. Chen, B. Gil, P. Lefebvre, and H. Mathieu, Phys. Rev. B 37,

6429 �1988�.
51 O. Gogolin, G. Mshvelidze, E. Tsitsishvili, R. Djanelidze, and C.

Klingshirn, J. Lumin. 102-103, 414 �2003�.
52 M. Bayer et al., Phys. Rev. B 65, 195315 �2002�.
53 U. Banin, J. C. Lee, A. A. Guzelian, A. V. Kadavanich, and A. P.

Alivisatos, Superlattices Microstruct. 22, 559 �1997�.
54 A. Franceschetti, L. Wang, H. Fu, and A. Zunger, Phys. Rev. B

58, R13367 �1998�.
55 A. Franceschetti and A. Zunger, Phys. Rev. Lett. 78, 915 �1997�.
56 T. Takagahara, J. Lumin. 87-89, 308 �2000�.
57 T. Takagahara, Phys. Rev. B 62, 16840 �2000�.
58 T. Takagahara, Phys. Rev. B 47, 4569 �1993�.
59 E. L. Ivchenko, Phys. Status Solidi A 164, 487 �1997�.
60 S. V. Gupalov and E. L. Ivchenko, Phys. Solid State 42, 1976

�2000�.
61 S. V. Gupalov, E. L. Ivchenko, and A. V. Kavokin, Superlattices

Microstruct. 23, 1205 �1998�.
62 S. V. Gupalov and E. L. Ivchenko, J. Cryst. Growth 184-185, 393

�1998�.
63 K. Leung and K. B. Whaley, Phys. Rev. B 56, 7455 �1997�.
64 K. Leung, S. Pokrant, and K. B. Whaley, Phys. Rev. B 57, 12291

EXCITON SPIN RELAXATION IN QUANTUM DOTS¼ PHYSICAL REVIEW B 73, 195325 �2006�

195325-13



�1998�.
65 A. S. Bracker et al., Phys. Rev. Lett. 94, 047402 �2005�.
66 M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, and J. M.

Gérard, Phys. Rev. Lett. 86, 1634 �2001�.
67 T. Watanuki, S. Adachi, H. Sasakura, and S. Muto, Appl. Phys.

Lett. 86, 63114 �2005�.
68 O. I. Micic, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A.

Mascarenhas, and A. J. Nozik, J. Phys. Chem. B 101, 4904
�1997�.

69 G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects
in Semiconductors �Wiley, New York, 1975�.

70 K. Cho, Phys. Rev. B 14, 4463 �1976�.
71 G. D. Scholes, J. Chem. Phys. 121, 10104 �2004�.
72 V. M. Huxter, V. Kovalevskij, and G. D. Scholes, J. Phys. Chem.

B 109, 20060 �2005�.
73 G. Dresselhaus, Phys. Rev. 100, 580 �1955�.
74 D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in

Optics and Spectroscopy �Academic Press, San Diego, 1990�.
75 R. C. Jones, J. Opt. Soc. Am. 38, 681 �1948�.
76 G. D. Scholes and G. Rumbles �unpublished�.
77 P. C. Sercel and K. J. Vahala, Phys. Rev. B 42, 3690 �1990�.
78 D. P. Craig and T. Thirunamachandran, Molecular Quantum Elec-

trodynamics �Dover, Mineola, New York, 1998�.
79 D. L. Andrews and T. Thirunamachandran, J. Chem. Phys. 67,

5026 �1977�.
80 D. L. Andrews and N. P. Blake, J. Phys. A 22, 49 �1989�.
81 D. L. Andrews and W. A. Ghoul, J. Phys. A 14, 1281 �1981�.
82 G. Wagnière, J. Chem. Phys. 76, 473 �1982�.
83 W. M. McClain, J. Chem. Phys. 57, 2264 �1972�.
84 M. D. Fayer, Annu. Rev. Phys. Chem. 33, 63 �1982�.
85 J. T. Fourkas and M. D. Fayer, Acc. Chem. Res. 25, 227 �1992�.
86 J. T. Fourkas, R. Trebino, and M. D. Fayer, J. Chem. Phys. 97, 69

�1992�.
87 H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic

Gratings �Springer-Verlag, Berlin, 1986�.
88 T. S. Rose, W. L. Wilson, G. Wäckerle, and M. D. Fayer, J. Phys.

Chem. 91, 1704 �1987�.

89 Y. Kimura, Y. Yamamoto, and M. Terazima, J. Chem. Phys. 123,
54513 �2005�.

90 M. Terazima, M. Takezaki, S. Yamaguchi, and N. Hirota, J.
Chem. Phys. 109, 603 �1998�.

91 E. Vauthey, C. Hogemann, and X. Allonas, J. Phys. Chem. A
102, 7362 �1998�.

92 Q.-H. Xu, G. D. Scholes, M. Yang, and G. R. Fleming, J. Phys.
Chem. A 103, 10348 �1999�.

93 Q.-H. Xu, Y.-Z. Ma, and G. R. Fleming, J. Phys. Chem. A 106,
10755 �2002�.

94 M. Walther, V. Raicu, J. P. Ogilvie, R. Phillips, R. Kluger, and R.
J. D. Miller, J. Phys. Chem. B 109, 20605 �2005�.

95 J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, J. Phys.
Chem. B 106, 10460 �2002�.

96 Y. R. Shen, The Principles of Nonlinear Optics �Wiley, New
York, 1984�.

97 S. Mukamel, Principles of Nonlinear Optical Spectroscopy �Ox-
ford University Press, New York, 1995�.

98 S. Mukamel, Phys. Rev. A 28, 3480 �1983�.
99 M. R. Salvador, M. A. Hines, and G. D. Scholes, J. Chem. Phys.

118, 8380 �2003�.
100 G. D. Goodno, G. Dadusc, and R. J. D. Miller, J. Opt. Soc. Am.

B 15, 1791 �1998�.
101 Q. Xu, Y. Ma, and G. R. Fleming, Chem. Phys. Lett. 338, 254

�2001�.
102 V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G.

Bawendi, Phys. Rev. B 60, 13740 �1999�.
103 R. J. Ellingson, J. L. Blackburn, J. Nedeljkovic, G. Rumbles, M.

Jones, H. X. Fu, and A. J. Nozik, Phys. Rev. B 67, 075308
�2003�.

104 P. Guyot-Sionnest, B. Wehrenberg, and D. Yu, J. Chem. Phys.
123, 74709 �2005�.

105 M. Braun, C. Burda, M. Mohamed, and M. El-Sayed, Phys. Rev.
B 64, 035317 �2001�.

106 E. Tsitsishvili, R. v. Baltz, and H. Kalt, Phys. Rev. B 72, 155333
�2005�.

SCHOLES, KIM, AND WONG PHYSICAL REVIEW B 73, 195325 �2006�

195325-14


