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We present an experimental comparison of magnetoconductance fluctuations measured in the ballistic,
quasiballistic, and diffusive scattering regimes of semiconductor devices. In contradiction to expectations, we
show that the spectral content of the magnetoconductance fluctuations exhibits an identical fractal behavior for
these scattering regimes and that this behavior is remarkably insensitive to device boundary properties. We
propose a unified model of fractal conductance fluctuations in the ballistic, quasiballistic, and diffusive trans-
port regimes, in which the generic fractal behavior is generated by a subtle interplay between boundary and

material-induced chaotic scattering events.
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I. INTRODUCTION

Ballistic electron devices represent a remarkable achieve-
ment of semiconductor growth and fabrication technology.' ™
According to the traditional definition of ballistic transport,
the electron’s mean free path [ (specifically, the momentum
relaxation length extracted from electron mobility measure-
ments) is sufficiently large that it satisfies the condition [
>(W,L), where W and L are the width and length of the
device’s conducting channel.! This contrasts with the more
conventional quasiballistic1 and diffusive! devices, defined,
respectively, by the conditions W<[/<L and [<(W,L). By
reducing material-induced scattering events, a diverse range
of experiments performed on ballistic devices have success-
fully demonstrated electron conduction processes that are
dominated and controlled by the properties of the device
boundaries.!=3 The traditional system for these studies is the
two-dimensional electron gas (2DEG) which forms at the
interface of a semiconductor heterostructure'~!' [Figs. 1(a)
and 1(b)]. When the planar surface of the 2DEG is enclosed
by boundary walls, the resulting device is commonly referred
to as a “billiard” because of its appealing analogy to a bil-
liard table. This ability to fabricate billiards relies on the
“modulation doping” technique shown in Figs. 1(a) and 1(b).
Ionized donors are separated spatially from the 2DEG plane
in order to minimize any perturbations in the electrostatic
potential landscape of the billiard."! Consequently, the donors
only scatter the electrons through small angles and the asso-
ciated deviations in the trajectories are not sufficient to re-
duce [ to below the billiard dimensions. Therefore, despite
featuring material-induced disorder, transport through these
devices is referred to as ballistic and we adopt this standard
nomenclature in this paper.

According to groundbreaking studies, the key properties
of the billiard boundaries—*softness” (the gradient of the
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confining potential) and “geometry” (the shape enclosed by
the potential)—dictate whether the electron dynamics is
stable, chaotic, or mixed stable, and chaotic.>’~!" Crucially,
this picture assumes that small-angle scattering from the do-
nors does not strongly influence the electron dynamics and
“real” semiconductor billiards are expected to display the
same dynamical behavior as “idealized” billiards where
material-induced disorder is completely absent. However, re-
cent scanning probe measurements,'’!? used to map the spa-
tial distribution of electrons in ballistic devices, have re-
kindled interest in the precise role of these material-induced
scattering events. These measurements show that the ionized
donors induce remarkably intricate deviations from straight
trajectories.'” Although the donors do not backscatter the
electrons, the spatial complexity traced out by the trajectories
raises the question of how this disorder impacts conduction
properties that are sensitive to the precise form of the elec-
tron dynamics. Is the billiard’s dynamical form (chaotic,
stable or mixed) immune to the presence of material-induced
small-angle scattering as previously suggested,>’~® or does
this scattering play a central role in establishing a form of
dynamics shared with strongly disordered systems, in par-
ticular that generated by the large-angle scattering events that
dominate diffusive conduction?

In this paper, we address this question by using low-
temperature measurements of magnetoconductance fluctua-
tions as a sensitive probe of the electron dynamics. In con-
trast to classical processes, the quantum interference
processes that generate the magnetoconductance fluctuations
are critically sensitive to the precise spatial configuration of
scatterers. In particular, spectral analysis of the fluctuations
has served as a powerful method for investigating electron
scattering dynamics.”!® Here, we present a comprehensive
experimental comparison of magnetoconductance fluctua-
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FIG. 1. (Color online) Schematic representations of the two bil-
liard systems and simulations of their confinement potentials. (a)
For the GaAs/AlGaAs billiards, a negative voltage applied to a
patterned top gate is used to electrostatically deplete a correspond-
ing pattern (indicated by the striped region) in the 2DEG to form
the billiard boundary. (b) For the GalnAs/InP billiards, the billiard
boundary is formed by an etching down through the 2DEG. A uni-
form top gate, deposited above an insulation layer (gray region), is
used to reduce the Fermi energy and hence the number of populated
modes in the quantum point contact (QPC) leads (Refs. 1 and 15).
The dopant-2DEG separations are 15 nm and 20 nm and the gate-
2DEG separations are 90 nm and 1 um in (a) and (b), respectively.
(c), (d) Simulations of the potential energy profile in the plane of
the 2DEG for (c) a GaAs/AlGaAs billiard (device ¢ of Ref. 11) and
(d) the GalnAs/InP billiard b. (e), (f) Top views of the resulting
geometries (gray indicates the depletion region in the 2DEG). Main
figure: a cross section of the potential energy E vs spatial location X
across the billiard’s central region. The dashed and bold lines are
for the GaAs/AlGaAs and GalnAs/InP billiards respectively.

tions measured on 30 devices spanning the ballistic, quasi-
ballistic, and diffusive scattering regimes. We show that the
spectral content of the magnetoconductance fluctuations ex-
hibits an identical fractal behavior in the three scattering re-
gimes and that this behavior is remarkably insensitive to de-
vice boundary properties.

We propose a model of fractal conductance fluctuations
(FCF’s) that unifies the three scattering regimes. Although
modulation doping reduces material-induced scattering and
ensures [>(W,L) for ballistic systems, we propose that the
role of small-angle scatterers in the electron interference pro-
cesses that generate the fractal conductance fluctuations is
enhanced by multiple traversals within the system. Conse-
quently, for all three scattering regimes, material-induced
chaotic scattering generates the observed generic fractal be-
havior in the spatial electron wave patterns'' and in the re-
sulting FCF spectra. This fractal process is, however, sup-
pressed for classical and quantum conduction -effects
generated by relatively short trajectories that do not encoun-
ter many scatterers, allowing geometry-induced effects to
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dominate. Although our model is therefore consistent with
many previously observed geometry-induced ballistic
effects,! it is currently unclear how our experiments relate to
other studies of magnetoconductance fluctuations that are de-
scribed purely in terms of boundary-induced processes.”!'*
The investigations presented in this paper therefore empha-
size that the effect of material-induced disorder on electron
interference is not fully understood and that further experi-
mental and theoretical investigations are needed.

II. EXPERIMENT

We begin by investigating the role of the billiard bound-
aries and compare billiards with varying degrees of boundary
softness and a wide range of geometries. To do this, we use
both conventional GaAs/AlGaAs heterostructures, in which
patterned top gates define the billiard boundaries [Fig. 1(a)]
and a GalnAs/InP heterostructure system in which the
boundaries are defined by wet etching [Fig. 1(b)]."> For the
GalnAs/InP billiards, a uniform top gate, deposited above an
insulation layer [see Fig. 1(b)], is used to reduce the Fermi
energy Ep''> The experimental parameters for the 16
GalnAs billiards (labeled a—p) are listed in Table I, and
those of the 9 GaAs/AlGaAs billiards are described in our
previous studies.*® We emphasize that both material systems
are characterized by [ values that are typical of ballistic
experiments' and that the 25 billiards considered satisfy the
ballistic condition /> (W,L). The solid curve in Fig. 1 shows
an experimentally confirmed simulation of the potential en-
ergy profile for an electron in billiard b,'> while the dashed
curve shows the simulated profile of a surface-gated
GaAs/AlGaAsbilliard.® To quantify the profile “softness,” P,
we use the potential energy gradient at E;.% The P value of
the GalnAs/InP billiards is an order of magnitude steeper
than for the GaAs/AlGaAs billiard (at E=10 meV the re-
spective P values are 1.29 meV/nm and 0.17 meV/nm). The
steeper profile results mainly from the close proximity of the
surface charge on the etched boundary to the 2DEG com-
pared to the more remote patterned top gates of the
AlGaAs/GaAs billiards."

Each billiard features two quantum-point contacts
(QPC’s) that form the entrance and exit ports for conduction
through the billiard’s enclosed cavity. Trace (a) of Fig. 2
shows the conductance, G, measured at temperature 7'
=4.2 K and plotted against gate bias V, for a single QPC
fabricated in the GalnAs/InP 2DEG. The conductance pla-
teaus observed at integer values of 2¢%/h (where e is the
electronic charge and h is Planck’s constant) are well-
established signatures of ballistic transport."'® Trace (b) of
Fig. 2 shows G measured at T=4.2 K and plotted against V,,
for billiard c. Compared to the single QPC, the billiard’s
plateaus occur at much lower conductance values. The inte-
ger steps of e?/h indicate that electron trajectories interact
significantly with the billiard’s central cavity, reducing the
device conductance due to the addition of the two QPC
resistances.!” As the billiard is cooled to lower temperatures,
electron-wave interference contributes to the cavity’s trans-
mission properties and reproducible fluctuations emerge su-
perimposed on the plateaus [see, for example, trace (¢) which
is measured at 7=240 mK].
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TABLE 1. Details of the billiards (a—p) and wires (g—u). Scanning electron micrographs of the GalnAs
billiards a and f—p (b—e have identical geometries to ) and a summary of their experimental parameters: /,
the mean free path (determined from mobility measurements); L and W, the device lithographic length and
width; A, the billiard’s enclosed area determined from the profile measurements (Ref. 15) note that for the
wires g—u, the analogous area is the “phase-coherent subregion” (Ref. 34 enclosed by a rectangle with side
lengths given by the minimum of the phase coherence length and the device dimension); n, the number of
populated QPC modes; T, temperature; 7, the electron phase-coherence time (measured using a correlation
analysis) (Ref. 35), and Q. Billiards [—p are defined in a GaInAs/InAlAs heterostructure, in which InAlAs
assumes an analogous role to InP in GalnAs/InP billiards (Ref. 36)

L(pm) x W(pm)

Device  /(um) A (um’) n T(K) T,(ps)

a 4.7-5.4 0.96 x 0.93 0.63-0.77 1-8 0.24-6.0 2-100 0.72-0.016
b 6.0-6.2 0.96 x 0.93 0.65-0.89 1-5 024-70  0.6-32  0.58-0.023
c 5.9-6.1 0.96 x 0.93 0.63-0.77 1-8 0.24 19-36 0.60-0.35
d 52 0.42x0.42 0.12-0.13 8-9 0.24 58-61 7.5-14
2 3.2-3.6 0.75x0.75 0.16-0.2 1-4 0.24 19-48 3.8-2.0
f 2.9-3.7 094x 1.1 0.35-0.46 1-5 0.24-6.5 12-30 0.86-0.040
g 29-3.7 0.90x 1.9 0.95-0.98 3-7 0.24-6.5 15-35  0.56-0.019
h 3.1-3.9 0.93x0.82 0.73-0.75 3-12 024-60  22-67  0.52-0.026
i 3.1-3.9 1.4x0.6 0.73-0.81 2-6 0.24-6.0 20-35 0.50-0.025
j 6.1-6.2 1.2x1.2 0.42-0.49 1-6 0.24 10-24 0.69-0.31
k 6.1-6.2 0.84x 1.1 0.43-0.50 1-7 0.24 7-47 0.97-0.23
! 1.8 0.63x1.3 0.28 5 0.4-15.3 5-28 1.7-0.031
m 1.8 0.48x0.79 0.13 5 0.4-15.3 0.4-23 3.4-0.078
n 1.8 0.38x 0.62 0.09 2 0.4-15.3 0.1-14 2.8-0.11
o 0.50 0.46 x 0.43 0.13 8 0.3-11.7 19-50 6.6-0.087
P 0.50 0.48x 0.57 0.11 3 1.3-24.0 1-11 0.90-0.050
q 0.97 30x0.55 22 = 0.04-4.0 125 0.51-0.010
r 0.36 3.5x0.96 0.56 - 0.59 - 14 7 0.20 -0.19
s 0.041 1.3 x 0.60 0.0072 - 0.0086 = 4.2-50.0 0.1-0.5  0.16-0.06
t 0.030 10x0.26 0.0039 - 0.0059 = 4.2-37.5 02-03  0.50-035
u 0.050 2.0x0.30 0.040 -0.097 - 1.5-42 2-6 0.37-0.33

To investigate the degree to which this transmission is
determined by the cavity’s boundary properties, we compare
transport through the “soft” GaAs/AlGaAs billiards and the
“harder” GalnAs/InP billiards. We adopt the common ex-
perimental strategy of investigating the quantum fluctuations
as a function of magnetic field B applied perpendicular to the
plane of billiard rather than as a function of V,. Whereas B
and V, both generate conductance fluctuations by changing
the phase of the electron waves, using a magnetic field as the

FIG. 2. (Color online) Conductance G plotted against gate bias
AVg (the bias measured relative to the voltage required to form the
QPC’s first mode) for (a) a single QPC measured at T=4.2 K (black
line), (b) billiard ¢ measured at T=4.2 K (bold blue line), and (c)
billiard ¢ measured at 7=240 mK (fine red line). All QPC’s have
lithographic dimensions of 0.1 um by 0.2 wm.

experimental variable has the considerable advantage of not
changing other crucial billiard properties such as Ep and P.
We build on investigations showing that the magnetoconduc-
tance fluctuations have a fractal spectral content,*%7!! and
use this generic property as a characterization tool. The black
curve in the inset of Fig. 3(a) shows G measured at T
=0.6 K on billiard b and plotted against B. According to the
Aharonov-Bohm' model for quantum interference of elec-
tron waves traveling along the classical trajectories, the
equation f=eA,/h (where f=1/AB) can be used to relate the
frequency spectrum of the conductance fluctuations to the
distribution of areas A, enclosed by these trajectories.”!3
Analysis of the fluctuations” power spectrum S(f) therefore
provides an intuitive probe of the electron trajectory
distributions.”!3 In Fig. 3(a) we show that S(f) follows a
1/f“ behavior. This power law is consistent with fractal
scaling!® in the G(B) curves, and the spectral scaling expo-
nent a can be related to the fractal dimension D (the scaling
parameter commonly used in fractal studies) by the estab-
lished relationship a=(5-2D).'"® The traditional “box-
counting” fractal analysis of G(B), employed to obtain D
directly,*” is shown in Fig. 3(b). This fractal scaling behavior
occurs over a significantly larger scaling range than for typi-
cal observations of physical fractals."”

Consistent with our previous measurements of
GaAs/AlGaAs billiards,* we find that the « values of the
FCF measured on GalnAs/InP billiards depend solely on the
empirically determined parameter Q, which is the ratio of the
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FIG. 3. (Color online) Magnetoconductance fluctuation traces
and their fractal analysis for a billiard and a quasiballistic wire,
together with a simulated fractal trace which is included for com-
parison with the experimental data. Inset of (a): the magnetocon-
ductance fluctuations of the quasiballistic wire ¢ at 7=0.5 K (red),
a simulated fractal trace (blue), and the magnetoconductance fluc-
tuations of billiard » at T=0.6 K (black). (a) The power spectra, S
vs f, of the three traces in the inset, along with best-fit curves. (b)
The box-counting fractal analysis, where the number N(AB) of
squares required to cover the G(B) trace scales according to
N(AB)~AB™ (the box size AB is related to f by f=1/AB). The
S(f) spectrum exhibits more data scatter than the box-counting tech-
nique, as expected (Ref. 33). The associated « values are (top to
bottom) 2.4, 2.2, and 2.2, respectively. All traces are offset verti-
cally for clarity.

billiard’s average energy-level spacing AE, to the average
energy-level broadening AEy:

_AE, 2ah*)I(m"A)
T AEs (7)) + (KT)?

where m" is the electronic effective mass, A is the billiard’s
enclosed area, and 7, is the electron phase coherence time. In
Fig. 4(a), 67 values of a measured for 5 square GalnAs/InP
billiards are plotted as a function of Q (blue squares). As a
demonstration of this evolution of a with Q, in Fig. 5(a) we
show some of the FCF traces that produce the sharp drop in
a below Q=1. As T is decreased, the induced increase in 7
[shown in the inset of Fig. 5(a)] produces a rise in Q. This is
accompanied by an increase in high-frequency fluctuations
observed in the FCF in Fig. 5(a) and leads to the drop in «
plotted in the inset of Fig. 5(a).

The « values in Fig. 4(a) are measured on billiards a—e
for a range of values of A, T, Ty and n, the number of con-
ducting modes in the QPC’s, and demonstrate that all of the
« data lie on a single “Q curve.” This distinct evolution of «,
charted across a wide range of billiard conditions, provides a
technique for gauging the relative impact of wall softness on
the spectral signature of the FCF’s, as we now explain. To
investigate the dependence of a on boundary softness, we
also plot 49 o values measured on 9 GaAs/AlGaAs
billiards* in Fig. 4(a). The data show that, despite the softer
wall profile of these billiards, they follow the same Q curve
as the harder GalnAs/InP billiards. Any variation in « be-
tween the soft and hard billiards lies well within experimen-
tal uncertainty and is substantially smaller than the differ-
ences in « induced by changes in Q. Therefore, in contrast to
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FIG. 4. (Color online) Q curves for the devices. (a) a plotted
against Q for soft-walled GaAs/AlGaAs and harder-walled
GalnAs/InP (billiards a—e) square-shaped billiards. (b) a plotted
against Q for the different shaped GalnAs billiards (billiards a—p).
(c) a plotted against Q for a quasiballistic wire ¢ and diffusive
wires r—u. The dashed line, which is identical for all three plots, is
a guide to the eye. Measurement uncertainties vary in magnitude
across the “Q curve” as indicated by the error bars.

theoretical predictions, the FCF spectral content does not de-
pend critically on the exact form of the potential.’

To investigate the dependence of a on billiard geometry,
we exploit the superior shape fidelity provided by our harder-
walled GalnAs billiards and compare « values measured for
the diverse range of geometries shown in Table I. In contrast
to expectations,®® Fig. 4(b) reveals that « does not depend
on geometry either: the 94 a values for devices f—p lie,
within experimental scatter, on the same Q curve as the
square billiards. An intriguing explanation for this insensitiv-
ity to both boundary shape and softness is that material-
induced scattering plays a much more important role than
previously assumed for FCF’s. This speculation is further
supported by thermally cycling the billiards. Our measure-
ments show that thermal cycling does not affect the billiard
geometry or the steepness of the long-range smooth potential
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FIG. 5. Magnetoconductance fluctuation traces and associated
analysis for a billiard and a diffusive wire. (a) Magnetoconductance
fluctuations measured on billiard b for n=4. The top trace is mea-
sured at 7=0.24 K (Q0=0.50) before thermal cycling to 7=295 K.
The remaining traces are measured after thermal cycling, at (top to
bottom) 7=0.24 K (0=0.50), 1.4 K (0=0.12), and 7.0 K (Q
=0.023). Traces in (a) and (b) are vertically offset for clarity. The
inset to (a) shows a (black circles) and 7, (gray squares) plotted
against T for n=4. (b) Magnetoconductance fluctuations measured
on a diffusive n*-GaAs wire (Ref. 13) r at (top to bottom) T
=42 K (0=0.50), 11.8 K (0=0.47), and 30.0 K (0=0.38). The
inset to (b) shows «a (black circles) and 7, (gray squares) plotted
against T. Traces in (a) and (b) are vertically offset for clarity.

profile (i.e., the profile softness). However, thermal cycling is
known to redistribute charge among the dopants,? producing
local changes in the potential landscape. The modified spatial
distribution of dopant scattering sites induces major changes
in the details of the fluctuations: compare, for example, the
top two traces of Fig. 5(a), which are measured on billiard b
at T=240 mK before and after thermal cycling to 7=295 K.
Significantly, the « value of the fluctuation spectrum is ro-
bust to these changes in the individual fluctuations.

III. DISCUSSION

We propose the following explanation for FCF’s which
explains the key experimental observations. Ionized donors
and residual carbon dopants create small perturbations’! su-
perimposed on the smooth, boundary-induced potential pro-
files of Fig. 1. The resulting roughness in the potential land-
scape, which is of the order of several meV (an order of
magnitude smaller than £;),?! induces a chaotic scattering of
trajectories as the electrons traverse the billiard. The role of
the boundaries is simply to amplify the effect of these small-
angle scatterers so that even ballistic devices act as disor-
dered systems for the electron-wave interference processes
that generate the FCF’s. This is achieved through multiple
reflections from the boundaries that send the trajectories and
corresponding electron waves repeatedly through the rough
potential landscape. For both billiard systems, electrons un-
dergo up to 50 traversals of the billiard before dephasing.
This iteration of chaotic dynamics is common to many frac-
tal processes'® and generates complexity in the trajectory dis-
tribution on many spatial scales. Due to flux cancellation
effects,! the Aharonov-Bohm relation f=eA,/h is sensitive to
the net area enclosed by these trajectories, explaining why

PHYSICAL REVIEW B 73, 195318 (2006)

the observed lower-frequency cut off of fractal behavior cor-
responds to areas up to 5 times smaller than that of the bil-
liard (see Ref. 6 and Fig. 3).

This proposed origin of FCF’s is consistent with the re-
cent scanning probe measurements of electrons emerging
from a QPC.!? The intricate deviations from straight trajec-
tories, which were explained in terms of scattering induced
by ionized donors, bear a striking resemblance to the branch-
ing pattern of a fractal tree.'® In our picture, boundary reflec-
tions cause this branching process to repeat, with each tra-
versal of the billiard inducing more complex interference and
branching flow patterns in the electron waves. Indeed, recent
scanning probe measurements confirm that the spatial distri-
bution of electron waves in a billiard is fractal.'! Since the
role of the boundaries in the formation of this fractal distri-
bution is limited to reflecting the trajectories into the chaotic
scatterers produced by the rough potential landscape, the
fractal scaling properties will be insensitive to boundary soft-
ness and geometry, as observed in the measured FCF’s of our
billiards. Classical and quantum conduction effects generated
by short trajectories, which leave the billiard without under-
going many traversals through the chaotic scatterers, will be
determined predominantly by the billiard geometry.?> This
becomes more apparent for “open” geometries where the tra-
jectories undergo few traversals of the device. Such geom-
etries include QPC’s,"? Hall junctions,”® Maltese crosses,'
and electrostatic lenses>* and for small billiards where the
entrance and exit widths occupy a relatively large section of
the billiard boundary.

This picture predicts that magnetoconductance fluctua-
tions measured on wires in the quasiballistic! and diffusive'
regimes should also be fractal. Fractal fluctuations have pre-
viously been measured on a quasiballistic Au wire.”> How-
ever, this was interpreted subsequently in terms of a fortu-
itous narrowing of the wire that created a ballistic cavity
rather than due to quasiballistic scattering.” Our analysis of a
quasiballistic GaAs/AlGaAs wire?® (see wire ¢ in Table I)
confirms that the conductance fluctuations of quasi-ballistic
systems have the same fractal scaling behavior as the bil-
liards. An example FCF trace and the corresponding analysis
are shown in Fig. 3 (red curve) and Fig. 5(b). Furthermore,
we investigate four diffusive wires made from
GaAs/AlGaAs (Ref. 27) (wires r and s) and n*-GaAs (Refs.
13 and 28) (wires ¢ and u) and show that FCF behavior
extends to the diffusive transport regime. Significantly, the
n*-GaAs wires do not feature the modulation doping
technique—the donors are located in the conducting plane of
the wire, generating large-angle scattering events. Again, de-
spite this difference in the level of material-induced disorder,
the FCF’s follow the same behavior as the billiards: the «
values from 36 FCF traces measured for the quasiballistic
and diffusive devices are mapped onto the Q curve in Fig.
4(c), demonstrating that the FCF’s follow the same Q curve
for all three scattering regimes. We reemphasize the role of
the billiard boundaries in this observed unification of FCF—
although the large-angle scatterers of the diffusive material
produce much smaller mean free paths than the small-angle
scatterers of ballistic material, the iterative traversal process
across the billiard ensures a similar level of spatial complex-
ity in the trajectory patterns.
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IV. CONCLUSIONS

It is well known that the small-angle scattering processes
of ballistic devices can generate radically different conduc-
tion properties compared to the large-angle scattering pro-
cesses of diffusive devices, ranging from enhanced electron
mobility effects to conductance plateaus.! In this paper, we
have shown that, despite the distinctly different degrees of
material-induced disorder, these scattering regimes exhibit
unexpected similarities in the form of electron dynamics.
Spectral analysis of magnetoconductance fluctuations is a
well-established method for investigating electron scattering
dynamics in semiconductors. We have presented a compre-
hensive comparison of 9 soft-walled billiards, 16 hard-
walled billiards, 1 quasiballistic device, and 4 diffusive de-
vices and demonstrated that the spectral content of the
fluctuations follows an identical fractal behavior across the
diffusive, quasiballistic and ballistic scattering regimes. Pre-
vious theories of FCF’s (Refs. 5 and 29) do not explain this
unification.

In light of the diverse range of devices used in our experi-
ments, it would be informative for future studies to examine
the extent of this “universality” of fractal conductance fluc-
tuations and to determine how our model of material-induced
scattering relates to other studies where purely boundary-
induced processes are used to explain magnetoconductance
fluctuations.’'* In particular, it would be useful to reexamine
the circle and stadium billiards used in the original
geometry-dependence studies’ to determine how the « val-
ues fit on the Q curve. Furthermore, we emphasize that the
billiards used in our studies were fabricated from materials
with mean free paths similar to those of typical previous
billiard experiments. It would be of considerable interest to
investigate whether FCF’s persist in 2DEG systems where
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ionized donors are absent and the degree of material-induced
disorder is therefore radically reduced.® We hope that these
issues will motivate the development of a detailed theoretical
model of fractal conductance fluctuations in semiconductor
environments.>'3> A particular challenge for future theoreti-
cal investigations concerns the role of Q in the quantum
interference of the fractal electron wave pattern and how this
determines the fractal scaling factor a of the FCF’s and the
form of the Q curve shown in Fig. 4.

Finally, the robustness of FCF’s to variations in boundary
properties and material-induced disorder indicates that FCF’s
might be far more prevalent than previously anticipated, ap-
pearing in the conductance of enclosed cavities fabricated by
a wide range of techniques. Coupling this prevalence with
the basic form of Q leads to the striking prediction that a
variety of cavities might display fractal conductance fluctua-
tions in their room-temperature operation [for example, us-
ing the material parameters of bismuth,”’ Eq. (1) predicts
that a 50-nm cavity corresponds to Q=1 at 7=293 K]. This
result might hold important implications for nanodevice ap-
plications. Due to their inherent unpredictability and critical
sensitivity to device parameters that vary the electron phase
(such as gate potentials), FCF’s may represent a fundamental
limitation for the performance of future devices featuring
nanoscale cavities. A greater understanding of the origin of
FCF’s is therefore important for fundamental and applied
aspects of nanoscale physics.

ACKNOWLEDGMENTS

We thank A. P. Micolich for his help in the early stages of
this project, J. P. Bird and K. Ishibashi for supplying MCF
data from Refs. 24-26, and R. Haydock and J. Nockel for
valuable discussions. B.H. and S.F. are supported by FRIA
and the EC.

*Corresponding author. Electronic address: rpt@uoregon.edu

IC. W. J. Beenakker and H. van Houten, in Solid State Physics,
edited by H. Ehrenreich and D. Turnbull (Academic Press, Bos-
ton, 1991), Vol. 44.

2K.-F. Berggren and M. Pepper, Phys. World 15, 37 (2002).

3]. H. Davies, The Physics of Low Dimensional Structures: An
Introduction (Cambridge University Press, New York, 1998); J.
P. Bird, Electron Transport in Quantum Dots (Kluwer Aca-
demic, New York, 2003).

4A. P. Micolich, R. P. Taylor, A. G. Davies, J. P. Bird, R. Newbury,
T. M. Fromhold, A. Ehlert, H. Linke, L. D. Macks, W. R. Tribe,
E. H. Linfield, D. A. Ritchie, J. Cooper, Y. Aoyagi, and P. B.
Wilkinson, Phys. Rev. Lett. 87, 036802 (2001).

SR. Ketzmerick, Phys. Rev. B 54, 10841 (1996).

SR. P. Taylor, R. Newbury, A. P. Micolich, T. M. Fromhold, H.
Linke, A. G. Davies, T. P. Martin, and C. A. Marlow, in Electron
Transport in Quantum Dots, edited by J. P. Bird (Kluwer
Academic/Plenum, New York, 2003).

7A.S. Sachrajda, R. Ketzmerick, C. Gould, Y. Feng, P. J. Kelly, A.
Delage, and Z. Wasilewski, Phys. Rev. Lett. 80, 1948 (1998).

8R. A. Jalabert, H. U. Baranger, and A. D. Stone, Phys. Rev. Lett.

65, 2442 (1990).

9C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkins,
and A. C. Gossard, Phys. Rev. Lett. 69, 506 (1992).

I0R. P. Taylor, R. Newbury, A. S. Sachrajda, Y. Feng, P. T. Col-
eridge, C. Dettmann, N. Zhu, H. Guo, A. Delage, P. J. Kelly, and
7. Wasilewski, Phys. Rev. Lett. 78, 1952 (1997).

R, Crook, C. G. Smith, A. C. Graham, L. Farrer, H. E. Beere, and
D. A. Ritchie, Phys. Rev. Lett. 91, 246803 (2003).

I2M. A. Topinka, B. J. LeRoy, R. M. Westervelt, S. E. J. Shaw, R.
Fleischmann, E. J. Heller, K. D. Maranowski, and A. C. Gos-
sard, Nature (London), 410, 183 (2001).

3R, P. Taylor, M. L. Leadbeater, G. P. Whittington, P. C. Main, L.
Eaves, S. P. Beaumont, I. Mclntyre, S. Thoms, and C. D. W.
Wilkinson, Surf. Sci. 196, 52 (1988).

14, P. Bird, A. P. Micolich, H. Linke, D. K. Ferry, R. Akis, Y.
Ochiai, Y. Aoyagi, and T. Sugano, J. Phys.: Condens. Matter 10,
L55 (1998).

IST. P. Martin, R. P. Taylor, H. Linke, C. A. Marlow, G. D. R. Hall,
I. Shorubalko, I. Maximov, W. Seifert, L. Samuelson, and T. M.
Fromhold, Superlattices Microstruct. 34, 179 (2003).

195318-6



UNIFIED MODEL OF FRACTAL CONDUCTANCE...

16Generated by the depopulation of the QPC’s one-dimensional
conduction modes as Ey is reduced by the gate bias, the plateaus
have broader steps than expected for idealized, disorder-free
QPC’s. This broadening, which is a standard characteristic of
real QPC’s, is attributed to the presence of the ionized donors
(Ref. 31).

I7If the trajectories were unhindered by the cavity, the device con-
ductance plateaus would occur at the integer values of 2¢2/h
(Ref. 32) .

I8M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H.-O. Peitgen,
D. Saupe, and V. R. F. w. c¢. b. Y. F. a. M. Mcguire, The Science
of Fractal Images (Springer-Verlag, New York, 1988).

9D. Avnir, O. Biham, D. A. Lidar, and O. Malcai, Science 279, 39
(1998).

20R. P. Taylor, P. C. Main, L. Eaves, S. P. Beaumont, S. Thoms, and
C. D. W. Wilkinson, in ICPS-19 (Polish Academy of Sciences,
Warsaw, 1988), 1, 83.

21J. A. Nixon and J. H. Davies, Phys. Rev. B 41,7929 (1990).

221.. Christensson, H. Linke, P. Omling, P. E. Lindelof, 1. V. Zozou-
lenko, and K.-F. Berggren, Phys. Rev. B 57, 12306 (1998); J. P.
Bird, D. K. Ferry, R. Akis, Y. Ochiai, K. Ishibashi, Y. Aoyagi,
and T. Sugano, Europhys. Lett. 35, 529 (1996); J. P. Bird, R.
Akis, D. K. Ferry, D. Vasileska, J. Cooper, Y. Aoyagi, and T.
Sugano, Phys. Rev. Lett. 82, 4691 (1999).

23C. J. B. Ford, S. Washburn, M. Biittiker, C. M. Knoedler, and J.
M. Hong, Phys. Rev. Lett. 62, 2724 (1989).

24]. Spector, H. L. Stormer, K. W. Baldwin, L. N. Pfeiffer, and K.
W. West, Appl. Phys. Lett. 56, 1290 (1990).

By, Hegger, B. Huckestein, K. Hecker, M. Janssen, A. Freimuth,
G. Reckziegel, and R. Tuzinski, Phys. Rev. Lett. 77, 3885
(1996).

PHYSICAL REVIEW B 73, 195318 (2006)

2607, P. Bird, K. Ishibashi, Y. Ochiai, M. Lakrimi, A. D. C. Grassie,
K. M. Hutchings, Y. Aoyagi, and T. Sugano, Phys. Rev. B 52,
1793 (1995).

27K. Ishibashi, Y. Takagaki, K. Gamo, S. Namba, S. Takaoka, K.
Murase, S. Ishida, and Y. Aoyagi, J. Vac. Sci. Technol. B 6,
1952 (1988).

28K. Ishibashi, K. Nagata, K. Gamo, and S. Namba, Solid State
Commun. 61, 385 (1987).

2G. Benenti, G. Casati, I. Guarneri, and M. Terraneo, Phys. Rev.
Lett. 87,014101 (2001); A. Budiyono and K. Nakamura, Chaos,
Solitons Fractals 17, 89 (2003); I. Guarneri and M. Terraneo,
Phys. Rev. E 65, 015203(R) (2001); E. Louis and J. A. Vergés,
Phys. Rev. B 61, 13014 (2000).

30B. E. Kane, G. R. Facer, A. S. Dzurak, N. E. Lumpkin, R. G.
Clarke, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 72,
3506 (1998).

317, A. Nixon, J. H. Davies, and H. U. Baranger, Phys. Rev. B 43,
12638 (1991).

32D. A. Wharam, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko,
D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C 21,
L.887 (1988).

3B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot, and S. W.
Zucker, Phys. Rev. A 39, 1500 (1989).

3P, A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039
(1987).

33]. P. Bird, K. Ishibashi, D. K. Ferry, R. Newbury, D. M. Olantana,
Y. Ochiai, Y. Aoyagi, and T. Sugano, Surf. Sci. 361/362, 730
(1996).

36B. Hackens, F. Delfosse, S. Faniel, C. Gustin, H. Boutry, X. Wal-
lart, S. Bollaert, A. Cappy, and V. Bayot, Phys. Rev. B 66,
241305(R) (2002).

195318-7



