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Quantum-fluctuation effects on the thermopower of a single-electron transistor
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We study thermal conductance and thermopower of a metallic single-electron transistor beyond the limit of
weak tunnel coupling. Employing both a systematic second-order perturbation expansion and a nonperturbative
approximation scheme, we find, in addition to sequential and cotunneling contributions, terms that are associ-
ated with the renormalization of system parameters due to quantum fluctuations. The latter can be identified by
their logarithmic temperature dependence that is typical for many-channel Kondo correlations. In particular,
the temperature dependence of thermopower, which provides a direct measure of the average energy of
transported particles, reflects the logarithmic reduction of the Coulomb-blockade gap due to quantum

fluctuations.
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I. INTRODUCTION

Transport of electrons through a small metallic island is
strongly affected by charging effects.!” Tunneling of an
electron on an island with capacity C is associated with an
energy of the order of the charging energy E-=e*/2C. At
low temperature, kzgT<<A, where A is the charging-energy
gap between ground state and first excited charge state, trans-
port is suppressed. In a single-electron transistor (SET), an
island connected to two leads by tunneling junctions (see
Fig. 1), this blockade of transport can be controlled by an
additional gate, resulting in the well-known Coulomb oscil-
lations of current with respect to gate voltage.*?

If the island is well isolated from the leads, i.e., the barrier
resistances R?R are high,

ay= >, ahy= >, hi(4meR}) <1, (1)

r=L,R r=L,R

electric transport is dominated by first-order transport in the
tunnel conductance a; (sequential tunneling). In the
Coulomb-blockade regime, where sequential tunneling is ex-
ponentially suppressed, inelastic cotunneling becomes im-
portant. In these processes of second order in «, the ener-
getically unfavorable charging of the island occurs only
virtually.6‘9 But also at resonance, where sequential tunnel-
ing is present, there are higher-order transport contributions.
They are associated with renormalization of charging energy
and tunnel conductance due to quantum fluctuations. This
can be qualitatively understood by mapping the SET at low
temperature and close to resonance to a many-channel
Kondo problem and performing a poor man’s scaling analy-
sis of the latter.! For a quantitative analysis of these
quantum-fluctuation effects, a systematic second-order per-
turbation expansion within a diagrammatic real-time tech-
nique has been performed!’!'> and used to study different
single-electron systems.'>"!> In particular, a logarithmic re-
duction ~aq In BE of the maximum conductance, indicat-
ing a renormalization of the tunnel conductance, has been
found, in quantitative agreement with experimental obser-
vations.'®!7
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In electron transport, the transfer of charge and heat are
connected to each other. This gives rise to thermoelectric
effects such as the thermal conductance and the thermopower

S leflTe oT | 1=
where V is the voltage due to a temperature difference o7 in
the absence of a charge current /. With the help of Onsager
relations,'® the thermopower can be related to the average
energy (&) of the transported electrons relative to the Fermi
energy:
(&)

S= T (2)
In macroscopic conductors, the thermopower is of the order
of (kg/e)(kgT/Ey), which, in general, is very small. This is
due to the fact that the product of density of states and elec-
tron velocity squared, determining the contribution of elec-
trons of a certain energy to the current, varies only slowly,
namely on the scale provided by the Fermi energy. There-
fore, one can perform a Sommerfeld expansion of (g). The
zeroth-order term of the Sommerfeld expansion vanishes.
The next-order correction, that accounts for an asymmetry of
the product mentioned above around the Fermi energy, yields
an extra factor of kgT/Eg. This is different in mesoscopic
systems for which charging effects can strongly modify the
effective density of states. In the cotunneling regime of a

Iy,

8

FIG. 1. Setup for thermopower measurement on a single-
electron transistor. The two leads are kept at different temperatures
and a voltage bias V=V -V} is applied, such that no electrical
current flows through the device. A gate voltage sets the working
point and thereby the charging-energy gap A of the SET.
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SET, for example, the effective density of states changes on
the scale A, i.e., the thermopower is of the order of (kz/e)
X(kgT/A). An even larger thermopower is generated by se-
quential tunneling processes. They are modeled by a delta-
function peaked density of states around A, for which the
Sommerfeld expansion is not applicable. Instead, a direct
evaluation of (g) ~ A leads to S~ (kg/e)(A/kgT). In conclu-
sion, at the crossover from sequential to cotunneling the ther-
mopower can reach values of the order of kz/e.

By now a few experiments on thermal conductance or
thermopower in quantum dots have been performed.!*->
Thermoelectric effects in various mesoscopic systems have
also been studied theoretically.6> Quantum dots with
discrete® (single-particle) energy level spectrum as well as
dots closer to the metallic (quasi-continuous) limit'® have
been compared to sequential-tunneling theory. For increased
coupling and lower temperatures, systems of discrete level
structure showed signatures of cotunneling?! and also of
Kondo physics.??> For the system under consideration in the
present paper, a metallic single-electron transistor, ther-
mopower has been investigated by taking into account
sequential®® and cotunneling?’ processes.

In this paper, we study the effect of quantum fluctuations
on the thermal conductance and thermopower of a metallic
single-electron transistor with a large number of transverse
channels. Thermopower provides a direct access to measure
a renormalization of the charging-energy gap due to quantum
fluctuations since it is closely related to the average energy
of tunneled electrons. As we predict below, this will give rise
to a logarithmic temperature dependence of both the slope of
thermopower at resonance and of the position of the maxi-
mum of thermopower as a function of gate voltage.

This work is structured as follows. First, in Sec. II, we
define the model Hamiltonian of the system under consider-
ation and derive expressions for the thermal conductance
making use of two different approximation schemes. In Sec.
IIT we discuss how the thermal conductance and the ther-
mopower exhibit the renormalization of the charging-energy
gap induced by quantum-fluctuations. We summarize our re-
sults in Sec. IV.

II. THEORY
A. The system

A metallic single-electron transistor (see Fig. 1) is mod-
eled by the Hamiltonian

H=H;+Hy+H;+Hy+Hr=Hy+ Hrp. (3)

Here H,:Ekns,’majkna,kn and H ,:Eqnsqnc;ncqn describe non-
interacting electrons in the two leads r=L, R, and on the
island, respectively. The index n=1,..., N, is the transverse
channel index which includes the spin while the wave vec-
tors k and g numerate the states of the electrons within one
channel. In the following, we assume the many-channel limit
N,>1. Coulomb interaction of the electrons on the island is
described by the capacitance model H ,=E(i—n,)? where
Ec=¢*/(2C) with total island capacitance C=Cp+Cg+C,.
This electrostatic energy depends on the number of excess

PHYSICAL REVIEW B 73, 195316 (2006)

electrons on the island, given by their number operator 72, as
well as on applied gate and bias voltages. The latter are
accounted for by the “external charge” en,=C;V;+CrVp
+C,V,. To increase the number of electrons in the island
from N to N+1 one has to overcome the charging-energy
gap, the difference between neighboring charge states Ay
=(N+1|H [N+ 1)=(N|H4NY=E[1+2(N-n,)], which is
tunable by the gate voltage via n,. The resonance condition
Ay=0, where the charging-energy gap vanishes, is fulfilled at
half-interger values of n,.

Finally, charge transfer processes are described by the
tunneling Hamiltonian

Hp= > >, T,ﬁ;azkncqne_w +h.c. 4)
r=L,R kqn

The matrix elements 7j; =7" are assumed to be independent
of the states k and ¢ and channel index n. They determine the
tunneling resistance Ry, of the left and right junction by
1/Ry,=(2me*/f)NN(0)N/0)|T"]>, where N, (0) are the
density of states of the island/leads at the Fermi level. Note
that, while the number N, of channels is large, the contribu-
tion of any one channel is so small that the total coupling
remains weak and Coulomb blockade effects will occur. The
operator ¢*' shifts the charge on the island by +e. Since the
left and right lead are assumed to be reservoirs with fixed
electrochemical potential u, and temperature T, the phase ¢
(or its canonical conjugate, the island charge 72) is the only
independent dynamic variable in our model. In general, the
electron temperatures of left lead, island, and right lead can
all be different from each other and differ from the lattice
temperature.°

B. Conductance, thermal conductance, and thermopower

The current /, flowing into reservoir r can be expressed
by wusing correlation functions for the island charge
C™(1,1') == #De®)) and C=(1,1")=i(e'?"e~#"). For a
time-translational invariant system these correlation func-
tions depend only on the time difference, C(z,t")=C(r—1t'),
and we will work with the Fourier transforms C(w)
=[dte’’"C(t). The tunneling current I=I;=-I is deter-
mined by

=~ % f do[a™(0)C7(0) + d (0)C™ ()],  (5)

which includes all possible tunneling processes via the exact
correlation functions C=(w). The rate functions

a*(w) = a f dEf,(E+ )f*(E) (6)
enter, ’*(w) describing tunneling of an electron from lead r
onto the island, and &' (w) from the island to lead r. Here, f*
denotes the Fermi function, and f~=1—f*. Applied tempera-
ture or voltage gradients, 6T=T;—Ty and V=V, -V, are ac-
counted for by evaluating f;(E+w) at temperature T,=T
+ 6T, and voltage V,, while f*(E) is taken at 7. We define
also a(w)=2,a (w)+ o (w).
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The linear electrical and thermal conductances are given
by

respectively. The thermopower describes the voltage gener-
ated by a temperature difference in the absence of an electri-
cal current, and is related to the above mentioned conduc-
tances by

Gr
1=0 GV.

To calculate the linear electrical and thermal conductance
Gy and Gy, we expand the rate functions up to linear order in
either V, or 8T, in the expression for the current, Eq. (5). It is
convenient to use current conservation 2,/,=0 to write the
current as the combination I=(afl, —aglg)/ (e +ag). When
expanding this combination up to linear order in either V, or

., we immediately see that only the equilibrium correlation
functions C=(w), taken at 5T=0 and V=0, enter, since linear
corrections in V, or 8T, drop out in the combination consid-
ered. In equilibrium, the correlation functions are related to
the spectral density A(w) for charge excitations on the island
by C7(w)=-2mi[1-f(w)]A(w) and C<(w)=2mif(w)A(w).
This, eventually, leads to the linear electrical and thermal
conductance

B Bwl2
Gy =Gy J dwsinh ,BwA(w) (8)
and
ks [ (o)
Gr=—Gy B do sinh ﬁwA(w)’ (9)

respectively, where G,,=1/ (R§+R’Te) is the classical electrical
conductance asymptotically reached in the high-temperature
limit. In conclusion, we need to evaluate the equilibrium
spectral density A(w) to obtain the linear electrical and ther-
mal conductance via Egs. (8) and (9). To keep notation
simple, it is convenient to introduce dimensionless conduc-
tances gy and gr, defined by

GV e GT
== and gr=--——L. 10
8v G and  gr G (10)

as B Yas

As we see from Egs. (8) and (9), the dimensionless conduc-
tances differ from each other by a factor Sw/2 in the inte-
grand. This can be easily understood with the help of Eq. (2),
which indicates that w/2 is the average energy of the lead
electrons (measured relative to the Fermi energy) that con-
tributes to a island charge excitation of the energy w. The
factor 1/2 comes from averaging over the available phase
space of the electronic states in the leads and the island.
Roughly speaking, on average one-half of charge excitation
energy comes from or goes to the lead and the island elec-
trons, respectively.
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C. Approximation schemes

In the following we will employ two approximation
schemes for calculating the spectral density and, thus, the
linear electrical and thermal conductance. On the one hand,
we will perform a systematic perturbation expansion up to
second order in the dimensionless tunnel conductance «;. On
the other hand, we will use a nonperturbative resummation
scheme, the so-called “resonant-tunneling approximation”
discussed further below. Both schemes go beyond the weak-
coupling (sequential-tunneling) limit of small tunnel conduc-
tances, but in different ways. The virtue of either scheme as
compared to the other one is discussed below. Both of these
schemes are based on a real-time diagrammatic technique
introduced in Ref. 37. Here, we will make use of known
results of these methods without the need for an explicit
recalculation of the diagrams. Therefore, in this paper, we
will not discuss rules for constructing and evaluating dia-
grams, but refer the interested reader to the existing litera-
ture.

1. Systematic perturbation expansion

We perform a systematic perturbation expansion of the
correlation functions C=(w)=X,_,C =(®(w) and, therefore,
automatically for the spectral density A(w)=[C~(w)
-C7(w)]/ (27ri)=2f=OA(k)(w), where the index k denotes the
power of ¢ in the expansion. The real-time method yields
diagrammatic representations of the correlation functions in
different order (see Fig. 3 of Ref. 12), which are calculated
as sketched in Sec. III of Ref. 12.

To lowest order, the spectral density needed is simply

A*(w) = 2 (Py+ Pyyy) 8= Ay) (11)
N
with the equilibrium probabilities (to zeroth-order in «)

Py=expl- BE4(N)VZ with Z=2, exp[- BE4(N)],
N

to find the island in charge state N. As a result, the dimen-
sionless linear electrical and thermal conductances are

BAN2
4= N (P + Py ) —— 12
gy %( W+ i) e (12)
(BAN/2)*
A= (Py+ Py,y) 13
8r %(N"' N+1)sinhﬂAN (13)

For low temperatures at most two charge states contribute,
e.g., for n,=~0.5 only the term N=0 enters, and Py+P;=1.
Since, in the lowest order, the only allowed charge excitation
energies are Ay, the average energy of the contributing elec-
trons for transitions between charge state N and N+1 is
Ap/2.

For the next-order contribution, we use correlation func-
tions in the limit of vanishing applied voltage and tempera-
ture bias from Ref. 12, namely Egs. (12), (14), and (15)
together with Egs. (20) and (60) there. We can perform all
integrals in Eq. (9) above analytically to find the complete
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second-order contribution to the linear electrical and thermal
conductances as a sum of four terms,

2 & A 2
gﬁ//)r=g§/(;tr+gg/r"‘gwr"‘gv?r (14)
For the dimensionless thermal conductance, we get the
lengthy but complete expressions

Cm E P N|:aN—1AN— & by + aNANf92 by

N aytay.i by = Py-1 + Ay 9Py, — AN‘9¢N:|
2 Ec ’
(14a)
~ A/
gr= % ﬁh—,BA(PN+ PN+1)|:‘9(2¢N+ dy-1 + bi1)
¢ LRG3 Py~ )
c N
B BPN(by_1 — dy) + PPy, (Dy — bir) (14b)
Py+ Py, '
&=za[a M}w + Pyu) b= s — Byar)
87 ~ Nsinh BAy N N+1 N N-1 N+1)>

(14c)

B(Ay+Ay_y)

ay+day_y
ze—E (Py_y+ Pyyy)

~ 2 sinhB(Ay+Ay)
% [ N B Ay 10y + Ayddy_y (14d)
2E. Ay+ Ay

Here, d stands for 9/ dAy=—(1/2E:)(d/dn,) and we used the
definition ¢y=(a+af)AyRe V(iBAy/27), where W de-
notes the digamma function. Furthermore, we defined ay
= BAy/2. The result for the dimensionless electrical conduc-
tance gy is the same but without the factors ay, ay_; and
(ay+ay_;)/2 in accordance with Ref. 12. The factors ay and
ay_1 account for the average energy of the lead electrons
contributing to transport.

For the interpretation of the four terms we follow the
reasoning put forward in Ref. 12. The first term g5 models
cotunneling processes, where an electron is transferred
through the whole device without changing the charge of the
island. This is the dominant transport contribution far from
the resonance of sequential tunneling. We can identify this
term with the “regularized” cotunneling result postulated in
Ref. 27. In fact Eq. (14a) stems from the integral expression

(Bw/2)?
COt P fd I A A
E N0 | AOYS G2 (Bwl2)
XR ( ! ! )2 (14a")
e - s a
Q)—AN+iO+ w—AN_l+i0+

which yields Eq. (30) of Ref. 27 in the regime considered
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there. Note that the infinitesimal imaginary parts of the de-
nominator arises naturally within the diagrammatic theory,
not requiring regularization by hand as in Ref. 27. At low
temperature and away from resonance, e.g., in the Coulomb-
blockade valley with Py=1, we can make use of the expan-

sion Re ‘If(ix)=ln|x|+1/(12x2)+1/(120x4)+ -+ to get
cot __ (k T)2< 1 L)z (15)
8v —ao B A, AL
87 | U |
COt: 15 k T ( _> (_ _>’ 16
8r C“0 ( 5T) A, A A0+A—1 (16)

in accordance with Ref. 27.
Away from resonance, gi, is the only second-order con-
tribution. When approaching the resonance, two more terms,

g%, and g‘A,,T come into play. They are associated with
sequential-tunneling processes but with renormalized param-
eters: gy, is the first correction term to sequential tunneling

due to renormalization of the tunnel-coupling strength, gé/r
the respective correction due to a renormalized charging-
energy gap. The relation of these terms to renormalization is
discussed in more detail below. At low temperature, only the
term N=0 contributes and Py+P;=1, so that Egs. (14b) and
(14¢) reduce to

p (,BAo/2)2 d—¢
87= G B2, {3(2@) +d+Py) + Ec
(14v")
A (BAy/2)? ,
8r= ‘9{ sinh ,BAO}(ZQSO b1 = d). (14¢’)

The fourth term, g ¢ describes cotunneling processes in
which the charge of the island is changed by 2e. Since the
total change of the charging energy between charge state N
+1 and N-1 is Ay+Ay_,, the factor (ay+ay_;)/2 accounts
for the average energy per contributing lead electron. To
overcome the charging energy for two electrons, a large tem-
perature is required. The term ng vanishes at low tempera-
ture, and hence will not be of importance in the following.

The virtue of the perturbation expansion lies in the fact
that (i) all second-order contributions are systematically
taken into account, (ii) their identification with cotunneling
processes and renormalization corrections to sequential tun-
neling is straightforward, and (iii) all expressions are unam-
biguously fixed by the system parameters without any re-
maining cutoff parameters. With increasing tunnel-coupling
strength or lowering temperature, however, the second-order
perturbation theory will become insufficient. Therefore, we
also apply a different approximation scheme as described in
the the following.

2. Resonant-tunneling approximation

The so-called resonant-tunneling approximation (RTA)
has been introduced in Ref. 37 as a nonperturbative treat-
ment of quantum fluctuations. It amounts to resummation of
a certain diagram class, including contributions of arbitrary
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high order in the tunnel-coupling strength. In particular, only
two charge states N=0,1, and only density-matrix elements
that are at most twofold off-diagonal are taken into account.
For details of the derivation, we refer to Ref. 37.

Within RTA, the equilibrium spectral function is found®’
to be

a(w)

Alw)= lo—Ag— ()'(w)|2

(17)

with the self-energy

* a(w)
= do' ———.
o(w) e @ w—-ow' +i0*

Real and imaginary parts are given by

Re o(w) =— 2a0w[1n<'§—i) -Re ‘P(if—:) ] ,

Im o(w) = - ma(w),

where D is a high-energy cutoff of the order of the charging
energy or band width. The expression for the electrical and
thermal linear conductance follows from Egs. (8) and (9).

The virtue of the RTA is that, due to the resummation of
higher-order contributions, lower temperature and higher
values of the tunnel-coupling strength are accessible. This is
also indicated by the fact that the self-energy o(w), describ-
ing renormalization of the charging energy-gap and the
tunnel-coupling strength, appears in the denominator of Eq.
(17). On the other hand, the truncation of the Hilbert space to
two charge states leaves a high-energy-cutoff dependence of
the results. Thus RTA is suited for describing effects of the
qualitative temperature dependence due to quantum fluctua-
tions at low temperature. For quantitative results at higher
temperature, the systematic second-order perturbation expan-
sion is more reliable.

D. Renormalization effects

The main result of this paper is the appearance of renor-
malization effects in thermoelectric quantities. Therefore, we
comment in this subsection on the relation between
quantum-fluctuation induced renormalization and the electri-
cal and thermal conductance in more detail. This discussion
is equally valid for the results of the electrical and thermal
conductance, and follows along the line of Ref. 12.

The notion of system-parameter renormalization is the
central idea of all renormalization-group (RG) schemes. An
effective low-energy model is derived by successively inte-
grating out high-energy degrees of freedom in the leads. A
poor man’s scaling version of such an RG scheme for the
two-charge-state approximation of the metallic SET has been
performed in Ref. 10 by mapping it to a many-channel
Kondo model. During the RG procedure, both the tunnel
coupling strength «, and the charging-energy gap A, become
renormalized as a consequence of the tunnel coupling be-
tween island and lead electrons. The renormalized values &

and A are, within this poor man’s scaling scheme,
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a A 1
—=— =, (18)
ay Ay 1+2ayIn(D/w)
where D is the high-energy cutoff (the smaller of charging
energy or band width) and w the low-energy scale at which
the RG procedure stops (here the larger of temperature kzT
or charging-energy gap Ag). As a consequence of the large
number of transverse channels in the tunnel contacts, the
charging-energy gap and the tunnel-coupling strength are
renormalized towards lower values, with a logarithmic de-
pendence on the high- and low-energy cutoff. While the re-
sult is inherently nonperturbative (an expansion of the de-
nominator yields all powers of «y), it is rather qualitative as
the numerical coefficient D/ is unknown.
In the spirit of an RG picture, an effective low-energy
theory of transport that takes into account renormalization is
obtained by taking the sequential-tunneling formula but with

renormalized system parameters @ and A instead of the bare
ones « and A,. This amounts to

G(ap,Ag) = G*Y(a, A)+ regular terms, (19)

for the electrical or thermal conductance. The ‘“regular
terms” represent higher-order contributions, such as cotun-
neling processes, that are not associated with renormaliza-
tion. The latter are not included in the RG procedure, and are
not considered in the following.

To relate the second-order transport contributions to
renormalization, we expand Eq. (19) up to second order in
a,

(szeq(ao, Ao)

6@ R) = =G ap, Ag) + (A - Ag)
20 ZAY

By comparison with Egs. (14b’) and (14c’), we obtain

e R L A e i
ay T 0 2

(20)
A E, A
—= —2a0{1 +ln<h> ~Re ‘I’(zﬁ)} 21)
AO v 277
Within the RTA we find®’
a A 1
= (22)

a_:A_: — .
’ ’ 1 +2a0[1n('8—D)—Re\If<i&)]
21 21

The RTA result is nonperturbative in «,, and it resembles
the structure of the poor man’s scaling RG result in Eq. (18).
Its numerical value remains undetermined as the exact form
of the high-energy cutoff D is left unspecified. This contrasts
to the result from second-order perturbation theory. There, all
numerical constants are specified. On the other hand, the
renormalization is determined only up to linear corrections in
a,. Indeed, this correction can be considered as the lowest-
order term of an expansion in «, In(Eq/max{A,kzT}) [cf.
Eq. (22)], which serves as small parameter. We conclude
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FIG. 2. Thermal conductance of an SET calculated to first- and
second-order in tunneling coupling for kzT/E-=0.05 and «
=0.04. The inset shows the different contributions in second-order,
due to cotunneling (g5), renormalization of the tunnel-coupling

strength (g?) and of the charging-energy gap (g?). Renormalization
leads to a broadening and a suppression of the thermal conductance
as compared to the sequential-tunneling result and cotunneling
yields an algebraically decaying contribution in the Coulomb-
blockade valley.

with the remark that the interpretation of some of the second-
order contributions as first-order transport but with renormal-
ized parameters was recently supported by analyzing the full
counting statistics of electrical transport through a metallic
SET.?® There, the functional dependence of the cumulant
generating function on the counting fields enables an unam-
biguous identification of sequential and cotunneling, in full
support of our interpretation above.

III. RESULTS
A. Thermal conductance

Figure 2 shows the first- and second-order contributions
to the thermal conductance, i.e., the sequential-tunneling re-
sult, Eq. (13), and the different contributions to second order,
Eq. (14), in the inset. For the low temperature considered
here, g%e vanishes, as it corresponds to two electron
processes—leaving the dot in a state, where the electrostatic
energy is changed by more than E. As discussed above, g5
reproduces the regularized cotunneling result; it is the domi-
nating contribution away from resonance (BA,> 1), as it de-
cays algebraically only. From Egs. (15) and (16), we see that
the cotunneling contribution to the electrical and thermal
conductance scales with (T/Ay)* and (T/A.)?, respectively.
The (7/A,)?* behavior of the electrical conductance is under-
stood from the fact that each tunneling rate contributes a
factor T while the A denominator is that of standard second-
order perturbation theory. At first glance, one might expect a
T/A, behavior for the thermal conductance due to the rela-
tive factors ay=BAy/2 in Eq. (14a). However, it turns out
that terms in the thermal conductance stemming from the
lowest order in 1/(BA,) in the expansion of ¢, cancel out
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FIG. 3. Thermopower within perturbative calculation for «
=0.002 and kzT/E=0.1 (solid line), 0.04 (dashed), and 0.01
(dotted).

when expanding Eq. (14a). Since the expansion of W(ix) has
only even powers in x, the first nonvanishing contribution to
the thermal conductance scales with (T/A,)3.

At resonance, the terms g? and g?, associated with renor-
malization of the tunnel coupling & and the charging-energy

gap A, become important. The renormalization of the tunnel
coupling strength towards lower value results in a reduction
of the peak height. The renormalization of the charging-
energy gap shifts the system effectively closer to resonance
and consequently yields a broadening of the resonance struc-
ture. In other words, the renormalization of coupling is re-
flected in the suppression of the maximum value of thermal
conductance, the renormalization of the charging-energy gap
in the shift of the maximum’s position.

The results for thermal conductance look rather familiar
from the conductance results and do not clearly showcase
unexpected features. Looking at the thermopower, however,
we can gain interesting insights in the mechanisms of elec-
tron transport through our system and how it is influenced by
quantum fluctuations. This is owed to the intuitively appeal-
ing interpretation of thermopower as measure of the average
energy of transported particles, see Eq. (2).

B. Thermopower

The thermopower as a function of the gate charge n, for
different temperatures is displayed in Fig. 3. We show the

full result (black lines)
G+ GY 23)
S G+ Gy

that takes into account all first- and second-order contribu-
tions to the electrical and thermal conductance, and, for com-
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parison, also the pure sequential-tunneling result S
=G71/ Gy (gray lines). The thermopower vanishes at both
integer and half-integer values of n,. At resonance, i.e., at
half-integer values of n,, the thermal conductance vanishes
due to a cancellation of transport contributions from lead
electrons above and below the Fermi level, that generate the
same charge excitation [Fig. 3(a)]. In the middle of the
Coulomb-blockade valley, i.e., at integer values of n,, the
zero is due to a cancellation of processes that involve adja-
cent charge excitations [see Fig. 3(b)]. In between [situation
sketched in Fig. 3(c)], the thermal conductance and, thus, the
thermopower is finite, with alternating sign at integer and
half-integer values of n,.

At larger temperature (solid line in Fig. 3), sequential tun-
neling dominates. Results for this regime have first been de-
rived in Ref. 26. We recover a sawtooth behavior, with a
linear increase as long as transport predominantly involves
only one transition N« N+1 of charge states. Then the av-
erage energy of transported particles and correspondingly the
thermopower is proportional to Ay/2. Around n,~N, the
adjacent transition N—1+« N, that contributes with an oppo-
site sign, comes into play. This gives rise to a sharply falling
edge of the sawtooth with a width given by temperature.

At lower temperatures (dashed and dotted lines), sequen-
tial tunneling dominates transport only around half-integer
values of n,, but cotunneling takes over in the Coulomb-
blockade valley in between, resulting in a suppression of the
rising edge of the sawtooth. Instead thermopower decays
with T/A away from resonance, as seen from Egs. (15) and
(16).

These features of the thermopower have been explained
by Turek and Matveev?’ by considering sequential plus co-
tunneling processes (the terms g9 and g only). They pos-
tulate a universal low-T behavior, whereby S scales as
S(BAy). We find that this does not hold true for a complete
higher-order calculation. Taking into account the renormal-
ization of system parameters due to quantum fluctuations lets
the thermopower deviate from universal behavior as illus-
trated in Fig. 4, in which the thermopower is plotted as a
function of BA,. Conversely, these deviations allow an in-
sight into the renormalization process and reveal the rich
physics missed by taking into account cotunneling processes
only.

In the following, we will concentrate on two distinctive
features of Fig. 4: On the behavior close to the resonance of
sequential tunneling (at half integer values of n,) and on the
position of the maximum of thermopower.

1. Reduction of charging-energy gap

Close to the resonance at n,=1/2, transport is associated
with charge excitations 0+« 1, and thermopower is linear in
n,. The sequential-tunneling result $9=—(kz/e)BA,/2 cor-
responds to an average energy A,/2 of the contributing lead
electrons. Including cotunneling processes slightly reduces
the slope (dotted line) by a factor that is independent of
temperature. The slope is further reduced when taking into
account all second-order contributions. Using Eq. (2) as a
definition of the average energy we see that the reduction of
the slope reflects a reduction of the average energy of the
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FIG. 4. Thermopower as a function of BA for z=0.02 at low
temperature. Both the curves for sequential tunneling (gray solid
line) and sequential plus cotunneling (dotted line) are temperature
independent. A full second-order perturbation theory, however,
shows deviations from this universal scaling behavior due to
charging-energy gap renormalization. The chosen temperatures are
kgT/E~=0.01 (dashed line) and 0.0001 (black solid line). We ana-
lyze in detail the reduction of slope at resonance (see inset) and the
shift of the maximum away from resonance with decreasing
temperature.

contributing lead electrons. In Fig. 5 we display the average
energy defined via Eq. (2) close to resonance as function
of temperature (this corresponds to the slope at n,=1/2 in
Fig. 4).

Sequential tunneling gives the ratio of 1/2 for (g)/A,,
reflecting energy averaging as discussed above (dashed line

S€q.
0.5——=% - .
4O ................................ \\/‘/
seq.+cot. e .
A 048 q PR
w _.-
VT .

0.46 Pre

0.44

0'42 1 Ll 1 L1l L

0.001 0.01 0.1
k,T1E.

FIG. 5. Average energy of the transported particles as a function
of temperature for coupling a(=0.01. The logarithmic temperature
dependence typical for Kondo physics indicates a renormalization
of the charging-energy gap. We display the sequential-tunneling re-
sult (dashed line), the “universal” (temperature-independent) result
of sequential and cotunneling (dotted) and the full next-to-leading-
order perturbative result of Eq. (23) (solid). RTA (dot-dashed line)
gives a similar low-temperature result for the slope in this figure,
but the off-set is unknown.
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FIG. 6. (a) Position of the maximum of thermopower for a(=0.01. When taking only sequential and cotunneling into account, the
maximum’s position approaches a constant at low temperature (dotted line). In the full next-to-leading-order perturbative calculation (solid
line) and the RTA (dot-dashed line), the maximum moves away from resonance with decreasing temperature. (b) Approximative determi-
nation of the temperature dependence of the maximum’s position [thick solid line as in (a)]. The crossover between sequential and
cotunneling (squares) becomes temperature independent at low-temperature. The correct temperature dependence is reproduced when the
second-order terms associated with renormalization of the system parameters are added to the sequential-tunneling (circles) but not to the

cotunneling (triangles) contribution.

in Fig. 5). The cotunneling regularized at resonance (dotted
line) yields a constant reduction by the small perturbation
parameter «:

gri+er _BAL-4ay  BA

Syt 2 1-2qp 2

(1-2ap) + O(a(z)).

(24)

The full next-to-leading-order calculation (solid line) of S
results in

(SWAO=%{1—2m<2+y+h<£§;)>} (25)

with Euler’s constant y=0.5772.... The logarithmic tem-
perature dependence directly reflects the renormalization of
the charging-energy gap, cf. Eq. (21), which indicates many-
channel Kondo physics.

We also show the result from the resonant-tunneling ap-
proximation (dot-dashed line), which is obtained from nu-
merical integration of Egs. (8) and (9) with Eq. (17). The
logarithmic temperature dependence again reflects the
renormalization of the level position Ay/Ag=[1+2ap(y
+In(BD/2m))]™! close to resonance. While the logarithmic
temperature behavior and consequently the slope in Fig. 5 is
reliably predicted by RTA, the absolute vertical position de-
pends on the choice of the high-energy cutoff (here we took
D=E,).

As thermopower measures the average energy of transport
it yields a direct extraction of the renormalized charging-

energy gap A (via the slope of thermopower at resonance).
This complements in a very appealing manner electrical con-
ductance measurements, which reveal the renormalization of
the coupling constant @. As discussed in Ref. 12 and experi-
mentally observed in Refs. 16 and 17 this renormalization of
coupling is seen as logarithmic reduction of the maximal
linear conductance at low temperatures.

2. Maximum of thermopower

The renormalization of the charging-energy gap not only
modifies the slope of thermopower around n,, it also shifts
the position of maximum. Figure 6(a) shows the (numeri-
cally determined) position of the maximum as a function of
temperature. With only sequential and cotunneling taken into
account,”’ the maximum position approaches a constant
when lowering the temperature (dotted line) as a conse-
quence of the prososed unversal scaling behavior. In a full
next-to-leading-order theory, however, the maximum posi-
tion grows logarithmically with decreasing temperature
(solid line). The same low-temperature behavior is repro-
duced by the resonant-tunneling approximation (dot-dashed
line).

Since the exact analytic expression for the maximum po-
sition is not transparent, we can gain some more insight in
the origin of the maximum and the temperature dependence
of its position by using the following approximate treatment.
Close to resonance, the average energy from sequential tun-
neling (and thus the thermopower) increases linearly with
Ay. Away from resonance, the cotunneling contribution
dominates, and the thermopower decreases proportional to
T%/A,. The total thermopower including both types of pro-
cesses is the average of the individual thermopower expres-

sion, weighted with the electrical conductances gi,eq/ cot

8V IAY2 + gv (kpT)*/A

seq | g:/ot

- SeT=(e)= (26)

Therefore, the maximum position is roughly at the point
where sequential and cotunneling electrical conductance
coincide?’ (we disregard any numerical factors here).

In Fig. 6(b), we show the maximum position determined
in this way. If sequential and cotunneling processes were the
only contributions to be considered, the obtained maximum
position is of the order of the numerically determined value
and is constant at low temperature (squares). However, in a
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full second-order calculation there are additional terms, as
discussed above. How do these terms fit into this picture?
When only looking at the power of the perturbation expan-
sion in «a, one might consider these second-order terms be-
longing to cotunneling. This, however, does result in a com-
pletely wrong temperature dependence (triangles). The
maximum position should rather be determined by equating
the cotunneling electrical conductance with that of sequential
tunneling plus the extra second-order terms, that are inter-
preted as renormalization corrections to sequential tunneling
(circles). In this case, the correct temperature dependence is
reproduced. This, once again, supports the picture of renor-
malization.

The main effect of renormalization on the maximum po-
sition is that the peak of the electrical conductance g/
around resonance is broadened since the renormalized
charging-energy gap A=Ay[1-2ap(const+ln BEL)] is re-
duced, i.e., the system is moved closer to resonance. As a
consequence, the maximum position moves away from reso-
nance, A™¥=A[1+2aq(const+In BER)]+O(}), to com-
pensate for this renormalization, so that the renormalized
maximum position is left unchanged. This is indeed the
asymptotic behavior found in Fig. 6. In conclusion, the tem-
perature dependence of the maximum position reflects the
temperature-dependent renormalization of the charging-
energy gap.

IV. CONCLUSIONS

In this paper, we investigated the low-temperature prop-
erties of thermal conductance and thermopower of a metallic
single-electron transistor. We presented two approximation
schemes for analyzing higher-order contributions associated
with quantum fluctuations: A systematic perturbative expan-
sion in the tunnel-coupling strength and the nonperturbative
resonant-tunneling approximation. Both these schemes re-
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veal qualitatively similar physical effects and coincide for
weak coupling. In particular, we find that quantum-
fluctuation-induced renormalizations of the charging-energy
gap and the tunnel-coupling strength affect the thermoelec-
tric properties. They yield logarithmic temperature depen-
dences typical for the (many-channel) Kondo effect.

For the thermal conductance, renormalization of tunnel-
coupling strength and charging-energy gap results in a sup-
pression and a broadening of the resonance features, respec-
tively (see Fig. 2). The effect of charging-energy-gap
renormalization is most striking in the thermopower. It de-
stroys the universal low-temperature scaling that would fol-
low from considering sequential and cotunneling processes
only (Fig. 4). The reduction of the charging-energy gap is
reflected in a reduction of the slope of the thermopower at
resonance, and in a shift of the maximum’s position away
from resonance (Figs. 5 and 6, respectively). This is due to
the fact, that thermopower can be interpreted as measure of
the average energy of transported particles. Therefore, an
experimental observation of the charging-energy gap renor-
malization in the thermopower would provide an appealing
complement to the tunnel-coupling renormalization mea-
sured in the electrical conductance.'®!” Certainly measuring
such effects in thermopower is more challenging, as precise
control of temperature bias and gate voltage is required.
Sequential'®?° and cotunneling®! have been observed in ther-
mopower measurements some years after these tunneling
processes had first been investigated in the electrical
conductance."®” In continuing this track record also the
renormalization effects on thermopower predicted in this pa-
per may be within reach of future experiments.
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