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We have developed a full quantum microscopic theory to analyze the time evolution of transversal and
longitudinal components of an exciton-single photon system coupled to bulk acoustic phonons. These compo-
nents are subjected to two decay processes. One is radiative relaxation and the other is pure dephasing due to
exciton-phonon interaction. The former results in a decay with an exponent linear to time, while the latter
causes a faster initial decay than the radiative decay. We analyzed the dependence of the components on the
duration of the input one-photon pulse, temperature, and radiative relaxation rates. Such a quantitative analysis
is important for the developments of atom-photon interfaces which enable coherent transfer of quantum
information between photons and atomic systems. We found that, for a GaAs spherical quantum dot in which
the exciton interacts with bulk phonons, the maximal probability of the excited state can be increased up to
75%. This probability can be considered as the efficiency for quantum information transfer from photon to
exciton.
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I. INTRODUCTION

Progress in photon manipulation will lead to the realiza-
tion of quantum information technologies, which promise to
improve acquisition, transmission, and processing of infor-
mation.1 In particular, the development of atom-photon inter-
faces, which enable us to transfer quantum information co-
herently between photons and atomic systems,2,3 is impor-
tant, since photons are suited to long distance transmission of
quantum information and atoms are suited to storage and
processing. The elementary processes of the atom-photon in-
terfaces are one-photon absorption and reemission at an
atom. The absorption corresponds to the quantum informa-
tion transfer from the photon to the atom, and vice versa. The
excited atoms can interact with other atoms to yield a con-
trolled unitary transform. These successive processes must
preserve coherence for high fidelity information transfer. It is
therefore an important issue to study the dynamics of an
atom-photon system under the competition between dipole
coupling and dephasing.

For the development of atom-photon interfaces, we must
also pay attention to the temporal stability of the dipole cou-
pling and the reproductivity of a certain coupling strength. In
this respect, semiconductor quantum dots, as so-called artifi-
cial atoms, have gained increasing interests because they
provide design capabilities for the temporal stability and the
reproductivity. Though there are many similarities between
excitons in quantum dots and atomic systems, such as the
discrete level structures which results from three-dimen-
sional confinement of electrons, there are also important dif-
ferences: Coupling of electrons to phonons plays a major
role in quantum dots; in particular, it provides a dephasing
mechanism for optically induced coherence on a time scale
�a few picosecond� much shorter than for radiative inter-
action �several hundred picoseconds�.4–6 This mechanism
will thus reduce the quantum coherence in atom-photon sys-
tems and then affect the efficiencies for quantum information

transfer. It is necessary to analyze the response of a exciton
to one-photon input under the exciton-phonon coupling.
However there has been no such theory that treats exciton-
phonon interaction in a microscopic model.

In this paper, we have developed a fully quantum me-
chanical theory which enable us to analyze the influence of
exciton-phonon interaction on the exciton-photon density
matrix for one-photon input. Note that, for applications to
quantum communication, a single quantum dot is commonly
set up in a small cavity in order to achieve efficient coupling
with the incoming and the outgoing radiative field at the
cavity. In our analysis, we therefore extend a one-dimen-
sional model developed for atom-cavity systems7,8 in order
to treat the exciton-phonon interaction and the coupling to
the electromagnetic environment not through the cavity
modes. The time evolution of the density matrix of the
exciton-photon system for one-photon input pulses is then
derived analytically, based on this model. The expectation
values of the longitudinal and transversal components of an
excitonic two-level system are formulated for a weak coher-
ent input pulse described by the superposition of vacuum
state and one-photon state. The time-evolution of the trans-
versal and longitudinal components of the two-level system
are then calculated quantitatively for a weak coherent Gauss-
ian input pulses.

We found that, for a model system of a GaAs spherical
quantum dot with the radius of 5 nm, in which the exciton
interacts with bulk phonons, the maximal probability of the
excited state can be increased up to 75%. This probability
can be considered as the efficiency for quantum information
transfer from a photon to an exciton.

II. THEORETICAL MODEL

We will assume a simple two-level model for the elec-
tronic degrees of freedom of a QD, consisting of electronic
ground state �G� and the lowest-energy electron-hole �exci-
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ton� state �E�. The starting point of our analysis is the Hamil-
tonian,

Ĥ = �
i=1,2

�ĤFi
+ Ĥint Fi

� + ĤP + Ĥint P, �1�

with

ĤFi
= �

−�

�

dk�ckFi
âFi

† �k�âFi
�k� ,

Ĥint Fi
= �

−�

�

dki��c�Fi

�
�âFi

† �k��̂− − �̂−
†âFi

�k�	 ,

ĤP = �
j

�� jP̂j
†P̂j ,

Ĥint P = �E�
E� � �
j

�� j�P̂j + P̂j
†� ,

where �̂−= �G�
E�, âFi
�k� and P̂j are annihilation operators

for the light field Fi and the jth phonon mode. The coeffi-
cient � j is the coupling strength between phonon modes and

the two-level system. The interaction Hamiltonian Ĥint P is
obtained from an independent Boson model and provides a
pure dephasing. We assume that off-diagonal electron-
phonon interaction coupling �E� to exciton excited states are
sufficiently weak. This assumption is well justified for quan-
tum dots where the energy separation between these states is
greater than 20 meV, when the temperature is low enough
�T�40 K�. Note that all the Hamiltonians except for the
Hamiltonian ĤP+ Ĥint P have been formulated in a rotating
frame defined by the transition frequency �0. Likewise, the
wave vector is defined in the rotating frame, that is, kFi

is
defined relative to the resonant wave vector �0 /c.

A model for the Hamiltonian �i=1,2�ĤFi
+ Ĥint Fi

� is illus-
trated in Fig. 1. The rF1

and rF2
axes represent the spatial

coordinate of the one-dimensional light field, respectively.
The single two-level system is coupled locally with the light
fields at the position rF1

=rF2
=0. The negative region rFi

�0 and the positive region rFi
	0 correspond to the incom-

ing field and the outgoing field, respectively. The light field
Fi can only propagate in the positive direction, approaching
the atomic system at rFi

�0, and moving away from it at
rFi

	0 in vacuum. The dispersion relation describing the
field dynamics is given by the wave number multiplied by
the speed of light �Fi

=ckFi
. The factor �c�Fi

is the coupling
constant between the two-level system and the light field,
where �Fi

is the radiative relaxation rate only due to coupling
with the light field Fi.

This situation can be realized experimentally through the
use of a one-sided cavity as illustrated in Fig. 2. The left
mirror of the cavity has a transmittance much higher than the
right mirror, which has nearly 100% reflectance. The field F1
corresponds to the field mode coupled with the single mode
of the cavity. The negative region on the space axis of the
field F1, the region rF1

�0 shown in Fig. 1, corresponds to

the input in Fig. 2, and the positive region corresponds to the
output. In terms of the conventional cavity quantum electro-
dynamics parameters, the present regime for the field F1 is
characterized by 
�g, where 
 is the cavity damping rate
through the left mirror and g is the dipole coupling between
the two-level system and the cavity mode. Therefore, adia-
batic elimination can be applied to the time evolution of the
cavity field.9 As the cavity damping rate 
 is much faster
than the dipole coupling g, the interaction between the two-
level system and the outside light field mediated by the cav-
ity field can be expressed by an effective radiative relaxation
rate �F1

=g2 /
. The radiative relaxation rate �F1
thus de-

scribes the dipole damping caused by emissions through the
left mirror of the cavity, and the corresponding rate of spon-
taneous emission through the cavity is equal to 2�F1

. The
field F2 in the theoretical model represents the noncavity
modes. The coupling of the two-level system with the field
F2 is characterized by the radiative relaxation rate due to the
coupling with the noncavity modes. The rate �� /2 thus cor-
responds to the radiative relaxation rate �F2

. Although the
noncavity modes are actually not one-dimensional field as

FIG. 1. Theoretical model of spatiotemporal propagation. The r1

axis represents the single spatial coordinate of the field F1. Like-
wise, The r2 axis represents the single spatial coordinate of the field
F2. A single two-level atom is placed at position r=0. G and E
represent the ground state and the excited state of the atom, and
r1or2	0 and r1or2�0 correspond to the output field and the input
field.

FIG. 2. Schematic representation of cavity geometry. T and T�
are the transmittances of the mirrors �T�T��. The solid circle rep-
resents a single atom. The arrows to the left of the cavity represent
the free space input and output fields. The rate �� /2 corresponds to
the radiative relaxation rate through the noncavity modes.
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described in Fig. 1, the representation of the noncavity
modes by the field F2 is very useful to analyze the influence
of the coupling with the noncavity modes on the atom-cavity
system.

A one-dimensional device will be very useful for the de-
velopment of atom-photon interfaces since the atom-cavity
system can be connected effectively with each other by op-
tical fibers and communicate quantum information mediated
by single photons. The radiative relaxation rate due to the
noncavity modes �F2

should be negligible in order to achieve
one-dimensional absorption and reemission of single photon.
Promising methods will be the use of semiconductor
microstructures10 or photonic crystals.11,12 However this
problem is not included in the following consideration.

III. ONE-PHOTON PROCESSES

In the following calculations, we shall assume that the dot
is in its electronic ground state before the arrival of the input
one-photon pulse, while the phonons are in the thermal equi-
librium at temperature T.

The state of the exciton-photon-phonon system can be
expanded on the basis of the wave number eigenstates �kF1

�
and �kF2

� of the photon fields, the exciton state �E�, and the
phonon coherent states ��
 j
�. The quantum state for the one-
photon process can then be written as

���t�� =� d�
 j
��E,�
 j
;t��E,�
 j
�

+� d�
 j
dkF1
��kF1

,�
 j
;t��kF1
,�
 j
�

+� d�
 j
dkF2
��kF2

,�
 j
;t��kF2
,�
 j
� . �2�

In the phonon coherent states ��
 j
�, the “� 
” means the set
of phonon modes and the parameter 
 j represents the field
amplitude of the jth mode. On this basis, the Hamiltonian
given by Eq. �1� can be expressed as

Ĥ1 photon = �ck̂F1
+ �ck̂F2

+ i��c�F1

�
�

−�

�

dkF1

� ��kF1
�
E� − �E�
kF1

�� � Iph + i��c�F2

�
�

−�

�

dkF2

� ��kF2
�
E� − �E�
kF2

�� � Iph + Ila � �
j

�� jP̂j
†P̂j

+ �E�
E� � �
j

�� j�P̂j + P̂j
†� , �3�

where

k̂Fi
= �

−�

�

dkFi
�kFi

�
kFi
� ,

and Ila and Iph are the identity matrix of atom-photon system
and phonon field, respectively.

The equations for the temporal evolution of the probabil-
ity amplitudes ��E , �
 j
 ; t�, ��kF1

, �
 j
 ; t�, and ��kF2
, �
 j
 ; t�

can thus be obtained from the Schrödinger equation

i�d /dt ���t��= Ĥ ���t�� using Eqs. �2� and �3� as follows:

d

dt
� d�
 j
��E,�
 j
;t���
 j
�

= − i�
̂� + 
̂�� � d�
 j
��E,�
 j
;t���
 j
�

−�c�F1

�
� dkF1

d�
 j
��kF1
,�
 j
;t���
 j
�

−�c�F2

�
� dkF2

d�
 j
��kF2
,�
 j
;t���
 j
� , �4�

d

dt
� d�
 j
��kF1

,�
 j
;t���
 j
�

= − i�kF1
c + 
̂�� � d�
 j
��kF1

,�
 j
;t���
 j
�

+�c�F1

�
� d�
 j
��E,�
 j
;t���
 j
� , �5�

d

dt
� d�
 j
��kF2

,�
 j
;t���
 j
�

= − i�kF2
c + 
̂�� � d�
 j
��kF2

,�
 j
;t���
 j
�

+�c�F2

�
� d�
 j
��E,�
 j
;t���
 j
� , �6�

where


̂� = �
j

� j�P̂j + P̂j
†�, and 
̂� = �

j

� jP̂j
†P̂j .

The evolution ��kF1
, �
 j
 ; t� and ��kF2

, �
 j
 ; t� can be ob-
tained by integrating Eq. �5� and Eq. �6�,

� d�
 j
��kF1
,�
 j
;t���
 j
�

= e−i�kF1
c+
̂���t−ti� � d�
 j
��kF1

,�
 j
;ti���
 j
�

+�c�F1

�
�

ti

t

dt�e−i�kF1
c+
̂���t−t��

�� d�
 j
��E,�
 j
;t����
 j
� , �7�
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� d�
 j
��kF2
,�
 j
;t���
 j
�

= e−i�kF2
c+
̂���t−ti� � d�
 j
��kF2

,�
 j
;ti�

+�c�F2

�
�

ti

t

dt�e−i�kF2
c+
̂���t−t��

�� d�
 j
��E,�
 j
;t����
 j
� , �8�

where ti is the initial time of the evolution. In order to de-
scribe the evolution in real space, the results of the integra-
tion of Eq. �7� and Eq. �8� can be Fourier transformed using

�s�rFi
,�
 j
;t� �

1
�2�

�
−�

�

dkFi
eikFi

·rFi��kFi
,�
 j
;t� . �9�

The real space representation of the temporal evolution on
the field F1 then reads as

� d�
 j
�s�rF1
,�
 j
;t���
 j
�

=�
e−i
̂��t−ti� � d�
 j
�s�rF1

− c�t − ti�,�
 j
;ti	��
 j
�

for rF1
� 0 or c�t − ti� � rF1,

e−i
̂��t−ti� � d�
 j
�s�rF1
− c�t − ti�,�
 j
;ti	��
 j
� +�2�F1

c
e−i�
̂�/c�·rF1� d�
 j
��E,�
 j
;t −

rF1

c
���
 j
�

for 0 � rF1
� c�t − ti� .

� �10�

As described in Ref. 7, the top term corresponds to the single-photon amplitude propagating without being absorbed by the
atom. The bottom term consists of two processes; the first corresponds to propagation without absorption, and the second
corresponds to the amplitude of a single photon reemitted into the outgoing field of the field F1 after absorption by the atom.

Likewise, the real space representation of the temporal evolution on the field F2 reads as

� d�
 j
�s�rF2
,�
 j
;t���
 j
�

=�
e−i
��t−ti� � d�
 j
�s�rF2

− c�t − ti�,�
 j
;ti	��
 j
�

for rF2
� 0 or c�t − ti� � rF2

,

e−i
̂��t−ti� � d�
 j
�s�rF2
− c�t − ti�,�
 j
;ti	��
 j
� +�2�F2

c
e−i�
̂�/c�·rF2� d�
 j
��E,�
 j
;t −

rF2

c
���
 j
�

for 0 � rF2
� c�t − ti� .

� �11�

The evolution ��E , �
 j
 ; t� of the excited state amplitude can be obtained by integrating Eq. �4� using the results for
��kF1

, �
 j
 ; t� and ��kF2
, �
 j
 ; t� given in Eq. �7� and Eq. �8� and using the Fourier transform �9�, as follows:

� d�
 j
��E,�
 j
;t���
 j
� = e−��F1
+�F2

+i�
̂�+
̂��	�t−ti� � d�
 j
��E,�
 j
;ti���
 j
� − �2c�F1�
ti

t

dt�e−��F1
+�F2

+i�
̂�+
̂��	�t−t��e−i
̂��t�−ti�

�� d�
 j
�s�− c�t� − ti�,�
 j
;ti	��
 j
� − �2c�F2�
ti

t

dt�e−��F1
+�F2

+i�
̂�+
̂��	�t−t��e−i
̂��t�−ti�

�� d�
 j
�s�− c�t� − ti�,�
 j
;ti	��
 j
� . �12�

Since, in our analysis, the atomic system is in the crystal ground state before the one-photon input pulse propagating on the
field F1 arrives at the system, the excited state amplitude ��E , �
 j
 ; ti� at the initial time are therefore zero, and the field
amplitude �s�rF1

, �
 j
 ; ti� is zero for the region rF1
	0. Moreover, we assume that the state of the field F2 is initially vacuum

state, that is, the field amplitude �s�rF2
, �
 j
 ; ti� is zero. Under these assumptions, Eq. �11� and Eq. �12� are reduced as follows:
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� d�
 j
��E,�
 j
;t���
 j
� = − �2c�F1�
ti

t

dt�e−��F1
+�F2

+i�
̂�+
̂��	�t−t��e−i
̂��t�−ti� � d�
 j
�s�− c�t� − ti�,�
 j
;ti	��
 j
� , �13�

� d�
 j
�s�rF2
,�
 j
;t���
 j
� = �0 for rF2

� 0 or c�t − ti� � rF2
,

�2�F2

c
e−i�
̂�/c�·rF2� d�
 j
��E,�
 j
;t −

rF2

c
���
 j
� for 0 � rF2

� c�t − ti� . �
�14�

We assume that the density matrix for the phonon modes
is initially given by an equilibrium distribution at tempera-
ture T and that the density matrix for the field F1 is initially
given by a weak coherent state described by the superposi-
tion of vacuum state and a one-photon pulse. The initial total
density matrix is thus given by

�ini = �̂ph � ���
�� ,

where

��� � �Vac� + �� drF1
��rF1

��rF1
�

and

�̂ph =� d�� j
2P��� j
���� j
�
�� j
�

with

P��� j
� = � jP�� j� ,

where

P�� j� =
e−��j�

2/�e�� j/kBT − 1�−1

��e��j/kBT − 1�−1 . �15�

The parameter � j represents the field amplitude of the jth
mode.

Once a coherent state ��� j
� of phonons is given, the ini-
tial wave function �s�rF1

, �
 j
 ; ti� reads ���
 j
− �� j
� ·��rF1
�.

The time evolution given by Eq. �2� for the coherent states
��� j
� can then be described, after substituting the initial
wave function ���
 j
− �� j
� ·��rF1

� into Eq. �10� and Eq.
�13�, in the space representation as

���t�� = ��E,�� j
;t��E,�� j
� +� drF1
�s�rF1

,�� j
;t��rF1
,�� j
�

+� drF2
�s�rF2

,�� j
;t��rF2
,�� j
� � ���t�;�� j
� . �16�

The time evolution ��t� from the initial density matrix �ini is
thus

��t� � � d�� j
2P��� j
��e−i
̂��t−ti��Vac;�� j
�

�
Vac;�� j
�ei
̂��t−ti� + ����t�;�� j
�
Vac;�� j
�ei
̂��t−ti�

+ �*e−i
̂��t−ti��Vac;�� j
�
��t�;�� j
� + ���2���t�;�� j
�

�
��t�;�� j
�� . �17�

We can now formulate the expectation values of the trans-
versal component �̂− and the longitudinal component �E�
E�
for a weak coherent input state ���. In the calculation of
the transversal component, we encounter the term


�� j
�ei
̂��t−ti�e−i�
̂�+
̂���t−t��e−i
̂��t�−ti���� j
�. This term corre-
sponds to the deviation from the initial coherent state of
phonons due to the exciton-phonon interaction and causes
the dephasing effects by the convolution with the thermal
distribution P��� j
�. There is a similar term also for the lon-
gitudinal component. These calculations are exactly solvable
�see the Appendix�. The expectation values 
�̂−� and

�E�
E�� for the initial total density matrix �15� thus are


�̂−�th�t� = − �2c�F1
��

ti

t

dt�e−��F1
+�F2

��t−t��e−�ph�t−t��

� ��− c�t� − ti�	 , �18�


�E�
E��th�t� = 2c�F1
���2�

ti

t

dt�dt�e−��F1
+�F2

��2t−t�−t��e−�ph�t�−t��

� ��− c�t� − ti�	��− c�t� − ti�	 , �19�

where

�ph�t� = �
0

�

d�
J���
�2 sin2��

2
t��4n̄� + 2�

+ i�
0

�

d�
J���
�2 �sin��t� − �t	

with
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J��� = �
j

� j
2��� − � j� �20�

and

n̄� = �exp���/kT� − 1	−1.

Equations �18� and �19� show that the effect of relaxation is
described by the product of two exponential functions. One
has the exponent linear to time, the other depends on the
property of the spectral density J���. While the t-linear ex-
ponent originates from radiative decay, the exponent with the
spectral density originates from exciton-phonon interaction.

It should be noted that the time evolution of the longitu-
dinal component 
�E�
E��th�t� is quite different from the
transversal component 
�̂−�th�t� due to the exciton-phonon
interaction. If the exciton-phonon interaction is negligible,
the square of the transversal component is identical with the
longitudinal component. The effects of the exciton-phonon
interaction on these two components depends on the input
pulse duration, temperature, and the formulation of J���, so-
called spectral density. The details are discussed in the next
section.

In the present approach, the exciton-phonon interaction
has been introduced and simplified from the independent bo-
son model.13 The pure-dephasing term �ph�t� itself can be
obtained also by a semiclassical approach5,6 with the inde-
pendent boson model. In fact, this term became the same as
the formulation of Refs. 5 and 6 for a deltalike light pulse
input. However, since spontaneous emission due to the
vacuum fluctuation of light field has not been treated in the
semiclassical approach,5,6 our full-quantum mechanical
analysis is necessary to obtain the knowledge on the quan-
tum coherence of the exciton-photon density matrix and to
analyze for atom-photon interfaces.

IV. ANALYSIS OF THE EFFECTS OF EXCITON
DEPHASING

The results obtained so far are independent of a particular
form of the coupling strength �i. Here we specialize these
quantities in a way relevant for applications to strongly con-
fined quantum dots. In the following analysis, we shall use
GaAs as a model material.

The coupling strength �i between the exciton and bulk
phonons can be written, in general, as

� jq = gjq
e − gjq

h , �21�

where gjq
e/h are the phonon coupling matrix elements for the

electron and hole, respectively.5 The coupling matrix ele-
ments gjq

e/h for the electron and hole separate into two factors;
the first depends on the coupling mechanism, whereas the
second is calculated from the wave functions �e/h�r� of the
electron and hole within the quantum dot potential,

gjq
e/h = Gj

e/h�e/h�q� �22�

with the form factors

�e/h�q� =� d3r��e/h�r��2eiq·r. �23�

The electronic confinement is assumed to be given by a
three-dimensional harmonic-oscillator potential �spherical
dots� resulting in ground-state wave functions for electrons
and hole given by

�e/h�r� =
1

�3/4le/h
3/2 exp�−

r2

2le/h
2 � , �24�

where le and lh are the localization lengths of electrons and
holes, respectively. According to Eq. �23�, the corresponding
form factors read

�e/h�q� = exp�−
q2le/h

2

4
� . �25�

We take Gj
e/h as the bulk coupling matrix element by as-

suming that the lattice properties of the dot do not differ
significantly from those of the environment. There are three
different effective carrier-phonon coupling mechanisms: the
polar optical coupling to LO phonons

GLO,q
e/h =

1

q
�e2�LO�q�

2�0�V
� 1

��

−
1

�s
� , �26�

where q= �q�, �� and �s are the high frequency and static
limits of the dielectric constant, and �LO�q� is the optical
phonon dispersion, deformation potential coupling to LA
phonons

GD,q
e/h =

qDLA
e/h

�2V���LA�q�
, �27�

where � is the density of the material, �LA�q� is the acoustic-
phonon dispersion and DLA

e/h is the deformation potential con-
stant, and the piezoelectric coupling to LA and TA phonons

GP,LA/TA
e/h =

iMLA/TA�q̂�
�2V���LA/TA�q�

, �28�

where q̂ is the unit vector in the direction of q, and
MLA/TA�q̂� is the piezoelectric coupling constant.

The coupling constants GLO,q
e/h and GP,LA/TA

e/h have the same
value for electrons and holes, respectively. The large
electron-hole overlap like le / lh�1 therefore strongly reduces
the optical coupling strength �LO,q and the piezoelectric cou-
pling strength �P,q, and then the deformation coupling
strength becomes dominant. Such a large electron-hole over-
lap can be achieved by a deep energy potential barrier con-
finement of electron-hole in a spatial region much smaller
than Bohr radius. Actually, for a GaAs quantum dot with the
ratio lh / le=0.87, it has been found in Ref. 6 that the defor-
mation potential coupling to LA phonons is dominant. For
simplicity, we thus set le= lh= l. As the result, the total spec-
tral density J��� given by Eq. �20� is given only by the
deformation potential as
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JD��� =
�3

4�2��u5 exp�−
�2�2

�l
2 ��DLA

h − DLA
e �2, �29�

where u is the velocity of sound, and �l is equal to 2�u / l
�Ref. 14�. The pure-dephasing term �ph�t� due to mul-
tiphonon modes is described as follows:

�ph
M �t� = �

0

�

d�
JD���
2�2 �1 − cos��t�	�4n̄� + 2�

+ i�
0

�

d�
JD���

�2 �sin��t� − �t	 . �30�

To understand the qualitative property of the pure-dephasing
term �ph

M �t�, we have examined the time evolution. Figures
3�a� and 3�b� show the time evolution of the pure-dephasing
term �ph

M �t� at the temperatures 0.4 K �the dotted line�, 4 K
�the broken line�, and 40 K �the solid line�. As shown in Fig.
3�a�, the real part of the pure-dephasing term increases in the

first 2.5 ps, and reaches a constant value �0
�d�

JD���

2�2 �4n̄�+2�.
The contribution of cos �t in Eq. �30� is only significant in
t�2� /�c, where �c is a cutoff frequency of the function
JD���

2�2 �4n̄�+2�. As shown in Fig. 3�c�, the cutoff frequency is
around 2.4�1012 rad/s, that is, t�2.5 ps. The cutoff fre-
quency results mainly from the Gaussian function
exp�− �2�2

�l
2 � of the spectral density of electron-hole interaction

JD���. This Gaussian function relates to the spatial distribu-
tion of the electron and hole through �l=2�u / le,h. Only the
phonons with the wavelength larger than the localization
length le,h can contribute to the electron-phonon interaction
efficiently.

The imaginary part of the pure dephasing term Im��ph
M �t�	

is composed of two components: one has a sine function, the
other has a term linear to time t. Figure 3�b� shows the
imaginary part of the pure-dephasing term. Even at 1 ps, the
earliest time we considered, the component with the sine
function is much smaller than the component linear to time t.
The imaginary part of the pure-dephasing term can therefore

be approximated by Im��ph
M �t�	�−�0

�d�
JD���

�2 �t.
We have investigated the effect of the exciton-phonon in-

teraction on the transversal and longitudinal components of
the exciton, which determine the efficiency of quantum in-
formation transfer. The exciton-phonon interaction affects
the time evolution of those components through the pure-
dephasing term �ph

M �t� given by Eq. �30�. Figure 4�a� shows
the time evolution of the transversal component �
�̂−�th�t��
after the irradiation of a weak coherent light pulse. We as-
sumed the input pulse to be a Gaussian function ��t�
=��2/d���exp�−2t2 /d2� with the duration d=1 ps, shorter
than the radiative relaxation rate �F1

=�F2
=1 GHz. The ori-

gin of the time was defined by the arrival time of the peak of
the input pulse at the exciton-cavity system. As seen in the
line for T=40 K, the transversal component shows a rapid
decay due to the exciton-phonon interaction, followed by a
slow decay due to the radiative relaxation. The rapid decay
becomes less significant at lower temperatures �T=0.4 and
4 K�, and provides larger values of the transversal compo-

nent, because of the reduction of the pure-dephasing term as
shown in Fig. 3�a�. The effect of the exciton-phonon interac-
tion, however, remains even at T=0 K, and prevents the
maximal value of the transversal component from reaching
the value where the interaction is neglected.

Figure 4�b� shows the time evolution of the longitudinal
component calculated in the same conditions as the transver-
sal component. The calculation suggests that the effect of the
exciton-phonon interaction is smaller on the longitudinal
component than on the transversal component. The time evo-
lution is almost identical to that neglecting the exciton-
phonon interaction, if the pulse duration is smaller than the
risetime of the pure-dephasing term. The above difference
between the transversal component and the longitudinal
component originates from the different effect of the pure-

FIG. 3. �a� The real part of the corresponding pure dephasing
term �ph

M �t� for temperatures 0.4 K �dotted line�, 4 K �broken line�,
and 40 K �solid line�. Likewise, �b� the imaginary part of the cor-
responding pure-dephasing term �ph

M �t�. �c� The integrand, except
the cosine function, in the real part of �ph

M �t�. All the calculation was
done with the material parameters of GaAs �Ref. 14�. We assumed
the localization length l=5 nm.
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dephasing term. The pure-dephasing term in the transversal
component of Eq. �18� depends on time t explicitly to deter-
mine the relaxation, whereas the one in the longitudinal term
of Eq. �19� is independent of t to affect only the convolu-
tional integral of the photon-field amplitude. These observa-
tions imply that the longitudinal component will not provide
proper information on the coherence of the exciton-photon
system; a long lifetime does not guarantee a long coherence
time.

We then calculated the transversal and longitudinal com-
ponents for the input pulse duration equal to the radiative
recombination time 1/ ��F1

+�F2
�, where the efficient transfer

is expected, as shown in Figs. 5�a� and 5�b�. The other con-
ditions are the same as the cases of Figs. 4�a� and 4�b�. At
increasing temperature, the transversal components decrease
as shown in Fig. 5�a�. The same holds in the longitudinal
components as shown in Fig. 5�b�. We consider the maximal
probability of the excited state: 
�E�
E��th�t� /�2 as the effi-
ciency for quantum information transfer from photon to ex-
citon. As shown in Fig. 5�b�, the maximal probability is 38%
for the condition �F1

=�F2
=1 GHz at temperature 0.4 K.

This probability however can be improved by reducing the
radiative relaxation through the noncavity mode. This reduc-
tion refers to the condition for the radiative relaxation rates:
�F1

��F2
. Figure 5�c� shows the time evolution of the lon-

gitudinal components for the condition �F2
=0. The other

conditions are the same as those for Fig. 5�a�. The maximal
probability, which will be achieved for the input pulse dura-
tion comparable to the radiative relaxation time 1/�F1

, is to
be 75% at temperature 0.4 K, as shown by the dotted line in
Fig. 5�c�.

V. CONCLUSION

We have developed a microscopic theory to analyze the
effects of the pure dephasing due to exciton-phonon interac-

FIG. 4. �a� The time evolution of the transversal components at
temperatures 0.4 K �dots�, 4 K �broken line�, and 40 K �thick line�
after the irradiation of a weak coherent Gaussian input pulse. The
pulse duration was 10−3 /�F2

=1 ps, and the radiative relaxation rate
was �F1

=�F2
=1 GHz. The thin line shows the time evolution

where the pure-dephasing term was equal to zero. �b� The time
evolution of the longitudinal component calculated under the same
conditions as �a�.

FIG. 5. �a� The time evolution of the transversal component at
temperatures 0.4 K �dots�, 4 K �broken line�, and 40 K �thick line�
after the irradiative of a weak coherent Gaussian input pulse. The
pulse duration was equal to 1/ ��F1

+�F2
�=0.5 ns, and the radiative

relaxation rate was �F1
=�F2

=1 GHz. The thin line shows the time
evolution when the pure-dephasing term was equal to zero. �b� The
longitudinal component calculated under the same conditions as �a�.
�c� The longitudinal components for the input pulse duration
1/�F1

=10−9 s and the radiative relaxation rate �F1
=1 GHz;�F2

=0. The other conditions are the same as �b�.
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tion in a single quantum dot on the density matrix of the
exciton based two-level system and the radiative field, for
one-photon input pulses. In the situation that the deformation
potential coupling is dominant, the time evolution of the
transversal, longitudinal components of the exciton based
single two-level system were then analyzed quantitatively for
weak coherent Gaussian input pulses. We found that, for a
GaAs spherical quantum dot in which the exciton interacts
with bulk phonons, the maximal probability of the quantum
information transfer from one-photon to the two-level system
is 38% at temperature 0.4 K. This probability can be in-
creased up to 75% in the condition �F1

��F2
. Since the pure

dephasing term does not become negligible even at tempera-
ture T=0, the maximal probability never reach the probabil-
ity for �ph

M �t�=0. However, if the radiative relaxation rate �F1
is much larger than the pure-dephasing term �ph

M �t� for t
�1/�F1

, the maximal probability could be approximately
identical with the probability for �ph

M �t�=0:80%. Since the
transfer efficiency is limited to 80%, applications of exciton-
photon interfaces to quantum information processing should
consider such restriction. Our method will provide a power-
ful tool to examine the performance of the quantum informa-
tion transfer devices.
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APPENDIX: ON THE DERIVATION OF THE
TRANSVERSAL COMPONENT GIVEN BY EQ. (18)

In the derivation of the transversal component given by
Eq. �18�, we encounter the following term:


�� j
�ei
̂��t−ti�e−i�
̂�+
̂���t−t��e−i
̂��t�−ti���� j
�

= � j
� j�ei�jP̂j
†P̂j�t−ti�e−i��jP̂j

†P̂j+�j�P̂j+Pj
†�	�t−t��

� e−i�jP̂j
†P̂j�t�−ti��� j� . �A1�

This equation can be expanded using the following equation:

e−i��jP̂j
†P̂j+�j�P̂j+Pj

†�	�t−t��

= e−��j/�j��P̂j
†−P̂j�e−i�jP̂j

†P̂j�t−t��e��j/�j��P̂j
†−P̂j�ei��j

2/�j��t−t��

= e−��j/�j�P̂j
†
e��j/�j�P̂je−i�jP̂j

†P̂j�t−t��e��j/�j�P̂j
†
e−��j/�j�P̂je−��j

2/�j
2�

�ei��j
2/�j��t−t�� �A2�

as

=� j
� j�ei�jP̂j
†P̂j�t−ti�e−��j/�j�P̂j

†
e��j/�j�P̂je−i�jP̂j

†P̂j�t−t��e��j/�j�P̂j
†

�e−��j/�j�P̂je−i�jP̂j
†P̂j�t�−ti��� j�e−��j

2/�j
2�ei��j

2/�j��t−t��. �A3�

Using the commutation relations eBP̂jeAP̂j
†P̂j =eAP̂j

†P̂jeBeAP̂j and

eBP̂j
†
eAP̂j

†P̂j =eAP̂j
†P̂jeBe−AP̂j

†
�coefficients A and B are complex

numbers�, Eq. �A3� is formulated as a complex function

=� j
� j�e−��j/�j��e
i� j�t−ti�−ei� j�t�−ti��P̂j

†

� e−��j/�j��e
−i� j�t�−ti�−e−i� j�t−ti��P̂j�� j�

� e−��j
2/�j

2�ei��j
2/�j��t−t��e−��j

2/�j
2�e−i� j�t−t��

= � je
−��j/�j��e

i� j�t−ti�−ei� j�t�−ti���j
*
e−��j/�j��e

−i� j�t�−ti�−e−i� j�t−ti���j

� e−��j
2/�j

2�ei��j
2/�j��t−t��e−��j

2/�j
2�e−i� j�t−t��

. �A4�

We can then obtain the exponential function with the pure-
dephasing term �ph�t� by the convolution of the final result
of �A4� with the thermal distribution P��� j
�.
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