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We investigate the effects of impurities and changing ring geometry on the energetics of quantum rings
under different magnetic field strengths. We show that as the magnetic field and/or the electron number are/is
increased, both the quasiperiodic Aharonov-Bohm oscillations and various magnetic phases become insensitive
to whether the ring is circular or square in shape. This is in qualitative agreement with experiments. However,
we also find that the Aharonov-Bohm oscillation can be greatly phase shifted by only a few impurities and can
be completely obliterated by a high level of impurity density. In the many-electron calculations we use a
recently developed fourth-order imaginary time projection algorithm that can exactly compute the density
matrix of a free electron in a uniform magnetic field.
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I. INTRODUCTION

The possibilities of utilizing the Aharonov-Bohm �AB�
effect in future nanotechnology has stimulated significant re-
cent progress in fabricating nanoscopic quantum rings.1–3

Since the capabilities to control the electron number in the
ring and to modify its geometry are essential for observing
and exploiting new phenomena, systems with these capabili-
ties have attracted much theoretical interest.

Lorke and co-workers1 have applied self-assembly tech-
niques to create InGaAs and GaAlAs/GaAs rings con-
taining only a few electrons. The weak electron-electron
interaction in these rings makes them most suitable for opti-
cal experiments, and the observed state transitions can be
well explained with the single-electron spectrum of a para-
bolic ring.4 On the other hand, Keyser and co-workers3

have reached the strongly correlated regime by omitting
the screening gate on top of a few-electron quantum ring
fabricated from a GaAs/AlGaAs heterostructure. They were
able to observe fractional AB oscillations with a period of
�0 /N, where �0=h /e is the flux quantum and N is the
electron number. Exact diagonalization of a few-electron
Hamiltonian5 has shown that the electron-electron interac-
tions break the degeneracy between the singlet and triplet
states, leading to fractional oscillations. Similar results have
been obtained within the Heisenberg model6 and also by re-
cent Monte Carlo calculations.7 Both have clarified the role
of the electron localization in the fractional AB effect. The
role of the �two-dimensional� width of the ring is, however,
still unclear in the strong-interaction limit.

From magnetotransport experiments in the Coulomb
blockade regime one can infer the discrete energy levels of a
quantum ring.2 Moreover, these measurements have been
performed for both circular and square ring-geometries; the
latter corresponds to a chaotic Sinai billiard,8 i.e., a circular
antidot at the center of a square quantum dot. In such a
symmetry-broken quantum ring, the increasing magnetic
field induces regularity in the amplitude and position of the
Coulomb peaks. These dots have been estimated to contain

hundreds of electrons. The interactions were screened by a
top gate, hence the simple single-electron picture provides a
sufficient description of the spectrum.2

We examine in this paper the energetics of circular,
square-shaped, and impurity-doped two-dimensional �2D�
quantum rings containing up to N�20 strongly interacting
electrons. We shall focus on the measurable quantities such
as the chemical potentials, addition energies, and the magne-
tization. We will identify the quasiperiodic AB oscillations as
well as different magnetic phases, and find, in agreement
with the experiments,2 that these become very similar be-
tween circular and square rings at large N and in high mag-
netic fields. In these phases we find similarities to integer and
fractional quantum Hall states of quantum dots.9,10 We also
carry out a statistical analysis of the addition energies for
quantum rings containing randomly distributed Coulombic
impurities. Increasing the number of impurities leads to a
systematic phase shift in the AB oscillations. As a result of
the electron-electron interactions, the high-disorder limit is
characterized by a Gaussian-type addition energy distribu-
tion. This shape indicates the disappearance of the AB oscil-
lations.

In this work, we solve the many-electron problem in a
strong, uniform magnetic field by use of the spin-density-
functional theory �SDFT�. To solve the Kohn-Sham �KS�
equations for thousands of impurity configurations, we use
our recently developed fourth-order projection algorithm11 to
determine the occupied KS orbitals. This algorithm is highly
efficient, since the number of fast Fourier transforms used for
solving the KS spectrum remains the same even in the pres-
ence of a magnetic field. This is because at its core, our
algorithm is capable of exactly computing the density matrix
of a free electron in an arbitrarily strong magnetic field. Thus
unlike other methods of solving the Schrödinger equation,
the magnetic field part of the physics is hard wired into our
algorithm. Also, instead of the usual slow-convergent,
charge-mixing iterations, we update the charge densities by
our linear-response algorithm12 with accelerated Newton-
Raphson convergence. These significant algorithmic ad-
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vances are not based on incremental improvement of numeri-
cal methods, but in attuning to the fundamental physics of
the problem. The details of the algorithms are presented in
the Appendix.

II. QUANTUM-RING MODEL

We focus on quantum rings realized in semiconductor het-
erostructures, which can be modeled by localizing electrons
to a 2D �xy� plane. We use the effective-mass approximation
with GaAs parameters, i.e., the effective electron mass m*

=0.067me and the dielectric constant �=12.7. The many-
electron Hamiltonian is written in SI units as

H =
1

2m*�
i=1

N

�− i � �i + eA�ri��2 + �
i�j

N
e2

4��0��ri − r j�

+ �
i=1

N

�Vext�ri,�i� + Vimp�ri� + g*�BBsz,i� . �1�

The magnetic field B=Bẑ is chosen perpendicular to the xy
plane, the vector potential is then, in linear gauge, A=
−Byex. The last term is the Zeeman energy that couples the
external magnetic field with the electron spin. Here g*=
−0.44 is the effective gyromagnetic ratio, �B=e� /2me is the
Bohr magneton, and sz= ± 1

2 for the up and down spins, re-
spectively. The spin-orbit interaction is expected to be neg-
ligible in the GaAs structure having a wide band gap, it is
therefore ignored in the Hamiltonian. The external potential
that confines the electrons and defines the geometry of the
quantum ring is chosen, in polar coordinates, to be

Vext�r,�� = 1
2m*	0

2r2�1 + 
 cos�p��� + V0e−r2/d2
, �2�

where �	0=5 meV is the confinement strength, and the co-
sine term defines the confinement geometry. We apply a cir-
cular and square shape determined by 
=0 and �
 , p�
= �0.2,4�, respectively.13 The Gaussian term in Eq. �2� de-
fines an antidot at the center, thus producing a ringlike shape
of our system. We set V0=200 meV and the width parameter
d=10 nm, which is a sufficient value for two dimensionality.
The shapes of the total external potentials for the both geom-
etries are shown in Fig. 1.

Within the circular ring geometry �
=0�, we also apply
an impurity potential describing repulsive Coulombic impu-
rities located randomly in the vicinity of the quantum-ring
system. It is written as

Vimp�r� = �
k=1

Nimp − e

4��0���r − Rk�2 + dk
2

, �3�

where Nimp is the number of impurities, and Rk and dk are
their random lateral and vertical positions in the ranges of
0�Rk�100 nm and 0�dk�10 nm, respectively. This
model, motivated by single-electron tunneling experiments,14

has been applied recently in statistical studies on quantum
dots.15,16 Similarly to those studies, for each Nimp=5, . . . ,30
we apply 1000 spatial configurations in order to obtain good
statistics.

III. SINGLE-ELECTRON SPECTRA

In order to obtain insight into the energy-level structure in
the quantum rings studied, we first computed the single-
electron spectra of a system of noninteracting electrons as a
function of the magnetic-field strength. Figure 2 shows the
eigenenergies �i for a circular �a� and square �b� quantum
ring with up to i�25 and B=10 T. The spectrum of our
circular ring is similar to the one obtained using a pure para-
bolic 2D ring model.4 Due to the finite ring width, the second
Fock-Darwin level and the beginning of the third one can be
seen in the spectrum. Increasing the width by making d
smaller brings the upper Landau levels lower in energy.

FIG. 1. Shapes of the external confinement potentials determin-
ing circular and square quantum rings with 
=0 and 0.2 in Eq. �2�,
respectively.

FIG. 2. Single-electron spectra in circular �a� and square �b�
quantum rings as a function of the magnetic field. The Zeeman
splitting is omitted.
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In the spectrum of a square ring shown in Fig. 2�b�, the
four lowest energy levels are decoupled from the upper lev-
els and form a braidlike structure as a function of the mag-
netic field. Similar decoupling can be observed for the next
four levels at low fields. This behavior results from the four-
fold symmetry of the square confining potential. The prob-
ability densities of the lowest eigenstates show that the four
lowest levels correspond to energetically stable corner
modes. The next four levels in the lower row, instead, corre-
spond to the side modes. Valín-Rodríquez and co-workers13

have analyzed modes of this type in their far-infrared-
absorption studies on triangular and square quantum dots.

In addition to the decoupled single-electron levels, there
are several other avoided level crossings in the spectrum of a
square ring, particularly at low magnetic fields. The level
repulsion in quantum dots is usually interpreted as a signa-
ture of quantum chaos.8 Contrary to the square quantum
dot,17 our square-ring system is nonintegrable also at zero
magnetic field. A similar system having steep walls �Sinai
billiard� is a famous example of a chaotic system, which has
been extensively studied in the context of both classical and
quantum billiards.8 In Fig. 2�b� it can be seen that the num-
ber of avoided crossings decreases at high magnetic fields
because the electron orbitals shrink due to the increasing
magnetic confinement. However, the system remains chaotic,
again in contrast with a square quantum dot which becomes
integrable at B→�.

The presence of external impurities �see Eq. �3�� lead to
irregular deviations in the single-electron energy levels. In
Fig. 3 we plot distributions �gray scale� of single-electron
level spacings at B=10 T calculated from 1000 random im-
purity configurations for Nimp=5 and 30, respectively. The
level spacings correspond to the addition energies of nonin-
teracting electrons defined as 
0�N�=�N/2+1−�N/2. In the case
of five impurities the distributions are approximately peaked
around the level spacings of the clean quantum ring �cf. Fig.
2 at B=10 T�. However, when N=14 ��8−�7�, for example,
there are two maxima in the distribution as seen in the upper
panel of Fig. 3. These result from the fact that while these

two states are nearly degenerate at that field, they have a
different slope with respect to B. Hence, in strongly disor-
dered configurations the level splitting is considerably larger
than in the approximately clean cases, leading to a two-peak
structure. When the number of impurities is increased to 30
�lower panel in Fig. 2�, the signatures of the shell structure
clearly disappear. On a coarse scale, the distributions re-
semble Wigner-Dyson forms indicating a disordered system.
However, the distributions show fine structure resulting from
the correlation between consecutive energy levels in the
presence of a high number of impurities.

IV. MANY-ELECTRON PROPERTIES

A. Circular and square geometries

For the corresponding many-electron problem we apply
the SDFT. Using the numerical scheme outlined in the Ap-
pendix, we have calculated the total energies of different spin
states for N=1, . . . ,17 and for each magnetic-field strength
up to 10 T in steps of 0.2 T. The ground state for each N is
then defined as the spin state having the lowest energy E�N�.
Figure 4 shows the chemical potentials ��N�=E�N�−E�N
−1� for N=10, . . . ,17 in circular �upper blue lines� and
square �lower red lines� quantum rings. We omit the low
electron numbers in Fig. 4 to display the differences between
two rings more clearly. The transitions in the ground-state
spins are marked in Fig. 4 such that the filled circles denote
an increase S→S+1, and the open circles mark a decrease
S→S−1. The crosses mark an increase of S→S+2. The
rightmost points correspond to full spin polarization. The
chemical potentials for N=10,11 and 12 in circular ring
agree with those of Emperador and co-workers.18 The trend

FIG. 3. Level-spacing distributions of noninteracting electrons
at B=10 T in impurity-affected quantum rings. The level spacings
are calculated from 1000 random impurity configurations for 5 �up-
per panel� and 30 impurities �lower panel�.

FIG. 4. �Color online� Chemical potentials for N=10, . . . ,17 in
circular �upper blue lines� and square �lower red lines� quantum
rings. The filled circles, open circles, and crosses correspond to the
spin changes S→S+1, S→S−1, and S→S+2, respectively.
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of pairing between peaks for consecutive values of N, as well
as quasiperiodic oscillations analyzed in Ref. 18, are found
to continue up to higher electron numbers. We see the pre-
dicted violations in the pairing, e.g., at B�1 and 2.2 T when
N=11–12. These are explained by Hund’s rule, causing par-
tial spin polarization near the level crossings in the corre-
sponding single-electron spectrum �see Fig. 2�.

As seen in Fig. 4, the evolution of ��N� as a function of B
is qualitatively similar in circular and square rings, although
the oscillations at low fields are considerably stronger in the
circular case. This difference is due to the level repulsion of
the square-shaped ring that leads to smoother behavior of the
total energies. The tendency of the symmetry-breaking to
even out the oscillations has been detected also in quantum
dots containing external impurities.14,19 The square ring
shows also increased stability as a small increase in ��N�
when N=4 or 8 �not plotted in Fig. 4�. This effect is pre-
sented and discussed in detail in connection with the addition
energies below.

The chemical potentials could be directly compared to
Coulomb blockade oscillations of transport measurements,
but we are not aware of such experiments for quantum rings.
In the quantum dots, however, a remarkably good agreement
has been obtained between the experimental result of the
Coulomb blockade oscillations9 and SDFT calculations.10

Next we consider the second energy differences, i.e., the
addition energies defined as 
�N�=��N+1�−��N�=E�N
−1�−2E�N�+E�N+1�. Besides chemical potentials, they are
also measurable quantities,2 and give a more detailed view
on the energetic structure of quantum rings. Figure 5 shows
the full phase diagram of 
�N� as a function of B and N for
a circular �a� and square �b� ring. The light and dark regions
correspond to low and high addition energies, respectively.
The open and filled circles mark the first and final full spin
polarizations, and the dashed lines are to guide the eye. The
characteristic energy oscillations are evident in both geom-
etries. The structure of the oscillations, however, shows in-
teresting differences. In the circular case there are three eas-
ily distinguished phases: �i� strong oscillations at low B that
mostly correspond to spin changes 0→1→0 following
Hund’s rule; �ii� spin-flip region at intermediate B that be-
comes broader as N increases; and �iii� a polarized regime in
high magnetic fields on the right-hand side of the dashed
line�s�, characterized by large-width oscillations of a period

���0 �the flux �=BA, where A is the estimated ring
area�. A similar division can be found in the addition ener-
gies of a square ring �Fig. 5�b��. However, the effect of the
fourfold asymmetry is clear in the pronounced stability of the
four-electron ring. It results from the decoupling of the low-
est single-electron levels shown in Fig. 2. The stability is
strongest after the polarization at B�3, . . . ,4 T, since then
all the four separated levels are �singly� occupied. Likewise,
the eight-electron ring is particularly stable at low fields
when S=0.

The addition energies in high magnetic fields are very
similar between the circular and square rings, particularly
when N is large. This result agrees qualitatively with the
experimental observation of Fuhrer and co-workers.2 It can
be explained by the fact that the magnetic confinement has a

parabolic shape. Furthermore, the electron-electron interac-
tions make the square ring effectively more symmetric.14 In
the onset of the full spin polarization there are two differ-
ences. First, the square ring has a kink at N=4 due to its
specific energy spectrum discussed in Sec. III. Second, there
are many depolarizations in the square ring when N
=6, . . . ,13, occurring between the first and second full spin
polarizations marked as open and solid circles in Fig. 5, re-
spectively. However, this effect is relatively faint and its
emergence is very sensitive to the ring parameters. For ex-
ample, depolarization can be obtained in the circular ring at
N=8, . . . ,11 if the Zeeman energy in Eq. �1� is slightly re-
duced.

The different magnetic phases discussed above can be
characterized in detail from the magnetization curves for
large electron numbers. The magnetization is defined as the
derivative of the free energy with respect to the magnetic
field and reduces in zero temperature to M =−�Etot /�B. In
Fig. 6 we plot the magnetization of a 24-electron circular
quantum ring as a function of the magnetic field strength B.
In the two steps marked in the figure as �i� and �ii�, the
ground-state spin is zero and the �doubly� filled angular-
momentum states are 	lz
=0,−1, . . . ,−11 and −1,−2, . . . ,
−12, respectively. They are calculated as the expectation val-

ues of the angular momentum operator l̂z=−i� �x�� /�y�

FIG. 5. �Color online� Addition energies �light shade �yellow�,
low; black, high� as a function of the magnetic field and up to 16
electrons in circular �a� and square �b� quantum rings. The open and
filled circles mark the first and final full spin polarizations, respec-
tively. The dashed lines are plotted to guide the eye.
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−y�� /�x�� for different KS states. The first occupation �i�
from 	lz
=0 to −�N /2−1� directly corresponds to a quantum
Hall state20 with a filling factor �=2. In the spin-flip region
at B�5, . . . ,10 T the spin polarization of the ring gradually
increases and the magnetization is characterized by short-
period oscillations. In the first fully polarized �S=12� state
the occupation is 	lz
=−2,−3, . . . ,−25. After that the oscilla-
tions become regular such that each step corresponds to an
increase of 24 in the total angular momentum �Lz � =�i � 	lz

i
�,
as the electrons jump from 	lz

i
 to 	lz
i
−1. Consequently, the

hole in the electron density at the center of the ring increases,
and there are no signs of edge reconstruction, which con-
firms the result of Emperador and co-workers.21

The behavior in the electron occupations and magnetiza-
tion as a function of B is similar to that of a quantum-dot
system.10 The most obvious difference is that the �=1 state
with an occupation from 	lz
=0 to −�N−1� is not found in
quantum rings. This state, i.e., the maximum-density
droplet,22 is particularly stable in quantum dots and has been
observed experimentally.9 However, we expect that in quan-
tum rings the signatures of the �=2 state and spin flips, as
well as the regular oscillations in the polarized ���1� re-
gime could be observed in magnetization experiments using,
for example, sensitive micromechanical magnetometers.23

B. Impurity effects

Finally we analyze the effect of impurities on the addition
energies in a many-electron system. The applied impurity
model is defined in Eq. �3�. For simplicity, we focus here on
the fully spin-polarized regime where the addition-energy os-
cillations in corresponding impurity-free quantum rings �see
Fig. 5� are regular. Figure 7 shows the addition-energy dis-
tributions of a 12-electron quantum ring at B=10 T. For each
number of impurities we have calculated the electronic struc-
ture and energetics for 1000 random impurity configurations.
We find that the distribution for Nimp=5 shows a clear two-
peak structure. This is due to the fact that in this case the
rings can be roughly divided into relatively disordered and
clean ones depending on the actual location of the impurities.

These two types of rings have then different radii on the
average, which eventually leads to a phase shift in the AB
oscillations as a function of the magnetic field.

As the number of impurities is increased, the two peaks
gradually merge and finally at Nimp=30, corresponding to an
impurity density of �10−3 nm−1, we find a Gaussian-type
symmetric distribution shown in Fig. 7�d�. The symmetric
shape is a result of the electron-electron interactions that
even out the tilted shape and irregularities found in the level-
spacing distributions �noninteracting electrons� shown in Fig.
3. The Gaussian shape is qualitatively similar to what has
been found in disordered quantum dots both
experimentally24,25 and theoretically using Hartree-Fock26

and density-functional methods.16,27,28 In addition, modifica-
tions to the random matrix theory that take the interactions
into account have led to a good agreement between the ex-
periments and the theory,29 whereas the bare random matrix
theory yields the Wigner-Dyson distribution. Hence, we ex-
pect that the distribution shown in Fig. 7�d� for quantum
rings corresponds to the limit of disorder which ultimately
indicates the disappearance of the AB oscillations. Following
the analogy to quantum-dot systems,28 we expect that a
Gaussian-type distribution could be obtained in conductance
experiments for large �N�100� quantum rings. In that case
the addition-energy statistics would be determined as a func-
tion of N.

V. SUMMARY

We have used efficient computational algorithms for solv-
ing the Kohn-Sham equations of spin-density-functional
theory to examine the effects of geometric deviations on the
ground-state properties of two-dimensional quantum rings in
magnetic fields. Due to the circular shape of the magnetic

FIG. 6. Magnetization of a 24-electron circular quantum ring.
Different magnetic phases characteristic of finite Fermion systems
are marked in the figure.

FIG. 7. Addition-energy distributions of a 12-electron quantum
ring having 5 �a�, 10 �b�, 20 �c�, and 30 �d� impurities. The magnetic
field is set to B=10 T corresponding to the fully polarized regime.
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confinement, increasing magnetic field evens out the varia-
tions between the energetics of quantum rings of different
geometries. The measurable quantities in both systems can
be characterized by quasiperiodic oscillations, of which we
have been able to identify the quantum-ring counterparts of
the integer quantum-Hall states. However, the Aharonov-
Bohm oscillations at high fields are very sensitive to the
presence of external impurities which may produce a system-
atic phase shift. In the high-impurity �disorder� limit the
electron-electron interactions make the addition-energy dis-
tributions Gaussian type. This behavior, indicating the disap-
pearance of the oscillations, is similar to what has been
found in quantum dots.
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APPENDIX: NUMERICAL SCHEME

Our numerical procedure for solving the electronic prop-
erties of the system within the SDFT consists of two parts,
namely, the solution of an effective Schrödinger equation
�the Kohn-Sham �KS� equation� and the self-consistent de-
termination of the spin densities. The KS equation in a mag-
netic field is

� 1

2m� �− i � � + eA�r��2 + VKS�r���i
��r� = �i�i

��r� ,

�A1�

where the KS potential VKS�r� is a sum of the external
potential defined above, the Hartree potential, and
the exchange-correlation potential given as Vxc�r�
=�Exc�� ,�� /����r�. Here �� are the electron spin densities,
� denotes the spin index, and ��r�= ��↑�r�−�↓�r�� /��r� is the
local spin polarization. For Exc we use the local spin-density
approximation with the functional provided by Attaccalite
and co-workers.30

The lowest n solutions of the eigenvalue problem �A1� are
obtained by applying the evolution operator,

T��� 
 e−�H �A2�

repeatedly to a set of states �� j , 1� j�n�, and orthogonal-
izing the states after every step. Instead of the commonly
used second-order factorization in combination with the
Gram-Schmidt orthogonalization, we use the fourth-order
factorization for the evolution operator given by31,32

T�4���� = e−�1/6��Ve−�1/2��Te−�2/3��Ṽe−�1/2��Te−�1/6��V + O��5� ,

�A3�

where

T =
1

2m��2 

1

2m� ��x
2 + �y

2�, � = p + eA�r� �A4�

is the kinetic-energy operator. We have defined the local
modified potential31,32 as

Ṽ = V + 1
48�2�V,�T,V�� . �A5�

Note that the vector potential A�r� does not contribute to the
commutator.

We have shown in Ref. 11 that the density matrix e−�T can
be exactly decomposed for a uniform magnetic field as

e−��/2m����x
2+�y

2� = e−��/2m��CE����x
2
e−��/2m��CM����y

2

� e−��/2m��CE����x
2
, �A6�

where �=��eB /m*, and

CE��� =
cosh��� − 1

� sinh���
and CM��� =

sinh���
�

. �A7�

The exact factorization shown in Eq. �A6� is possible be-
cause the Hamiltonian of an electron in a uniform magnetic
field is quadratic, and higher-order commutators of �x

2 and
�y

2 are either zero or simply proportional to �x
2 and �y

2. The
two key commutators are

��i
2,�� j

2,�i
2�� = 8�2e2B2�i

2. �A8�

Hence, all higher order commutators appearing in the Baker-
Campbell-Hausdorff formula can be summed back to the
original operators �x

2 and �y
2.

The above result can be easily generalized to a charged
particle in a uniform magnetic field in an arbitrary external
potential: Inserting the exact factorization �A6� into the fac-
torization �A3� of the full Hamiltonian yields the final result

T�4���� = e−�1/6��Ve−��/4m��CE��/2��x
2
e−��/4m��CM��/2��y

2

� e−��/4m��CE��/2��x
2
e−�2/3��Ṽe−��/4m��CE��/2��x

2

� e−��/4m��CM��/2��y
2
e−��/4m��CE��/2��x

2
e−�1/6��V + O��5� .

�A9�

In Ref. 11 we have shown that this algorithm is, depending
on the system and the desired accuracy, a factor of 10 to 100
more efficient than the second order factorization. There, we
have worked in circular gauge, here we point out that the
method becomes even more efficient in linear gauge. The
algorithm is then applied as follows:

�1� Start with a set of suitably chosen initial states in
the coordinate space.

�2� Multiply these states by e−�1/6��V.
�3� Fourier transform the x coordinate of each state to

the kx space and multiply by e−��/4m��CE��/2��kx+eBy�2
.

�4� Fourier transform now y to the ky space, and mul-

tiply by e−��/4m��CM��/2�ky
2
.
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�5� Do the inverse transformation back to y and mul-
tiply by e−��/4m��CE��/2��kx+eBy�2

.
�6� Fourier transform kx back to the x-space and mul-

tiply by e−�2/3��Ṽ. Then repeat the steps �3�–�5� and finally
multiply the states by e−�1/6��V.

�7� Orthonormalize the states and repeat the procedure
until convergence has been obtained.

Thus, the implementation of the algorithm requires the
equivalent of two 2D Fourier transforms. In other words it is
computationally no more costly than the case without a mag-
netic field. For the orthonormalization, we diagonalize the
matrix of the overlap integrals and from these we construct a
new set of orthonormal states.

A persistent problem of density-functional calculations is
that the naïve charge density mixing iteration scheme, usu-
ally require a large number of iterations for convergence. We
overcome this problem by using a method12 which solves for
��r� directly by applying a Newton-Raphson procedure is
used. We define


���r� = �
h

n��h���h
����↑,�↓��r��2 − ���r� �A10�

as the density difference between two self-consistent itera-
tions. Here n� is the occupation factor, �h

� are the orthogo-
nalized solutions of Eq. �A1�, and ���r� is the density used
for the calculation of VKS. The sum goes over all occupied
�hole, h� states. Then the density correction ����r� is deter-
mined by a linear equation


���r� = �
��
� ddr���,���r,r�;0������r�� . �A11�

Here d is the dimension of the system and ��,�� is the static
dielectric function of a non-uniform electron gas.33 It con-
tains the zero-frequency Lindhard function and the particle-

hole potential Vp-h
�,���r ,r��=�VKS

� �r� /�����r��. To avoid the
calculation of unoccupied �particle, p� states we seek for an
approximation for the static response function that only
needs the calculation of occupied states. For the purpose of
such an algorithm, we recall that linear response theory can
be derived34 from an action principle for excitations of the

form ���t�
=exp��phcph�t�ap
†ah� ��0
, where ��0
 is the

ground state, and cph�t� are particle-hole amplitudes. If we
assume that the particle-hole amplitudes are matrix elements
of a local function 	��r�, i.e., cph�t�= 	p �	��r , t� �h
 we end
up with Feynman’s theory of collective excitations.35 Using
the commutator of the kinetic part of the effective
Schrödinger equation with 	�,

1

2
��2,	�� =

1

2
����,	�� + ��,	����

= −
i

2
����	�� + ��	���� , �A12�

the magnetic part completely cancels out because it is local.
Thus, applying the response algorithm in a magnetic field
also applies no computational overhead compared to the
zero-field case. In the “collective approximation” we can re-
write Eq. �A11� as12

�−
1

2
� · ����r� � � + 2�

��

SF
� � Vp-h

�,�� � SF
�� � �w��

= 2�
��

SF
� � Vp-h

�,�� � 
���, �A13�

where now

����r� = 
���r� − SF
��r,r�� � w��r�� ,

and

SF
��r,r�� = ���r���r − r�� −

1

2��h
�h

���r��h
��r���2

,

�A14�

is the static structure function of the noninteracting system.
Above, the asterisk stands for the convolution integral. With
these manipulations, we have rewritten the response-iteration
equation in a form that requires only the calculation of the
occupied states. Since the multiplication on the left-hand side
of Eq. �A13� requires only vector-vector operations, the
equation can be solved either directly or with iterative meth-
ods like the conjugate-gradient method or multigrid
methods.36
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