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A procedure based on the recently developed “adaptive” time-dependent density-matrix-renormalization-
group (DMRG) technique is presented to calculate the zero temperature conductance of nanostructures, such as
quantum dots (QDs) or molecular conductors, when represented by a small number of active levels. The leads
are modeled using noninteracting tight-binding Hamiltonians. The ground state at time zero is calculated at
zero bias. Then, a small bias is applied between the two leads, the wave function is DMRG evolved in time,
and currents are measured as a function of time. Typically, the current is expected to present periodicities over
long times, involving intermediate well-defined plateaus that resemble steady states. The conductance can be
obtained from those steady-state-like currents. To test this approach, several cases of interacting and noninter-
acting systems have been studied. Our results show excellent agreement with exact results in the noninteracting
case. More importantly, the technique also reproduces quantitatively well-established results for the conduc-
tance and local density of states in both the cases of one and two coupled interacting QDs. The technique also

works at finite bias voltages, and it can be extended to include interactions in the leads.
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I. INTRODUCTION

The rapidly developing investigations in the area of
nanometer-scale systems and its concomitant potential tech-
nological applications in real devices have induced consider-
able interest in the study of electrical transport through small
molecules and quantum dots. In fact, the construction of mo-
lecular electronic devices'? is among the most exciting areas
of investigation in physics, and theoretical guidance is
needed for the success of this vast effort. Molecules can
change their shape and position relative to the leads as elec-
trons enter or leave the molecule, making the study of these
systems very challenging. Moreover, Coulomb correlations
cannot be neglected in small devices. For a conceptual un-
derstanding of these complex systems, it is imperative to
develop models and unbiased many-body methods that rely
on a minimal number of assumptions in order to accurately
handle both strong Coulombic and electron-phonon cou-
plings. Quantum dots (QDs) constructed using conventional
semiconductor technology also provide an important play-
ground for the analysis of transport properties in nanoscopic
systems, and the theoretical challenges in this context are
equally important.>

The conductance of small nanoscopic systems can be
theoretically estimated using a variety of techniques. Among
the most popular approaches are the ab initio calculations
using density functional theory (DFT). These one-electron
self-consistent methods have been successful in describing
various I-V characteristics.*- However, the applicability of
these ideas must be carefully scrutinized, as recently re-
marked by Muralidharan et al.” For example, it is clear that
in small molecules charging effects are important, and they
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effectively act as quantum dots in the Coulomb blockade
regime. Moreover, techniques that do not take into account
the strong correlation between electrons cannot capture im-
portant effects, such as the Kondo resonance (arising from
the coupling between localized spins and conduction elec-
trons), which induces a new channel for transport in a variety
of small systems.&9 In addition, it is well known that several
bulk materials, such as transition metal oxides, cannot be
described with ab initio methods that neglect correlations.
The complexity of their behavior, including potentially use-
ful effects such as large magnetoresistances in Mn oxides, '°
may manifest in nanoscopic systems as well, and the use of
strongly correlated materials in nanodevices may lead to in-
teresting applications. To study all these systems (small mol-
ecules, quantum dots, and, in general, nanodevices that in-
clude strongly correlated materials), techniques beyond DFT
must be developed.

A similar challenge occurred before in the study of bulk
materials and several years of research have shown that the
following two-step process leads to profound insights. The
first step consists of a simple modeling of the material, typi-
cally either deducing the relevant degrees of freedom from
atomistic considerations when the states are very localized or
borrowing from band structure calculations to isolate the
minimal ingredients needed to capture the essence of the
problem. The second step, the hardest, is solving the result-
ing model, which is typically of a tight-binding nature with
the addition of Coulombic and phononic couplings. In the
strong coupling regime, the use of numerical techniques pro-
vides the most reliable unbiased approach for the approxi-
mate investigation of tight-binding-like models with Cou-
lombic interactions.!! As a consequence, a natural path
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FIG. 1. (Color online) Schematic representation of the geometry
used in our study. The leads are modeled by tight-binding Hamil-
tonians. The ground state at time zero is calculated at zero bias.
Then, a finite bias AV is applied between the two leads (without
ramping time for simplicity, but this can be changed in future stud-
ies) and the resulting current is measured.

toward the study of transport in strongly correlated nano-
scopic systems can also start with simple models and use
computational techniques for their analysis. It is the main
purpose of this paper to propose a technique that can be used
to study transport in systems described by strongly correlated
electronic models.

The method to calculate conductances proposed here re-
lies on the successful density-matrix-renormalization-group
(DMRG) technique.'>!3 Although, in principle, this method
is applicable only to quasi-one-dimensional models, such a
geometry is quite acceptable in several nanoscopic important
problems, including transport in arrays of quantum dots or
using small molecules as bridges between leads. However, a
straightforward application of the original DMRG methodol-
ogy is not immediately useful to study transport, particularly
when arbitrarily large external electric and magnetic fields,
with potentially complicated time dependences, are switched
on and off at particular times. Nevertheless, progress toward
a computational tool for these type of problems has been
steady in recent years. For instance, important numerical
methods for dynamical DMRG studies were presented to
handle frequency-dependent spectral functions.'#~'¢ More di-
rectly focusing on real-time investigations, interesting tech-
niques were proposed.!” Although useful for many qualita-
tive applications, these methods are, in general, not as
accurate and stable as needed for the detailed study of finite
bias transport in complicated nanosystems. The reason is that
the method of Ref. 17 is “static” in the sense that the trun-
cated Hilbert space found to be optimal at time #=0, namely,
before switching on the external fields, is kept at all times.
This approach breaks down after relatively short times, since
extra states are needed for a proper description of transport at
finite times. A further approximation to improve on this first
proposal is to enlarge substantially the initial Hilbert space
so that it remains suitable for properties calculated at finite
times.'® This technique has the problem that the number of
states grows rapidly with the simulation time, and eventually,
it becomes impractical. Nevertheless, the method has been
successfully used to study the propagation of a density exci-
tation in an interacting clean system.'”

Recently, important developments have led to the “adap-
tive” time-dependent version of the DMRG method that is
efficient over long times and, thus, it is suitable to handle the
problems we are focusing on (for a detailed review, see Ref.
20). The method to be used here was developed indepen-
dently by White and Feiguin?' and Daley et al.,”* after the
idea of how to do time-evolution to a matrix product was
introduced by Vidal,?® and relies on an adaptive optimal Hil-
bert space that follows the state as time grows. The method is
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FIG. 2. (Color online) Exact results for J()/AV (in units of
€?/h) vs time (in units of %/f;,,4s), for the noninteracting 1QD case
obtained with clusters of different lengths (L) and AV=0.001. (a)
J(t)/ AV obtained with a large cluster (L=402). J(¢)/ AV shows clear
steady-state plateaus at +2¢2/h. The periodic changes in the current
direction are caused by its reflection at the open boundaries of the
cluster. (b) J(r)/AV obtained with decreasing L. The steady-state
plateau is obtained even with L=32. The current is quasiperiodic
with a period proportional to L. The parameters used are V,=U
=0 and t'=0.4.

based on a Suzuki-Trotter breakup of the evolution operator,
and as a consequence, a Trotter truncation error is intro-
duced. Fortunately, this systematic error can be easily esti-
mated and controlled. The adaptive DMRG numerical
method will only be briefly reviewed below since our pro-
posal uses the technique to calculate conductances, but does
not modify the method itself. The reader should consult the
original literature®’->? for more details. It is important to re-
mark that the technique is easy to implement once a ground-
state. DMRG code is prepared and, moreover, the time-
evolution is stable, as shown explicitly in our results and in
some previous investigations (further improvements can be
added with the time-step targeting method recently proposed
by Feiguin and White?®). The conclusion of our effort docu-
mented below is that the adaptive method provides accurate
results for the calculation of conductances. The technique
has passed the test of noninteracting electrons as well as the
cases of one and two interacting quantum dots, where a
subtle Kondo effect occurs. Moreover, the method is not re-
stricted to small biases, but it produces reasonable answers at
finite bias as well. As a consequence, it has the potential of
being the method of choice to study transport under both
weak and strong external fields, in small nanostructures of
substantial complexity. Multilevel model Hamiltonians, pos-
sibly inspired by ab initio calculations, can be used to de-
scribe the “bridge” between leads. In addition, the method is
particularly transparent since it relies on the straightforward
calculation of a current in the presence of a voltage, rather
than relying on other indirect linear-response formulas.

Of course, the reader must be aware that the method is not
of unlimited applicability. If the molecules or Kondo clouds
are too long in size, eventually not even DMRG can handle
the very long chains needed for a proper description. For
completeness, and to assure a balanced description of the
technique, one of these difficult cases is also presented in our
paper. But often the qualitative physics can be understood by
relaxing parameters; thus, we expect that even in very com-
plicated cases the proposed technique will be helpful, at least
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FIG. 3. (Color online) This figure shows the propagation of the
current in the cluster after the bias AV=0.001 is applied at r=0. The
different panels show the current as a function of position x along
the chain, at different times ¢. The size is L=402 and the dot is at
the site 201. The results were obtained exactly, since the Hubbard
couplings are zero.

at the conceptual level. Other limitations of the present tech-
nique is that energy dissipation is not incorporated, and the
temperature is restricted to be zero. Improving on these is-
sues is a task left for the near future.

It is important to remark that there are other numerical
techniques that can also be used to study transport in
strongly correlated nanosystems. One of them is the numeri-
cal renormalization group (NRG), which evolved from Wil-
son’s original RG ideas. This technique is quite accurate, as
exemplified by some recent calculations,’® but it cannot be
used for arbitrary problems. Since our goal is to try to de-
velop a method that can handle the fairly complex models
that will be used in the near future to represent, e.g., small
molecular conductors, this method does not have sufficient
flexibility for our purposes. In cases where NRG works, it
should be the method of choice, but this occurs in a small
subset of problems in the area of transport across correlated
systems. A second approach relies on the static DMRG
method, using a ring geometry and with a current induced by
a flux threading the ring.”’ A recently proposed third method
combines linear response Kubo theory with static DMRG,
and the conductance is calculated based on correlation func-
tions in the ground state.’® A fourth method relies on the
Quantum Monte Carlo technique to calculate Green func-
tions and the conductance of impurity models.*° It would be
interesting to find out if the methods of Refs. 27, 29, and 30
can reach a similar accuracy as ours for the case of the one
and two quantum dots. A fifth method is the exact diagonal-
ization (ED) technique followed by a Dyson equation em-
bedding (DE) procedure (ED+DE),3!> where the interact-
ing region is solved exactly (including some sites of the
leads), and then the rest of the leads are taken into account
via a Dyson self-consistent approach. The method directly
treats bulk systems, contrary to the DMRG technique (which
is necessarily limited to a large but finite chain), it is flexible,
and has led to interesting results for difficult cases, such as
center-of-mass phonons in molecular conductors, and multi-
level systems.>*7 However, the Dyson embedding is some-
what arbitrary and it is difficult to control its accuracy. It is
our intention in the near future to combine the ED+DE
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FIG. 4. (Color online) DMRG results compared to the exact
results for J(¢)/AV obtained using different clusters L and number
of states M, with AV=0.001. (a) L=96, (b) L=64, (c) L=32, and (d)
L=16. Note that for L=96 and 64, M =200 shows good qualitative
agreement and M =300 even shows good quantitative agreement
with the exact results. For L=32 and 16, M =200 and 100 already
show excellent quantitative agreement with the exact results.

method with the DMRG approach discussed in this paper,
and for the physical problems where these independent tech-
niques give similar results, then the case can be made that a
reliable conclusion has been reached. Thus,ED+DE and the
present method are complementary.

The organization of this paper is as follows. After the
present introduction, in Sec. II, the models are defined and
the technique is very briefly described. Section III contains
the important test of noninteracting electrons (note that al-
though the Coulombic coupling is zero, there are different
hopping amplitudes at different links). Here, the systematic
behavior of the method is discussed in detail. Section IV
deals with the case of a quantum dot, with a nonzero Hub-
bard coupling. The value of U is comparable to the hoppings
to prevent the Kondo cloud from reaching huge sizes that
would render the DMRG method useless (nevertheless, one
“large” U case is studied for completeness to illustrate the
limitations of the method). Section V contains the case of
two dots, which themselves can be coupled into a “singlet”
preventing conduction or loosely coupled having individu-
ally a Kondo effect. The conclusions in Sec. VI briefly sum-
marize our findings.

II. MODEL AND CONDUCTANCE CALCULATION

In general, the systems studied here consist of a relatively
small region where Coulomb interactions are present, weakly
coupled to two noninteracting leads (see Fig. 1). The inter-
acting region can represent one or several quantum dots
(QDs), a single-molecule conductor, or other nanoscopic re-
gions. In fact, the generality of the method presented in this
paper allows for a wide variety of interacting systems.

The leads are modeled as ideal tight-binding chains. As
examples, the focus will be on one QD and two QDs con-
nected in series. The total Hamiltonian of theses systems can
be written in general as
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FIG. 5. (Color online) (a) DMRG and exact results for G vs V,
in the case of one noninteracting QD, and #'=0.4 (with AV
=0.001). The DMRG results are obtained with L=64 and M =300.
In this case, G is obtained from the value of the steady-state current
plateau. The exact results are for infinite leads. The results show a
resonant tunneling peak of full width at half maximum (FWHM)
equals 4¢'2 at V=0. (b) J(r)/AV for V,=+0.3 and AV=0.01, 0.001.
Note that decreasing the bias voltage reduces the asymmetry be-
tween positive and negative V, and gives a better steady-state
plateau.

H= Hleads + Hcluster + Hcluster—leadw (1)

where f]leads is the Hamiltonian of the leads, which is

Hygoas=— tleadsE [C;;‘a-cli+la + Clio- rislot H.C. ] (2)

io
fieads 18 the hopping amplitude in the leads, which in the
following is taken as the energy scale (i.e., fiuqs=1). The
operator ¢}, (c!. ) creates an electron with spin o at site i in

the left (right) lead. H ., is the Hamiltonian of the cluster

A

where the interactions are present. Finally, H j ser_icads 15 the
Hamiltonian that connects the interacting region to the leads,
typically a hopping term. In all the results presented below,
the half-filling case n=1 was considered in the entire system.

A. One quantum dot

For the case of one QD, represented simply by one active
level, I—Alcluster can be written as

Hcluster = Vgnd + UndTndl > (3)
where the first term represents the location of the energy
level of the QD controlled by the gate voltage V,. The sec-
ond term represents the Hubbard repulsion between electrons
of opposite spins occupying the QD. n;=ng4;+n,) is the num-
ber of electrons at the dot. H j,ser_jeads €an be written as

Hcluster—leads == t’ E [CZT(rcd(r + C:(rcd(r + h .C. ]v (4)
(o8

where ¢’ is the amplitude for the electronic hopping between

the QD and the leads. ¢, creates and electron with spin o at

the dot, while ¢], creates an electron at the last site of the left
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FIG. 6. (Color online) (a) DMRG results compared to the exact
results in the case of one noninteracting QD for several intermediate
and large values of AV, namely, exploring the influence of a finite
bias in the calculations. The parameters used are V,=U=0, and #'
=0.4. Both DMRG and exact results are obtained with a cluster L
=32, using M =200 states, for the DMRG results.

lead and C-IU creates an electron at the first site of the right
lead, if sites are numbered from left to right.

B. Two coupled quantum dots in series

In the case of two QDs, I:Iduster can be written as

A

Hcluster = 2 [Vgnda + UndaTndal] - t,,E [cjll(rcd20+ H.c. ]»

a=1,2 o
(5)

where 1n,4,=1441+14,| is the number of electrons at the quan-
tum dot «, and t” is the hopping between the two dots.

A

Hcluster—leads 1s written as

A

T T
Hcluster—leads == tlz [Clacdlcr + cra-cd20'+ H.c. ] (6)
T

C. Conductance calculation

The current at any time ¢ between nearest-neighbor sites i
and j is calculated as

2
1) =i 2 VOl = o) V0. ()

where |W(7)) is the wave function of the system at time ?,
which will be calculated with the DMRG method, using a
number M of states in the process. ¢, creates an electron
with spin o at site i, which can be part of the interacting
region or be at the leads. In the results presented below, the
current shown without any link or site index corresponds to

J(1) = (J(1) + Tr(1)/2, (8)

where J, (1) is the current between the last site of the left lead
and the first dot, and Jg(z) is the current between the last dot
and the first site of the right lead, moving from left to right.
The conductance G can be obtained by simply dividing the
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FIG. 7. (Color online) The results obtained with the Suzuki-
Trotter approach and the static Runge-Kutta method compared to
the exact results for (a) AV=0.001 and (b) AV=0.5. The parameters
used are V,=U=0.0, 1'=0.4, and L=64.

steady-state current by the total bias AV. The individual volt-
ages =AV/2 in the leads are applied uniformly in each one,
as indicated in Fig. 1. Note that the use of a symmetrized
current J(¢) is convenient to obtain smoother results, particu-
larly when the left and right leads have a different number of
sites.

D. Technique

Closely following Ref. 21, a brief description of the nu-
merical technique is here provided for completeness. The
basic idea is to incorporate the Suzuki-Trotter (ST) decom-
position of the time-evolution operator?® into the DMRG
finite-system algorithm.?":>> The second order ST decompo-
sition of the one-dimensional (1D) Hamiltonian as employed
in Ref. 21 can be written as

—iTH —zTHl/Ze—lTHz/Z . —ITH2/26—17H1/2’ (9)

e e ..e

where H; is the Hamiltonian of the link j. The DMRG rep-
resentation of the wave function at a particular step j during
the finite-system sweep is

|¢>= E l/’lajaj

IajajHr

|l>|aj>|aj+l>|r>: (10)

+17

where [ and r represent the states of the left and right blocks
(in a truncated basis, optimally selected as eigenvectors of a
density matrix), while @; and «;,, represent the states of the
two central sites. An operator A acting on sites j and j+1
(namely, only involving nearest neighbors) can be applied to
|4) exactly, and reexpressed in the same optimal basis as
[Alp]lajajﬂr: ; Aajaj“;a;a]fﬂlpla;a]fﬂr- (11)
%Xyl
Thus, the time evolution operator of the link j can be applied
exactly on the DMRG step j. As a consequence, the time
evolution is done by applying e~™/2 at DMRG step 1,
e~I™2 ot DMRG step 2, and so on, thus forming the usual
left-to-right sweep. Then, applying all the reverse terms in
the right-to-left sweep. A full sweep evolves the system one
time step 7. The error introduced by the second-order decom-
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FIG. 8. (Color online) DMRG and exact results for G vs V, in
the case of two coupled noninteracting QDs. The DMRG results are
obtained with L=64 and M =300 (AV=0.001). The exact results are
for infinite leads. The cases (a) /"=0.5 and (b) "=0.2 are investi-
gated, with t'=0.4 in both cases. The results present the bonding
and anti-bonding resonant tunneling peaks at +7”.

position is order 7 in each time step.”! Thus, upon evolving
the system one time unit (1/7 steps), an order 7 error is
introduced. Numerically, the influence of this small system-
atic error is easy to control. In all the presented results, a
time step 7=0.05 was used. Note that the Trotter decompo-
sition error is dominant at short times, whereas at longer
times, the DMRG truncation error dominates. Decreasing 7
would decrease the Trotter error. However, in the case of a
very small 7, more DMRG sweeps are required to evolve the
system one time unit thus accumulating the DMRG trunca-
tion errors. Therefore, for a given system, an optimal 7
should be found. (See Ref. 24 for an analysis of this error).
This brief summary gives the reader a rough idea of the
technique used here. Details regarding lattice sizes, number
of states kept in the DMRG procedure,and influence of other
parameters are discussed below.

III. NONINTERACTING CASE

Properties of the method discussed in this paper are ex-
emplified in Fig. 2(a), where the current at the center of the
chain is shown (divided by the voltage difference) as a func-
tion of time. The current in this figure is exactly calculated,
not using DMRG, since for noninteracting particles the prob-
lem reduces to a single electron problem. A small bias AV
=0.001 will be used, unless otherwise stated. Thus, in this
first study the focus will be on trying to reproduce results
expected from linear response, but a few results with a finite
bias are also included in this paper, as discussed below. Re-
turning to Fig. 2(a), for a bulk system the current would be
expected to raise for a small fraction of time, and then reach
a steady state. This indeed occurs even in our finite-size sys-
tems. In fact, the transition from zero current at t=0 to an
approximately time-independent current regime is very fast
and can be barely observed in the scale of Fig. 2(a). But the
existence of a very flat plateau in the current is clear, and its
value will be used to extract the conductance below. Note
that due to the finite size of the system, the current cannot
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FIG. 9. (Color online) DMRG local density-of-states (LDOS)
results for (a) 1QD and (b) 2QDs compared to the exact (bulk)
results. The parameters used are V,=U=0, t'=0.4 in both cases and
#"=0.5 in (b). In (a), a broadening imaginary component 7=0.1 was
introduced. In (b), #=0.15. Smaller values of 7 would reveal the
discrete nature of the LDOS obtained with DMRG on a finite L

=64 system.

continue in the same steady state at all times. The Hamil-
tonian is particle number conserving, and as a consequence,
the presence of a current implies a population-depopulation
of the leads, which cannot continue forever. In fact, once the
front of the charge pulse reaches the end of the chain, it
bounces back and eventually generates a current of the op-
posite sign. This effect will be discussed in more detail later.
Here, it is important to remark that in spite of this periodicity
present in finite open-end systems, the flat plateaus are
clearly defined over an extended period of time for the lattice
of 402 sites used, and the value of the conductance can be
easily deduced from those individual plateaus, as discussed
below. Note that the setup of Fig. 1 and the existence of
plateaus in the current Fig. 2 are natural in the DMRG-
transport context and was observed before.?® Our main con-
tribution will be the use of the adaptive DMRG method for
the calculations, as shown below.

To further illustrate the propagation of charge in the clus-
ter after the finite bias is switched on at time =0, in Fig. 3
the exact current at different positions x is shown, parametric
with time. At small times, /=5 (in units of 7/fie,q4s), only the
central portion is affected as expected. At time r=55, the
affected region is much larger, whereas at r=105, the front
has reached the ends of the chain and soon after it starts
bouncing back. At times =200 and 205, approximately, the
initial condition is recovered, and almost everywhere the cur-
rent to the left and right cancel out nearly exactly. For larger
times, a reverse sign current is created. Note that in our stud-
ies there are no sources of dissipation, and the current will
keep on oscillating forever. Adding inelastic processes is a
next major challenge in this context, left for the future.

It is also important to show that the existence of the pla-
teaus is not restricted to very long chains of hundreds of
sites, but they are visible on much smaller systems, increas-
ing the chances that the numerical DMRG method can be
used even for complicated nanosystems. Figure 2(b) contains
the current vs time for a variety of lattice sizes, ranging from
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FIG. 10. (Color online) J(¢)/AV in the case of one quantum dot
for different cluster lengths L. The parameters used are U=1.0, ¢’
=0.4, AV=0.005, and Vg=—0.5. As L increases, the conductance
approaches the unitarity limit (2¢%/h) due to the Kondo screening
effect.

402 to systems as small as 16 sites. The time width of the
plateaus depends on L, as expected, but the value of the
current at the plateaus is approximately L independent even
up to systems as small as containing L=32 sites. Even the
L=16 chain has a periodicity with a first plateau in the cur-
rent, which is also in good agreement with the expected
value from larger sizes. Thus, this behavior appears to be
robust and the plateaus are also expected to be present for the
chains that the DMRG method can handle. That this is the
case can be shown in Fig. 4, where DMRG results for the
current vs time are shown, compared to exact data. Consider
first a sufficiently long chain, as shown in Fig. 4(a), such that
a sharp plateau is observed in the exact result. Figure 4(a)
shows that increasing the number of states M used in the
DMRG approximation, a convergence to the exact solution is
observed. In fact, for M=300 or higher, the DMRG results
cannot be distinguished from the exact ones. A similar be-
havior is found using shorter chains as for the case with L
=64 sites Fig. 4(b); but in this example, the plateau can be
observed accurately even with a smaller number of states
such as M=200. The trend continues for smaller systems
Figs. 4(c) and 4(d): For L=32 and 16, the DMRG method
reproduces the exact results with high accuracy using ~100
states.

Figure 5(a) shows the conductance deduced from the be-
havior of the current obtained with the DMRG method vs the
gate voltage V,, for the case of a single “noninteracting”
quantum dot, namely, one having U=0. The hopping ampli-
tude between the dot and the leads is #'=0.4. It is expected
that the maximum value of the conductance be obtained
when the level in the dot is aligned with the Fermi level of
the leads, and this occurs in our case at Vg=0. The DMRG
results beautifully confirm this expectation. As the gate volt-
age changes away from 0, the conductance is expected to
decrease symmetrically and this is indeed shown in Fig. 5(a).
In fact, the results at nonzero gate voltage are also in excel-
lent quantitative agreement with the exact results.

All the previous results were obtained for a sufficiently
small value of the bias voltage AV=0.001, as already ex-
plained. It is interesting to observe how the results change
when larger values of AV are employed. Figure 5(b) shows
the current for a couple of biases. The existence of the pla-
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J(t)/AV

FIG. 11. (Color online) J(r)/AV in the case of one interacting
QD for different values of V,, and with AV=0.005. The value of the
conductance is obtained by averaging the current over an interval of
time, corresponding to the steady state. The solid horizontal lines
represent this time interval over which the average of the current is
taken, and the value of the average. The parameters used are U
=1.0, 1'=0.4, L=128, and M=300.

teau is clear in both cases, but for AV=0.01, asymmetries
between positive and negative gate voltages can be observed,
which are not expected in the limit AV—0. As a conse-
quence, the rest of the results discussed below were obtained
with AV=0.001-0.005 unless otherwise noted. An easy cri-
terion to realize if a sufficiently small bias is used to obtain
the linear response limit is to repeat the calculations for the
same amplitude of gate voltage, but opposite signs, and see if
a noticeable difference is obtained.

The method proposed here also works in the case of a
finite bias voltage, namely, it is not restricted to the linear
response regime. To show that the technique can handle even
a large bias, in Fig. 6 results for the current vs. time are
shown at the indicated voltages. It is only at AV as large as
1.0 that small differences are visually observed in the figure,
between the DMRG and exact results. This can be easily
fixed increasing the number of states M. Thus, overall the
method appears to be sufficiently robust to handle arbitrary
voltages, showing the generality of the technique here pro-
posed. Nevertheless, further work in the finite bias context
will be important to fully test this case, calculating differen-
tial conductances and analyzing the regime of very strong
bias.

In our investigations, the numerical study was also carried
out using a “static” procedure, where the =0 DMRG basis is
not expanded with growing time. In this case, the results are
obtained by integrating the time-dependent Schrddinger
equation using the fourth-order Runge-Kutta method, and
also using the DMRG ground state as the initial state.!” This
is to be contrasted with the procedure of Refs. 21 and 22,
where the basis is modified with time. Figure 7 shows the
results of both procedures: Clearly using an adaptive basis
provides superior data, reproducing accurately the exact re-
sults. In the static procedure a similar accuracy is reached
only by increasing substantially the number of states, thus
missing its economical CPU-time advantages.

The method discussed here also works nicely for the case
of two noninteracting QDs, as shown in Fig. 8 for two dif-
ferent values of the hopping amplitude ¢’ between the dots.
The slight difference between the DMRG and the bulk exact
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FIG. 12. (Color online) J(z)/AV in the case of one interacting
QD for Vg/ U=-1.5,U=1.0, 1 =0.4, L=128, and different values of
M. Note that as M increases, the oscillations at long times tend to
decrease.

results can be improved increasing the number of sites.

Although not directly related to the method to obtain the
conductance of an interacting nanosystem discussed in this
paper, for completeness we have also studied the local
density-of-states which are important to guide the intuition
and contrast with other methods and scanning tunneling mi-
croscopy experiments as well. The local density-of-states at
the dot is given by pd(w):E(,pd,,(w):—ilm[E(,Ggg(w)],
where G5 (w) (the retarded Green’s function) can be written
as

R 1 1
Giol@) = (Woleas s mmclol Vo) + (Wolchy ool Vo)

In the results shown, Gf;a(w) is evaluated using the continu-
ous fraction expansion technique with coefficients calculated
with the DMRG method.'* In Fig. 9, results for noninteract-
ing quantum dots are shown (namely, dots where the Hub-
bard repulsion is 0). Clearly, both the exact results (which are
shown already in the bulk limit) and the DMRG results,
slightly smeared by shifting, using a small imaginary com-
ponent 7, the pole locations in the continued fraction expan-
sion, are in excellent agreement in both cases. A smaller #
would have revealed the many ¢ functions in the DMRG
case obtained using a finite chain with 64 sites.

IV. ONE QUANTUM DOT

In the previous sections, the method was introduced and
tested for the case of noninteracting U=0 electrons. But the
main application of the technique is envisioned to occur in
the presence of nontrivial Coulombic interactions (and even-
tually also adding phononic degrees of freedom). In this sec-
tion, the case of a nonzero Hubbard coupling will be consid-
ered, focusing on the special case of one quantum dot. The
Hamiltonian used was already discussed in previous sec-
tions.

A. Results at intermediate values of U

Figure 10 contains our DMRG results for the current vs
time, for the case of U=1.0. Similar values of this coupling
were extensively used in previous investigations,?’*3-37 and
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FIG. 13. (Color online) Conductance G and the dot occupation
(ng) for one interacting QD. The circles show G obtained by aver-
aging the current over an interval of time corresponding to the
steady state, as shown in Fig. 11. The squares show G obtained
from (n,) using the Friedel sum rule (FSR). G has the shape of the
expected Kondo or mixed-valence plateau centered at V,=-U/2.
The feature would be sharper reducing ¢'. Results shown are: (a)
U=1.0, '=0.4, and (b) U=2.0, t'=0.5. In both cases, L=128 and
M=300. Note that the DMRG conductance results in (a) show a
slightly better agreement with the FSR results. This is expected
since the finite-size effects are stronger for larger U.

it is believed to lead to a Kondo cloud of a size amenable to
numerical investigations (note that if U is very large, the
effective J between localized and mobile spins is reduced,
and it is known that the cloud’s size rapidly grows with
decreasing J). The figure shows that the systematic behavior
found in the noninteracting case survives the presence of a
Coulomb interaction; namely, the current develops plateaus
that can be used to determine the conductance. For instance,
this effect is clearly present for L=96 and 128, although for
smaller sizes (shown for completeness) the maximum current
is 10-20% less than expected and one must be cautious with
size effects. The value of the gate voltage is —U/2, which in
the absence of the Kondo effect would locate the system in
the conductance “valley” (implying a near-zero conductance)
between the Coulomb blockade peaks at —U and 0. The fig-
ure shows that the method introduced in this paper is able to
reproduce the existence of a Kondo effect, since the conduc-
tance is actually very close to the ideal limit 2¢%/h 313334
rather than being negligible. This is a highly nontrivial test
that the proposed technique has passed.

Results for other values of the gate voltage are shown in
Fig. 11. Moving away from V,=-U/2, the current is re-
duced, as discussed below in more detail. Note that the pla-
teaus contain small oscillations as a function of time.3° The
size of the oscillations give an indication of the errors in the
numerical determination of the conductance, for a given lat-
tice size. The procedure followed here to extract the current
needed for the calculation of the conductance is to carry out
averages over time, as shown in Fig. 11, in the plateau region
between the short-time intrinsic oscillations and the long-
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FIG. 14. (Color online) Conductance G(AV=0.001) and charge
at the dot (n,), for one interacting QD in the case of large U. The
circles show G obtained from DMRG current procedure outlined in
this paper, while the squares show G obtained from (n;) using the
Friedel sum-rule. The finite-size effects are obvious here, since the
results are halfway between the expected Kondo plateau (properly
reproduced by the FSR procedure) and the Coulomb blockade
peaks. This case is shown as an illustration of important size effects
in some limits. The parameters used are U=4.0, t'=0.4, L=128,
and M =300.

0.5

time oscillations caused by numerical errors. For a given L,
as M increases, the oscillations tend to disappear. This is
shown in Fig. 12.

Following the procedure sketched in Fig. 11, the full con-
ductance vs V, was prepared for U equal to 1 and 2. The
results are in Fig. 13. The results are compared to the con-
ductance obtained using the Friedel sum rule (FSR), G
=2762 sin2(72—7<nd)). The shape of the curve is the expected one
for the regime considered here: the intermediate values of U
do not locate our investigation deep in the Kondo regime,
with sharply defined integer charge at the dot, but more into
the mixed-valence region. This can be deduced from the
value of the dot charge vs V,, also shown in Fig. 13. With
increasing U and/or decreasing t', sharper charge steps are
formed, but the Kondo cloud size increases, as discussed
later.

B. Results at large values of U

There are cases where the technique gives results that are
only qualitatively correct. Although, clearly, further increases
of the number of states and lattice sizes will improve the
accuracy, it is important to judge if at least the essence of the
physics has been captured by our proposed method. In Fig.
14, results for U=4 are shown. This is a representative of the
“large” U regime, since it must be compared to t' (as op-
posed to fiqs=1) that is only 0.4 in this figure. Another
indication that this U is large is in Fig. 14(b), where a clear
sharp quantization of the charge inside the dot is observed. In
this large-U regime, the DMRG conductance is shown in
Fig. 14(a). Clearly, there is a substantial difference between
the Friedel sum-rule estimation (which has the correct “box”
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FIG. 15. (Color online) Finite-size scaling of the conductance G
at Vy=-U/2 for the odd-1QD-even (circles) and even-1QD-even
clusters (triangles) setups. Note that in both cases G converges to 1
in the bulk limit. However, the odd-1QD-even cluster converges
faster, which makes it the most useful for practical calculations. The
parameters used are U=1.0 and t'=0.4.

shape in the gate voltage range [-U,0]) and the DMRG
numbers. However, at least the fact that there must be a
nonzero conductance at V,=-U/2 was properly captured by
the method. This example illustrates a case where size effects
are important, due to the subtle rapid increase of the Kondo
cloud with increasing U. The results in this case show a slow
convergence with L toward the FSR results. However, the
qualitative results were captured, in spite of the fact that to
reach a quantitative conclusion much larger sizes must be
considered, or a careful finite-size scaling should be done.
This case is shown as a cautionary example to the readers,
who must be alert of the limitations of the numerical meth-
ods. Note that while FSR results are excellent, for other ar-
bitrary cases it would be unclear whether the Friedel sum-
rule method is valid and, as a consequence, not always this
procedure can be used.

C. Improving the convergence

To carry out the investigations presented thus far in this
and the previous section, the number of sites in the leads at
left and right of the dot region have been chosen such that
one lead has an even number and the other an odd number of
sites (to refer to this case, the notation used below will be
“odd-QDs-even”). Although this should be irrelevant for
very long chains, in practice this is important for the speed of
convergence of the conductance calculations with increasing
cluster size. For example, in the interacting case U#0, a
Kondo or mixed-valence regime is expected where the spin
at the dot couples with electrons at the Fermi level of the
leads. This formation of the Kondo cloud occurs more effi-
ciently on a finite-size lattice if already a zero energy level is
available, as it occurs when one of the leads has an odd
number of sites. That this improves the rate of convergence
with increasing lattice size is shown in Fig. 15, where the
odd-1QD-even case is contrasted to the even-1QD-even case,
where in both leads the number of sites is even. Clearly, the
odd-1QD-even case approaches the ideal limit 2¢%/h faster
than using leads with an even number of sites, and it is
recommended to be used in future investigations. Figure 15
also shows that, eventually, with sufficiently large systems,
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FIG. 16. (Color online) Finite-size scaling of G for odd-QD-
even clusters using OBC (circles) and DBC (triangles). d=0.5 was
used. Note that L=64 cluster with DBC gives better results than a
L=128 cluster with OBC. The same parameters are used as in Fig.
15.

both combinations will reach the same ideal result, as ex-
pected. The remaining possibility (odd-1QD-odd) was also
investigated (not shown). For reasons that remain to be ana-
lyzed further, the convergence in this case is not as good as
in the odd-1QD-even case. As a consequence, empirically it
is clear that the combination even-QDs-odd is the most op-
timal to speed up the size convergence of the calculation.

Another method to improve the size convergence was
tested. Following Refs. 28 and 29, the finite-size effects can
be reduced by using “damped boundary conditions” (DBC).
The hoppings in the M, links at the boundaries are reduced
using the formulas —td,~td>, ... ,—td"p, where d<1. M
has to be chosen such that the damping occurs far enough
from the central region. Figure 16 shows the finite-size scal-
ing using odd-QD-even clusters and the same parameters as
in Fig. 15, both with DBC and the standard open boundary
conditions (OBC) used in the rest of the paper. The latter
indeed improves the convergence. Although in the present
study, OBC were used in most of the paper to keep the sim-
plicity in the presentation and reduce the number of param-
eters, the use of DBC is recommended for cases where size
effects are strong.

D. Influence of magnetic fields

To fully confirm that our investigations in the Kondo—
mixed-valence regime have captured the essence of the prob-
lem, namely the formation of a Kondo cloud with antiferro-
magnetic coupling between the spins at the leads and the dot,
investigations including magnetic fields are necessary. In
Fig. 17, it is shown how the Kondo plateau in the conduc-
tance evolves with increasing magnetic field. As expected
from previous investigations, including results obtained us-
ing very different techniques, such as the Lanczos method
followed by a Dyson-equation embedding procedure (ED
+DE),*? the conductance broad peak splits with increasing
magnetic field B. At large B, two peaks are observed at —U
and 0, as it occurs also in the high-temperature regime where
only Coulomb blockade effects are present.

V. TWO COUPLED QUANTUM DOTS

The method discussed in this paper is general, and, in
principle, it can be implemented for a variety of complicated
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FIG. 17. (Color online) Conductance G vs gate voltage Vg in the
case of one interacting QD (U=2.0, t'=0.5) for different values of
the magnetic field B (and AV=0.001). For B=0, a Kondo plateau is
obtained, centered at V,=—U/2. As B increases, the Kondo effect is
suppressed, and for moderate B, two Coulomb blockade peaks are
observed at V,=-U and V,=0, as expected.

geometries and couplings in the interactive region between
the leads. Thus, it is important to confirm that the method
will keep its validity going beyond the one quantum-dot
case. In this section, the case of two dots will be studied.
Systems with two quantum dots are believed to be under-
stood theoretically, and as a consequence, our numerical data
can be contrasted against robust results in the literature.
Cases involving more dots* are still not fully understood,
and their analysis will be postponed for future investigations.
In Fig. 18, the current vs time is shown for two dots. The
Hamiltonian for this case was already defined in previous
sections. For a fixed ¢’, increasing the amplitude of the direct
hopping between the dots #” amounts to isolating the two
dots system from the rest. As a consequence, the current is
expected to decrease, and the method indeed reproduces this
effect, as shown in Fig. 18. The same physics is obtained
reducing ¢, at fixed ¢”. In fact, previous studies** have shown
that the conductance only depends on #'/t'?, and this has
been verified using our method.

The conductance of a system with two dots in series will
decrease with increasing #'/t'? (at large '/t'%) due to the
decoupling of the two-dots system into a small two-sites

2

J()/AV

FIG. 18. (Color online) J(r)/AV for two coupled QD’s at V,=
—U/2 for different values of /1'% (and AV=0.005). As in the case
of one interacting QD, the conductance is obtained by averaging the
steady-state current over the indicated intervals. The parameters
used are U=1.0, t'=0.5, L=127, and M=300.
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FIG. 19. (Color online) Conductance G as a function of #'/¢'2,
at V,=—=U/2 (AV=0.005). In this regime, G is determined by the
competition between the Kondo correlation of each dot with the
neighboring leads and the antiferromagnetic correlation between the
two dots. The circles represent our DMRG results obtained with
L=127 and M=300. The solid line is the plot of the functional form
obtained by Georges and Meir using SBMFT.*0

molecule, as already discussed. But this conductance will
also be very small at small / when the tunneling from one
dot to the next is nearly cut off. As a consequence, the con-
ductance vs #'/¢'? is known to present a peak at intermediate
values. In Fig. 19, the slave-boson mean-field technique (SB-
MFT) predictions for this case obtained in previous
investigations** are shown together with our results. The
agreement is fairly reasonable, providing further support that
the method discussed here can handle systems where there
are competing tendencies, beyond the one quantum-dot case.

VI. CONCLUSIONS

In this paper, a method was proposed and tested to calcu-
late the conductance of small (nanoscale) strongly correlated
systems modeled by tight-binding Hamiltonians. The ap-
proach is based on the adaptive time-dependent DMRG
method, and it was shown to work properly for noninteract-
ing systems and also in the cases of one and two quantum
dots. Besides the finite-size effects, discussed in the text as
well, there are no other severe limitations to handle complex
interacting models with arbitrary couplings. The method is a
complement to DFT calculations in the nanoscopic context.
Further improvements of the technique must consider tem-
perature and inelastic effects.

It is concluded that the semiquantitative analysis of trans-
port in models of strongly correlated nanosystems appears
under reach, and much progress is expected from the appli-
cation of the technique presented here to realistic Hamilto-
nians for small molecules and arrays of quantum dots. The
remarkable cross-fertilization between modeling, simulation,
and experiments existing in bulk strongly correlated materi-
als, such as transition-metal oxides, can be repeated in a
variety of interesting systems at the nanoscale.
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