
Self-interaction-corrected pseudopotentials for silicon carbide

Björn Baumeier,* Peter Krüger, and Johannes Pollmann
Institut für Festkörpertheorie, Universität Münster, D-48149 Münster, Germany

�Received 25 May 2005; revised manuscript received 23 February 2006; published 16 May 2006�

We report electronic and structural properties of cubic and hexagonal 3C- , 2H- , 4H-, and 6H-SiC bulk
crystals and of the C-terminated SiC�001�-c�2�2� surface as resulting from density functional theory �DFT�
within local density approximation �LDA�. In particular, we employ newly constructed nonlocal, norm-
conserving pseudopotentials which incorporate self-interaction corrections. Results obtained with usual
pseudopotentials show the typical LDA shortcomings, most noticeably the systematic underestimate of the
band gap. These problems are attributed to an unphysical self-interaction inherent in the common DFT-LDA.
We describe the construction of appropriate self-interaction-corrected pseudopotentials for Si and C atoms and
show how they can be transferred to the SiC solid by adequate modifications. It is in the very nature of our
pseudopotentials that they cause no additional computational effort, as compared to usual pseudopotentials in
standard LDA calculations. To test their transferability to different crystal structures we apply these pseudo-
potentials to both cubic and hexagonal polytypes of SiC. The resulting energy gaps are in excellent agreement
with experimental data and the bulk band structures are in most gratifying agreement with the results of
considerably more elaborate quasiparticle calculations. Structural properties of the different polytypes are
found in excellent agreement with experiment, as well, not showing the usual LDA underestimate of lattice
constants and overestimate of bulk moduli. Also the electronic structure of SiC�001�-c�2�2�, calculated to
exemplify the usefulness of the pseudopotentials for surfaces, shows improved agreement with experiment as
compared to the respective surface band structure obtained within standard LDA.

DOI: 10.1103/PhysRevB.73.195205 PACS number�s�: 71.15.Mb, 71.20.Nr

I. INTRODUCTION

Since the advent of semiconductor technology, Si and
silicon-based materials have played a vital role in the devel-
opment of modern semiconductor devices. At present, how-
ever, the physical limits of such devices exclusively based on
Si are gradually reached, e.g., the maximum operating tem-
perature of approximately 200 °C which severely limits the
applicability of such devices for process control or data log-
ging in many relevant high temperature processes. A more
intensive use of silicon carbide compounds is expected to
overcome some of these limitations as SiC has a number of
favorable properties, among those a high operating tempera-
ture �approximately 800 °C� and high mechanical stability.1

From a microscopic point of view, SiC is a very unique
material.2 In contrast to homopolar elemental semiconduc-
tors, like Si or Ge, it is the only existing heteropolar
group-IV compound. Its heteropolarity gives rise to consid-
erably ionic SiuC bonds. Another interesting aspect is the
polytypism of SiC.3 Different polytypes are characterized by
the stacking sequence of their constituent Si-C double layers
along a certain direction. There are more than 200 known
polytypes, with the cubic 3C-SiC and the hexagonal
2H-SiC being the most extreme. All other hexagonal and
rhombohedral polytypes show combinations of cubic and
hexagonal stacking sequences. The respective band-gap en-
ergies range from 2.4 eV in 3C-SiC to 3.3 eV in 2H-SiC.

For applications of SiC in opto- and microelectronic de-
vices a precise knowledge of its electronic properties is es-
sential. From a theoretical point of view, density functional
theory using the local density approximation has been estab-
lished as an extremely useful ab initio method to calculate
these properties. However, standard LDA calculations typi-

cally underestimate critical band structure data, like the band
gap or the valence bandwidth.

In order to remedy these deficiencies in the description of
electronic properties, several improvements have been devel-
oped. For example, quasiparticle approaches based on the
GW approximation4,5 �GWA�, which treat one-particle exci-
tations using electron Green functions, have been particu-
larly successful in this regard.6–9 Compared to standard
LDA, however, the numerical effort for GWA calculations is
considerably higher. This is particularly true when systems
with broken translational symmetry are described by large
unit cells containing many atoms. In such cases GWA calcu-
lations become extraordinarily demanding computationally.

The systematic deviations of DFT-LDA results from ex-
perimental data can primarily be traced back to unphysical
self-interactions inherent in LDA, as has been shown by Per-
dew and Zunger.10 The authors applied a self-interaction cor-
rection �SIC� to atomic systems and were able to overcome
the shortcomings of the LDA to a large extent. These correc-
tions are state dependent, however, so that a direct transfer of
this approach to bulk solids is computationally very demand-
ing. Nevertheless, Svane and Gunnarson11–14 have performed
respective calculations for transition metals using a SIC en-
ergy functional, allowing the system to minimize its total
energy by forming delocalized, as well as localized states.
The authors observed that localization minimizes the total
energy. Further results of SIC calculations have been re-
ported by Szotek, Temmerman, and Winter15–17 for high-Tc
superconductors and by Arai and Fujiwara18 for transition-
metal oxides. All these results indicate that the main effect of
self-interaction correction originates from localized atomic
states. This finding leads us to expect that the introduction of
atomic and hence localized self-interaction corrections into
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state-of-the-art nonlocal, norm-conserving pseudopotentials
will approximate the results of full SIC calculations at least
to a significant extent.

The idea of incorporating corrections for self-interaction
approximately has previously been implemented by various
groups in different approaches. First, Rieger and Vogl19 have
reported respective calculations for bulk Si, Ge, Sn, and
GaAs. While the authors found significant effects in the de-
scription of strongly bound core levels, improvements ob-
tained for the gaps of these s , p bonded semiconductors have
only been marginal. Later on, some of the present auth-
ors20–22 have successfully applied a related approach to II-VI
semiconductors and group-III nitrides accounting for self-
interaction and relaxation corrections �SIRC� in a solid by
modified atomic SIC and SIRC pseudopotentials. In the latter
work, the relaxation corrections turned out to be of particular
importance for the semicore d bands in these compounds.
Inspired by this previous work, Filippetti and Spaldin23 have
more recently extended and modified the approach and ap-
plied it not only to a II-VI compound and a group-III nitride
but also to a number of transition metal and manganese ox-
ides. Their pseudo-SIC approach turned out to work very
well for the latter materials, as well. The materials, studied
by Vogel et al.20–22 and Filipetti and Spaldin23 are all char-
acterized by localized semicore d states on which SIC and
SIRC have a very pronounced effect.

In this paper, we construct self-interaction-corrected
pseudopotentials for the ionic compound semiconductor sili-
con carbide and investigate their usefulness. It was not obvi-
ous a priori that the SIC approach leads to quantitative im-
provements for silicon carbide polytypes, as well, since SiC
is a s , p bonded semiconductor and does not have highly
localized semicore d states, to begin with. Nevertheless, we
find that an appropriate inclusion of self-interaction correc-
tions does improve the description of the bulk electronic and
structural properties of SiC polytypes very significantly, in-
deed. The description of an exemplary SiC surface shows
noticeable improvements, as well. Relaxation corrections
have only a very minor influence on the band structure of the
polytypes and have been ignored, therefore, for simplicity of
our approach.

The paper is organized as follows: First, the principles of
the construction of SIC pseudopotentials for Si and C are
summarized in Sec. II using cubic 3C-SiC as the prototype
example for a first application. For this polytype there is the
largest set of experimental and theoretical electronic struc-
ture data available in the literature for comparison. Next we
address structural properties of cubic and hexagonal SiC
polytypes in Sec. III. The results of our electronic structure
calculations using SIC pseudopotentials for the hexagonal
polytypes are then presented in Sec. IV and discussed in
comparison with standard LDA results, as well as with GWA
results and experiment. Finally, the SiC�001�-c�2�2� sur-
face is briefly addressed in Sec. V. A short summary con-
cludes the paper.

II. CONSTRUCTION OF SIC PSEUDOPOTENTIALS

In this section, we outline the construction of self-
interaction-corrected pseudopotentials and discuss their ap-

plication in calculations of electronic properties of cubic
3C-SiC, as a prototype example.

A. Standard pseudopotentials

For reference sake, we first very briefly address the stan-
dard pseudopotentials which we use in our accompanying
LDA calculations. As is well known, electrons from inner
core states do not influence chemical bonding in bulk crys-
tals. Therefore, electronic structure calculations can be re-
stricted to the valence electrons accounting for the effects of
the core electrons by introducing ionic pseudopotentials. The
starting point for constructing usual state-of-the-art ab initio
pseudopotentials are all-electron LDA calculations for re-
spective atoms. There are several conditions that have to be
fulfilled in the construction process, most notably, and also
most intuitively, that the all-electron eigenvalues for the
atomic valence states are reproduced by the pseudopo-
tentials.24–26 One characteristic feature of such ionic pseudo-
potentials is their dependence on angular momentum as

V̂ps = �
l

Vl
psP̂l, �1�

where P̂l is a projection operator on angular momentum
eigenstates

P̂l = �
m

�lm��lm� . �2�

These ionic pseudopotentials are semilocal, i.e., nonlocal
with respect to the spherical angles � and � but local with
respect to the radial coordinate r, within a chosen core re-
gion. They can be separated into a local and a nonlocal part
as

V̂ps = V̂loc
ps + V̂nloc

ps �3�

with

V̂nloc
ps = �

l

�Vl
psP̂l. �4�

For practical purposes, it has proven useful to represent
the above semilocal pseudopotentials in a fully separable
form as proposed by Kleinman and Bylander.27

In our standard LDA reference calculations we use the
nonlocal, norm-conserving ab initio pseudopotentials con-
structed according to the prescription of Hamann.26 In all
calculations to follow we employ the exchange-correlation
potential of Ceperley and Alder,28 as parametrized by Perdew
and Zunger.10 As basis sets we use Gaussian orbitals with
appropriately determined decay constants.29 In the following
construction and first exemplary application of SIC pseudo-
potentials we use 3C-SiC as a reference. This cubic modifi-
cation of SiC crystallizes in the zinc-blende structure, with a
lattice constant of 4.36 Å. Within standard LDA we obtain
the band structure shown in Fig. 1 in direct comparison with
a number of experimental data points. It exhibits a heteropo-
lar or ionic band gap between the lowest C 2s-derived band
and the three higher s , p-like valence bands as is typical for
an ionic compound semiconductor. The total width of the
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LDA valence bands is 15.29 eV. 3C-SiC has an indirect op-
tical gap between the � and the X point. The calculated LDA
gap energy of 1.29 eV underestimates the experimental
value30 of 2.42 eV by about 45%, as is typical for standard
LDA. In addition, the calculated conduction bands show sig-
nificant k dependent deviations from the data points. To the
best of our knowledge there are no experimental data avail-
able in the literature on the low-lying C 2s band.

B. SIC pseudopotentials

The LDA shortcomings of the band structure in Fig. 1
occur in spite of the fact that the employed standard pseudo-
potentials reproduce by construction the atomic all-electron
LDA term values exactly as is shown in Table I, where both
the all-electron and the pseudopotential eigenvalues are
given. This raises the question how reliable the all-electron
LDA results are with respect to experiment. To this end, the

experimental ionization energies E�
exp are given for Si and C

atoms32 in Table I, as well. If one interprets the eigenvalues
��

LDA as excitation energies, which is usually done, it be-
comes obvious that they deviate strongly by some 50% from
the experimental data. In particular, the measured energy dif-
ference between the C 2p and Si 3p term values of 3.2 eV is
strongly underestimated by the respective energy difference
of the LDA term values amounting to 1.2 eV, only. Perdew
and Zunger10 have attributed this type of shortcomings in
atomic systems to an unphysical self-interaction contained in
LDA and have proposed a method to introduce self-
interaction corrections of the energy functional, which can be
written as

ESIC = ELDA − �
�

occ

�ECoul���	 + Exc
LDA���	
 . �5�

Minimization of the energy according to Eq. �5� yields the
equivalent to the Kohn-Sham equations

�− �2 + V�,eff
SIC �r�
��

SIC�r� = ��
SIC��

SIC�r� . �6�

Within pseudopotential framework the orbital-dependent
self-interaction corrected effective potential reads

V�,eff
SIC ���	,���	,r� = V�

ps + VCoul���	,r� + Vxc
LDA���	,r�

+ V�
SIC����	,r� �7�

and

V�
SIC����	,r� = − VCoul����	,r� − Vxc

LDA����	,r� . �8�

Here � and �� are the atomic valence and orbital charge
densities, respectively. The solution of Eq. �6� for Si and C
pseudoatoms yields the SIC term values ��

ps,SIC given in Table
I. While there is no exact agreement between the SIC term
values and the experimental ionization energies, the devia-
tions from the latter have been reduced dramatically. For
example, the energy difference between the C 2p and Si 3p
term values resulting from the SIC calculation as 3.7 eV is in
much closer agreement with the experimental value of
3.2 eV than the energy difference between the respective
LDA term values of 1.2 eV. Exact agreement was not to be
expected, anyway, since we have solved Eq. �6� without in-
cluding spin polarization because it is insignificant for the
SiC solid, to be addressed below. Comparing the term values
resulting from the all-electron or pseudopotential LDA cal-
culations with those resulting from the pseudopotential SIC
calculations, we first note a pronounced absolute shift of the
SIC term values with respect to the LDA term values. Much
more importantly, however, the term values resulting from
the SIC calculations show prominent relative shifts with re-
spect to one another as compared to the LDA term values.
These have very significant bearing on the outcome of elec-
tronic structure calculations for solids since the atomic SIC
term values of the interacting atoms in the solid occur at
largely different relative positions from the start, as com-
pared to the respective LDA term values. So the solid state
interaction of the different atoms is strongly influenced
thereby giving rise to changes in the energy positions and
dispersions of the bulk bands.

TABLE I. Atomic term values �in eV� for C and Si atoms as
resulting from nonspinpolarized LDA and SIC calculations. For ref-
erence we show both the all-electron and pseudopotential term val-
ues resulting in LDA, as well as the energy shifts ���=��

ps,SIC

−��
ps,LDA of the eigenvalues due to self-interaction correction.

E�
exp ��

ae,LDA ��
ps,LDA ��

ps,SIC ���

C 2s −13.7 −13.7 −19.7 −6.0

C 2p −11.3a −5.4 −5.4 −11.1 −5.7

Si 3s −10.9 −10.9 −15.1 −4.2

Si 3p −8.1a −4.2 −4.2 −7.4 −3.2

aFrom Ref. 32.

FIG. 1. LDA band structure of 3C-SiC along high-symmetry
lines of the Brillouin zone. The dashed line indicates the experimen-
tal gap of 2.42 eV �Ref. 30�. Open circles show wave vector-
resolved photoemission data from Ref. 31. The full dots are derived
from optical data. For the respective references, see Table II.
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The atomic SIC pseudopotentials for Si and C ions are
defined according to Eq. �7� by

V�
ps,SIC����	,r� ª V�

ps�r� + V�
SIC����	,r� . �9�

Next, we have to modify these atomic SIC pseudopoten-
tials such that they can meaningfully be applied to solids.
�For details, see Ref. 21.� They feature an asymptotic −2/r
tail originating from the Coulomb potential V�

SIC����	 ,r�.
Such long-range tails would cause an unphysical overlap of
the SIC potential contributions, which are introduced as truly
atomic properties in our approach, after all, from different
atomic sites. To reduce the overlap of the final correction
potentials in the solid we refer all correction potentials rela-
tive to the energetically highest atomic state and cut off the
−2/r tails appropriately. The energetically highest atomic
state is Si 3p in the case of SiC. So we rigidly shift all
correction potentials accordingly by the same value Vshift
ª�Si3p

LDA−�Si3p
SIC =3.2 eV �see ��� for Si 3p in Table I�. Note

that the relative distances of the term values, as resulting
from the atomic SIC calculations, are not changed thereby so
that the physics of the atomic levels remains to be described
much more rigorously from the start than by the usual LDA
term values. Actually, if the atomic self-interaction correc-
tions V�

SIC����	 ,r� would directly be applied in a solid state
calculation all states would experience a strong SIC correc-
tion. However, delocalized states are only weakly affected by
self-interaction corrections, if at all �see, e.g., Refs. 11–18�.
This is especially true for atomic states that contribute to the
conduction bands of a semiconductor. These are usually the
highest atomic valence states. We therefore refer all correc-
tion potentials relative to the Si 3p state. This shift of all
atomic SIC potentials by the same amount does not change
the relative distances between the atomic SIC levels but re-
duces the overlap of the final potentials in the solid substan-
tially �see, e.g., Fig. 3 in Ref. 21�. By this modification, the
influence of the Si 3p self-interaction correction is reduced to
a large extent in accord with the fact that delocalized
conduction-band states themselves do not experience a sig-
nificant self-interaction. The changes in the band structure
are predominantly brought about by the SIC contributions to
the C 2s, C 2p, and Si 3s pseudopotentials. The −2/r tails of
the radial components of the correction terms V�

SIC����	 ,r�
are then cut off at suitable radii r� which we define by the
condition that the pseudopotentials with the SIC contribu-
tions cutoff at r� reproduce the atomic SIC term values
within 10−2 Ry. For the valence states of the Si and C atoms
the above criteria yields the radii 3.84 and 4.36 a.u. for C 2s
and 2p, and 4.72 and 5.87 a.u. for Si 3s and 3p, respectively.
The cutoff is actually achieved on a short length scale by
multiplying the correction terms with the smooth function
f�x��=exp�−x�

7� with x�=r /r� to avoid problems in their
Fourier representation.

The respectively modified self-interaction correction con-
tributions can now be used in the calculations for the solid.
For the valence states of a given ion they are uniquely speci-
fied by the angular momentum quantum number l. They can
therefore be written as Vl

SIC�r�+Vshift multiplied by the pro-
jector on the angular momentum eigenstates and by the

above cutoff function and can simply be added to the nonlo-
cal part of the usual pseudopotentials

V̂ps,SIC = V̂loc
ps + V̂nloc

ps,SIC �10�

with

V̂nloc
ps,SIC = V̂nloc

ps + V̂nloc
SIC = �

l

�Vl
psP̂l + �

l

�Vl
SICP̂l �11�

and

�Vl
SIC�r� = �Vl

SIC�r� + Vshift
f�xl� �12�

with xl=r /rl�r /r�.
The nonlocal SIC contributions to the ionic pseudopoten-

tials can now be represented in the fully separable Kleinman-
Bylander form

V̂nloc
SIC = �

l,m

��l,m
SIC�Vl

SIC���l,m
SIC�Vl

SIC�
��l,m

SIC��Vl
SIC��l,m

SIC�
�13�

just as ordinary nonlocal pseudopotentials. The l ,m values
entering Eq. �13� are uniquely defined by the orbital indices
� for each ion.

We conclude this discussion of the construction of SIC
pseudopotentials for the solid by noting that we fully incor-
porate the SIC corrections according to Eq. �12� in our cal-
culations. If one would try, on the contrary, to explicitly in-
corporate the actual occupation of each band state one would
have to construct the SIC pseudopotentials iteratively for the
self-consistently changing occupation of the band states. This
would necessitate an additional inner self-consistency loop
for each n ,k which obviously would render the calculations
extremely demanding. Filippetti and Spaldin23 have consid-
ered this alternative. Due to the extremely heavy numerical
load involved, however, they do not take the occupation of
each particular band state explicitly into account but only a k
space average of the band-state occupations. In addition,
they do not construct their pseudopotentials iteratively for
each average band occupation anew but construct them once
and for all and then weight them by the average band occu-
pation. Using this pragmatic way, the calculations become
feasible again in spite of the fact that the actual occupations
of the band states are taken into account at least on average.
From a general formal point of view this might be somewhat
better than the consideration of the band-state occupations in
our approach. Yet, the actual results of Filippetti and Spaldin
for ZnO and GaN are very similar to our previous results20–22

so that no conclusive answer as to which approach is better
can easily be inferred at present.

The SIC pseudopotentials according to Eqs. �10�–�13� for
the silicon carbide solid can now readily be employed in a
usual LDA code causing no additional computational effort
as compared to a standard LDA calculation. Employing these
pseudopotentials for Si and C we obtain the SIC band struc-
ture shown in Fig. 2. Compared to the LDA band structure,
the fundamental band gap has increased to 2.46 eV and is
now in very gratifying agreement with experiment. At the
same time, the total width of the valence bands has increased
to 17.18 eV. The broadening of the SIC valence bands, as
compared to the LDA valence bands, mainly originates from
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the lowering of the C 2s band relative to the higher s , p
valence bands due to its stronger self-interaction correction,
as already evidenced by the ��� value in Table I which is
largest for C 2s. The dispersion of the measured valence
bands along the �-X line is very well described. In particular,
the energy of the highest occupied X5v state, which is ob-
served at −3.60 eV in experiment,34 is much more accurately
described in SIC than in standard LDA �cf. Fig. 1�. Most
importantly, the SIC approach does not only yield a very
good description of the valence bands and the band gap but
also a very accurate description of the experimental data for
the conduction bands.

In Table II we have summarized band-structure energies
for 3C-SiC resulting from our LDA and SIC calculations, as
well as theoretical results from two different GWA
calculations8,9 and experimental results30,33–35 for 3C-SiC.
The LDA results show the typical shortcomings discussed
above underestimating all conduction-band energies consid-
erably. The SIC results are in very good agreement with the
majority of the experimental data. The LDA band-gap prob-
lem seems to have largely been overcome by including SIC,
at least in this case of 3C-SiC. The overall width of the
valence bands resulting from the SIC calculation is larger
than that resulting from the GWA calculations of Rohlfing
et al.8 but is close to that in the GWA results of Wenzien
et al.9 To date there are no experimental data on the total
valence bandwidth to compare with. Comparing the GWA
results of Wenzien et al.9 with our SIC results, the GWA
results from Ref. 8 and the experimental data it appears that
the former band-structure energies result in the upper con-
duction bands significantly higher than all other values. We
emphasize this fact already at this point since for the hex-
agonal SiC polytypes to be discussed below we have only
the results of Ref. 9 to compare with.

To further evidence the above difference we summarize in
Table III critical point transition energies as resulting from

the different calculations in comparison with experimental
data. As is most obvious, the LDA values fall far short of all
measured transition energies due to the LDA band-gap prob-
lem. On the contrary, most of the SIC results and the quasi-
particle results from Ref. 8 are in very good accord with the
experimental data. The quasiparticle results from Ref. 9
overestimate the transition energies for the reason mentioned
above whenever final states in the higher conduction bands
are involved.

III. STRUCTURAL PROPERTIES

We now address the question whether the SIC approach
yields satisfying results for structural properties, as well.

TABLE II. Calculated band-structure energies �in eV� at high-
symmetry points for 3C-SiC in comparison with the results of
quasiparticle calculations by Rohlfing et al. �Ref. 8� �QPR� and
Wenzien et al. �Ref. 9� �QPW� and experiment.

3C LDA SIC QPR QPW Exp

�1v −15.29 −17.18 −16.44 −17.31

�15v 0.00 0.00 0.00 0.00 0.00

�1c 6.25 7.35 7.35 8.29 7.59a

�15c 7.10 8.45 8.35 9.09 8.74a

X1v −10.25 −10.96 −11.24 −11.82

X3v −7.79 −8.95 −8.64 −8.53

X5v −3.13 −3.55 −3.62 −3.49 −3.60 b

X1c 1.29 2.46 2.34 2.59 2.42c

X3c 4.07 5.32 5.59 5.77 5.50b

L1v −11.72 −12.79 −12.75 −13.39

L1v −8.49 −9.58 −9.42 −9.39

L3v −1.04 −1.17 −1.21 −1.13 −1.16b

L1c 5.24 6.46 6.53 7.22 6.34d

L3c 7.07 8.41 8.57 8.94 8.50b

aFrom Ref. 33.
bFrom Ref. 34.
cFrom Ref. 30.
dFrom Ref. 35.

TABLE III. Calculated critical point transition energies �in eV�
in 3C-SiC in comparison with respective results of quasiparticle
calculations by Rohlfing et al. �Ref. 8� �QPR� and Wenzien et al.
�Ref. 9� �QPW� and with various values derived from experimental
data.

3C LDA SIC QPR QPW Expa Expb

�1c-�15v 6.25 7.35 7.35 8.29 7.59 7.4

�15c-�15v 7.10 8.45 8.35 9.09 8.74 9.0±0.2

X1c-X5v 4.42 6.05 5.96 6.08 6.02 5.8

X3c-X5v 7.21 8.91 9.21 9.26 9.10 8.3±0.1

L1c-L3v 6.29 7.63 7.74 8.35 7.50 7.5

L3c-L3v 8.11 9.58 9.78 10.07 9.66 9.4

aDerived from the experimental data in Table II.
bFrom Ref. 35.

FIG. 2. SIC band structure of 3C-SiC along high-symmetry
lines of the Brillouin zone. For further details, see caption of Fig. 1.
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Here we discuss all four SiC polytypes considered in our
work. Structural parameters of solids such as lattice con-
stants or bulk moduli usually result in good agreement with
experiment from LDA calculations. Lattice constants are un-
derestimated in the order of 1% and bulk moduli are overes-
timated often by a somewhat larger percentage. In general,
SIC potentials are attractive causing the electrons to be stron-
ger localized around the atomic nuclei. This gives rise to an
increased screening of the atomic nuclei leading to an in-
crease in the lattice constants and a decrease in the bulk
moduli. Therefore we expect these quantities to result from
our approach in even better agreement with the data than
from usual LDA calculations.

To determine these parameters we have to calculate the
total energy of the system which is a ground-state property.
The SIC pseudopotentials allow for an accurate description
of the occupied valence bands, as noted above, and should
lead to very good total energies, therefore. In the framework
of pseudopotential theory the total energy within the full
SIC-LDA approach �Eq. �5�	 can be written as

ESIC = �
�

occ

��
SIC + �E1 + �E2 + Eion, �14�

with

�E1 =� 
−
1

2
VCoul���̃	,r� + �xc

LDA���̃	,r�

− Vxc
LDA���̃	,r���̃�r�d3r �15�

and

�E2 = �
�

occ � 
1

2
VCoul���̃�	,r� − �xc

LDA���̃�	,r�

+ Vxc
LDA���̃�	,r���̃��r�d3r . �16�

Here, �̃ and �̃� are the valence and orbital charge densi-
ties in the solid, respectively, and Eion is the ion-ion interac-
tion energy. The terms �E1+�E2 account for double count-
ing that occurs when the SIC eigenvalues ��

SIC are simply
summed up. The term �E1 is the usual term accounting for
double counting within standard LDA.

In order to evaluate the term �E2, we rewrite it as

�E2 = �
�

occ � „VCoul���̃�	,r� + Vxc
LDA���̃�	,r�…�̃��r�d3r

− �
�

occ � 
1

2
VCoul���̃�	,r� + �xc

LDA���̃�	,r���̃��r�d3r .

�17�

Except for the sign, the term in parantheses in the first line is
the solid state analog to the SIC contribution in the atomic
effective potential of the Kohn-Sham equations as defined in
Eq. �8� while the integral in the second line is the Hartree

exchange-correlation energy EHXC��̃�	 of the orbital charge
density �̃�. �E2 then reads

�E2 = − �
�

occ � V�
SIC���̃�	,r��̃��r�d3r − �

�

occ

EHXC��̃�	 .

�18�

In the SIC pseudopotential approach, we only calculate
the valence charge densities �̃�r� for the solid by solving the
Kohn-Sham equations but not the orbital charge densities �̃�.
Therefore, we resort in the same way as in the construction
of the SIC pseudopotentials to the modified SIC pseudopo-
tentials �V�

SIC as defined in Eq. �12� and EHXC as functions of
the atomic charge densities �� and approximate �E2 corre-
spondingly. Projecting the solid-state wave functions onto
the localized atomic one-particle orbitals ��

SIC, �E2 can be
approximated by21

�E2 � − �
n,k

�	n,k�V̂nloc
SIC �	n,k� − �

�

occ

EHXC���	 �19�

with V̂nloc
SIC according to Eq. �11�.

EHXC���	 is then an atomic property which is constant in
the solid and drops out when derivatives of the total energy
are calculated.

Using Eq. �14� with the above approximation for �E2 we
evaluate the total energy of the investigated systems for a
number of unit cell volumes around its minimum and deter-
mine the lattice constants and bulk moduli. For comparison
we have also calculated these quantities within standard
LDA.

The results for the cubic and hexagonal 3C,2H,4H, and
6H polytypes are summarized in Table IV. The agreement of
the structure parameters with the experimental values is ex-
cellent. The lattice constants are underestimated by only
0.3%, at most, while the bulk modulus is underestimated by
0.9% for 3C-SiC and overestimated by 0.4% for 2H-SiC.
The agreement of our SIC results with experiment is signifi-
cantly better than that of the standard LDA results which

TABLE IV. Calculated lattice constants a and c �in Å� and bulk
moduli B �in Mbar� of the four investigated SiC polytypes in com-
parison with experiment �Ref. 37�.

LDA SIC Exp

3C a 4.30 4.35 4.36

B 2.32 2.22 2.24

2H a 3.04 3.07 3.08

c 4.99 5.04 5.05

B 2.33 2.24 2.23

4H a 3.04 3.07 3.07

c 9.95 10.06 10.05

B 2.34 2.23

6H a 3.04 3.07 3.07

c 14.92 15.07 15.08

B 2.33 2.24
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underestimate the lattice constants up to 1.4% and overesti-
mate the bulk moduli up to 4.5%. The lattice constants and
bulk moduli thus result from the SIC calculations about one
percent larger and about five percent smaller, respectively,
than from LDA. This is due to a stronger increase in the
localization of the carbon states, as compared to the Si states,
by SIC since the former experience a stronger downward
shift in energy by self-interaction correction than the latter
�cf. the ��� values in Table I and the resulting increase in
valence-band width within SIC as evidenced in Fig. 2 and in
the third column of Table II�. This stronger localization of
the C states, as compared to the Si states, gives rise to a
weakening of the SiuC bonds which leads to larger lattice
constants, as compared to LDA. By the same token, the lat-
tice becomes “weaker” so that the bulk moduli show a de-
crease in the SIC results, as compared to LDA. This behavior
was also observed in other approximate SIC results19 as well
as in the results of full SIC calculations.14,17

IV. HEXAGONAL POLYTYPES

Now we address the question whether the very same SIC
pseudopotentials used above to calculate the band structure
of cubic 3C-SiC work equally well for the band structure of
other SiC lattices. To this end, we consider the most common
hexagonal 2H,4H, and 6H polytypes in the following.

Figure 3 shows a two-dimensional representation of the
stacking sequences of these three hexagonal polytypes along
the �0001	 direction. To ease the comparison, we have ex-
tended all plots along the �0001	 direction to six Si-C double
layers, with the actual lengths of the unit cell marked by
the hexagonal lattice constants c. The purely hexagonal
2H-SiC exhibits a stacking sequence ABAB, in contrast to
ABCB for 4H-SiC and ABCACB for 6H-SiC. Electronic
properties are being influenced by the stacking sequence and
the related hexagonality of the crystals. The 2H polytype has
the largest and the 6H polytype has the smallest hexagonality
while the cubic 3C-SiC has no hexagonality at all. Choyke
et al.36 have found in experiment that there is a linear de-
pendence between the width of the fundamental gap and
the hexagonality of the polytypes. The purely hexagonal

2H-SiC has the largest while cubic 3C-SiC has the smallest
energy gap. The position of the conduction band minimum in
k space and the band splitting at the top of the valence bands
are affected by hexagonality, as well.

The experimental lattice constants of 2H-SiC are a
=3.08 Å and c=5.05 Å.37 Our calculated lattice constants
�see Table IV� are very close to these values. The calculated
band gap energies for 2H-SiC, as resulting from our LDA
and SIC calculations are compared in Table V with the re-
sults of quasiparticle calculations and with experiment. The
electronic band structure of 2H-SiC as resulting from our
SIC calculations is shown in the left panel of Fig. 4. Respec-
tive band-structure energies resulting from our LDA and SIC
calculations are summarized in Table VI in comparison with
the GWA results from Ref. 9. Experimental data for
2H-SiC are very scarce, the only known quantity seems to be
the width of the fundamental gap of 3.33 eV,37 with the
minimum of the conduction bands at the K point of the hex-
agonal Brillouin zone. Our band gap of 3.33 eV calculated
with the SIC pseudopotentials happens to exactly agree with
the experimental value showing a very significant improve-
ment as compared to the LDA result of 2.12 eV. Since there
are four ions per unit cell in 2H-SiC the band structure
features eight valence bands. Contrary to cubic 3C-SiC,
for which the upper valence band is triply degenerate at the
� point, hexagonal 2H-SiC features a splitting of the top of
the valence bands by 0.14 eV. This is attributed to the hex-
agonal crystal field which gives rise to doubly degenerate

TABLE V. Calculated band-gap energies �in eV� of the four
investigated SiC polytypes in comparison with the results of quasi-
particle calculations by Rohlfing et al. �Ref. 8� �QPR� and Wenzien
et al. �Ref. 9� �QPW� and with experiment.

LDA SIC QPR QPW Exp.

3C 1.29 2.46 2.34 2.59 2.42a

2H 2.12 3.33 3.68 3.33b

4H 2.14 3.30 3.56 3.26b

6H 1.94 3.08 3.25 3.02b

aFrom Ref. 30.
bFrom Ref. 37.

FIG. 3. Stacking sequences in hexagonal
polytypes of SiC in �0001	 direction. Side views
of six Si-C double layers are shown in each case
for better comparison.

SELF-INTERACTION-CORRECTED PSEUDOPOTENTIALS¼ PHYSICAL REVIEW B 73, 195205 �2006�

195205-7



states with px and py symmetry and a single pz like state. The
valence-band width of 17.35 eV, resulting within SIC, is
1.9 eV larger than that resulting in LDA. Note that it is close
to the valence band width of 17.18 eV resulting from our
SIC calculations for 3C-SiC. This is, like in the case of
3C-SiC, mostly caused by a strong lowering of the C 2s band
which is most noticeably around the � point. Due to the lack
of further experimental data we can only compare our results
with the GWA results of Ref. 9. The agreement of the SIC
results with the GWA results is quite good, in particular for
band-structure energies around the fundamental gap and with
respect to the valence-band width. But also in this case the

GWA calculations yield higher band-structure energies fur-
ther up in the conduction bands as was already the case for
3C-SiC �see Table II�.

Similarly satisfying results follow for 4H-SiC, which
crystallizes with the hexagonal lattice constants37 a=3.07 Å
and c=10.05 Å. Also in this case our calculated lattice con-
stants are in excellent agreement with these values �see Table
IV�. The gap energies resulting from our LDA and SIC cal-
culations are compared to GWA results9 and experiment in
Table V. The SIC band structure is shown in the middle
panel of Fig. 4 and respective band-structure energies are
compared with GWA results from Ref. 9 in Table VII. Also

TABLE VI. Calculated band-structure energies at high-
symmetry points of the Brillouin zone for 2H-SiC �in eV� in com-
parison with the results of quasiparticle calculations by Wenzien
et al. �Ref. 9� �QPW�.

2H LDA SIC QPW

�1v −15.45 −17.35 −17.39

�6v 0.00 0.00 0.00

�1c 4.60 5.79 6.66

K2v −3.79 −4.22 −4.12

K2c 2.12 3.33 3.68

H3v −1.73 −1.93 −1.83

H3c 4.92 6.17 6.86

A5,6v −0.71 −0.77 −0.75

A1,3c 5.70 6.94 7.81

M4v −1.18 −1.30 −1.13

M1c 2.59 3.84 4.28

L1,2,3,4v −2.32 −2.59 −2.30

L1,3c 3.16 4.39 4.85

TABLE VII. Calculated band-structure energies at high-
symmetry points of the Brillouin zone for 4H-SiC �in eV� in com-
parison with the results of quasiparticle calculations by Wenzien
et al. �Ref. 9� �QPW�.

4H LDA SIC QPW

�1v −15.45 −17.38 −17.30

�6v 0.00 0.00 0.00

�1c 5.00 6.20 6.92

K2v −1.66 −1.86 −1.85

K2c 3.84 5.02 5.45

H3v −2.45 −2.72 −2.68

H3c 3.10 4.30 4.68

A5,6v −0.21 −0.22 −0.20

A1,3c 5.21 6.41 7.14

M4v −1.11 −1.24 −1.23

M1c 2.14 3.30 3.56

L1,2,3,4v −1.54 −1.71 −1.68

L1,3c 2.53 3.72 4.06

FIG. 4. Band structures of the hexagonal 2H- , 4H-, and 6H-SiC polytypes as resulting from SIC calculations. The respective experi-
mental energy gaps are indicated for reference.
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for this polytype the band gap of 3.30 eV, calculated with the
SIC pseudopotentials, is in very good agreement with the
experimental gap of 3.26 eV �see also Table V�. The LDA
gap of only 2.14 eV strongly underestimates the measured
gap, as usual. In 4H-SiC there are eight inequivalent ions per
unit cell so that sixteen valence bands result. They are sepa-
rated from the conduction bands by the fundamental gap
which occurs in this case between the � and M points. The
splitting of the upper valence bands at the � point by
0.08 eV is smaller than in 2H-SiC. This is not surprising
since 4H-SiC has a smaller hexagonality than 2H-SiC.
Hence the crystal field is less pronounced. The total valence-
band width of 4H-SiC results from our SIC calculations as
17.38 eV and is very close to the respective value for the 2H
polytype. As was the case for 2H-SiC, our SIC band-
structure energies for 4H-SiC are in very gratifying agree-
ment with most of the GWA results of Ref. 9 near the gap-
energy region. In the higher conduction bands similar
deviations as noted above for the 3C and 2H polytypes occur
in this case, as well.

Finally, we address 6H-SiC. The measured hexagonal lat-
tice constants are37 a=3.07 Å and c=15.08 Å. Our calcu-
lated lattice constants are basically identical with these val-
ues �see Table IV�. The band structure calculated using the
SIC approach is shown in the right panel of Fig. 4 and a
comparison of our calculated band-structure energies with
the GWA results of Ref. 9 is given in Table VIII. As in the
other cases above, the band gap of 3.08 eV, calculated using
the SIC approach, closely agrees with the experimental
value37 of 3.02 eV �see also Table V� while the respective
LDA gap of 1.94 eV is again much too small. In 6H-SiC
there are twelve inequivalent ions per unit cell so that
twenty-four valence bands result. Their total width of
17.35 eV is basically identical to those of the other two hex-
agonal polytypes. Due to the further reduced hexagonality of
the crystal field, the � point splitting of the upper valence
bands is only 0.06 eV and thus less pronounced than in both

2H- and 4H-SiC. The band structure of 6H-SiC has one
particularly intriguing feature. Unlike the cases of the 2H
and 4H polytypes, the exact position of the conduction-band
minimum has been a matter of dispute.9,38,39 Standard LDA
calculations yield the conduction-band minimum at a k point
along the L-M line. Our SIC calculations, however, yield the
minimum at the M point as in 4H-SiC, albeit that the lowest
conduction band is very flat along the L-M line. This might
be viewed as an indication that it actually does not occur
along the L-M direction. Comparing our SIC results in Table
VIII with the GWA results of Ref. 9 very similar conclusions
can be drawn as in the case of the 2H and 4H polytypes.

As noted above, there are no experimental data on the
valence-band width of the 3C, 2H, and 4H polytypes of SiC.
For 6H-SiC, however, King et al.40 have performed x-ray
photoemission spectroscopy measurements which are espe-
cially useful for assessing the lower valence bands. When we
compare the density of states for 6H-SiC resulting from our
SIC pseudopotential calculations �not shown for brevity
sake� with the measured spectrum we find good agreement
for the peaks originating from the lowest C 2s band and the
following C2p-Si3s bands, in particular. From this agree-
ment we infer that our calculated valence-band widths for all
four polytypes seem to be realistic.

In summary, the SIC pseudopotentials turn out to yield
very reliable band-structure energies also for all three con-
sidered hexagonal SiC polytypes. In particular, the band gaps
of all four polytypes considered resulting from the SIC cal-
culations �see Table V� are in excellent agreement with ex-
periment so that the usual LDA shortcomings in describing
gap energies seem to be conquerable entirely at least for the
SiC polytypes by taking self-interaction corrections into ac-
count.

TABLE VIII. Calculated band-structure energies at high-
symmetry points of the Brillouin zone for 6H-SiC �in eV� in com-
parison with the results of quasiparticle calculations by Wenzien
et al. �Ref. 9� �QPW�.

6H LDA SIC QPW

�1v −15.42 −17.35 −17.28

�6v 0.00 0.00 0.00

�1c 5.10 6.30 6.95

K2v −2.06 −2.30 −2.31

K2c 3.35 4.54 4.88

H3v −2.26 −2.48 −2.49

H3c 3.54 4.71 5.06

A5,6v −0.10 −0.10 −0.09

A1,3c 5.17 6.37 7.02

M4v −1.09 −1.22 −1.40

M1c 1.94 3.08 3.25

L1,2,3,4v −1.30 −1.45 −1.63

L1,3c 1.98 3.15 3.36

FIG. 5. �Color online� Top and side view of the BDM of the
C-terminated SiC�001�-c�2�2� surface. Top layer carbon atoms in
the CwC surface dimers are shown by small black dots. Third
layer C atoms are depicted by small gray �dark gray� circles. Sec-
ond and fourth layer Si atoms are shown by large dark ocher �dark
gray� and large light ocher �light gray� circles, respectively.
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V. 3C-SiC„100…-c„2Ã2… SURFACE

Finally, to explore the usefulness of the SIC pseudopoten-
tials for surfaces, we briefly address their application to the
C-terminated 3C-SiC�001�-c�2�2� surface. In particular,
there are angle-resolved photoelectron spectroscopy
�ARPES� and angle-resolved inverse photoelectron spectros-
copy �ARIPES� data available for comparison.

On the basis of a whole body of experimental data and
recent ab initio DFT calculations there is now general
agreement on the bridging-dimer model �BDM� of the
3C-SiC�001� -c�2�2� surface.41 Top and side views of the
BDM, as resulting from our structure optimization42 are
shown in Fig. 5. Triple-bonded CwC dimers in the top layer
form the main building blocks of this reconstruction �see
Fig. 5�. We have calculated the surface electronic structure of
the BDM employing both standard LDA as well as the SIC
pseudopotentials from Sec. II. To describe the surface we use
the supercell approach with ten atomic layers �one H, four
Si, and five C layers� per supercell. The H layer saturates the
C bottom layer of the SiC slab in each supercell to avoid
spurious surface states from the bottom layer.

The surface band structure resulting from our LDA calcu-
lation is shown in Fig. 6. It basically agrees with the respec-
tive surface band structure which we have reported in
Ref. 42. Minor differences are due to a number of differences
in technical details of the two calculations.43 We have labeled
the most pronounced surface state bands in Figs. 6 and 7
according to Ref. 42. The T1 band originates from bonding
states of the CwC surface dimers while the T1

* band origi-
nates from the respective antibonding states �cf. respective
charge densities in Ref. 42�. The T2

* and T3
* bands originate

from antibonding surface states, as well. Note that the latter
two bands coincide with the projected bulk bands of SiC
along the �-S� and �-S symmetry lines in the LDA surface
band structure.

The surface band structure resulting from our SIC calcu-
lation is shown in Fig. 7. It shows the same topology of the
most salient surface state bands as the LDA surface band
structure in Fig. 6. There are significant differences to be
noted, however. First and foremost the SIC approach yields
an appropriate projected bulk band structure and a realistic
projected gap energy region, in particular, at last. The T1
surface band results slightly higher in energy relative to the
projected bulk valence bands than in LDA. The T1

* band
results in the SIC surface band structure throughout most
parts of the surface Brillouin zone 0.4 eV higher in energy
than in the LDA surface band structure. Note, in particular,
that it has moved up in energy by about 1 eV close to the �
point along the �-S� line where it becomes resonant with the
projected Si-derived conduction bands. The T3

* band, which
is Si-derived to a considerable extent, is about 0.7 eV higher
in energy in the SIC results than in the LDA results. Yet, it
remains to be a band of localized surface states within the
projected gap also along most of the �-S� and �-S symmetry
lines. This is due to the fact that the projected bulk conduc-
tion bands have shifted up in energy by more than 1 eV as
compared to the projected LDA bulk band structure in con-
sequence of the realistic description of the bulk conduction
bands within the SIC approach. We have included in Figs. 6
and 7 experimental ARPES and ARIPES data for compari-
son.

In the ARPES experiments, the measured occupied
valence-band states have been referred to the extrinsic Fermi
level of the samples used but the doping has not been given
in Ref. 44. We have, therefore, aligned the top of the mea-
sured bands to the top of the projected bulk valence bands in
Figs. 6 and 7. A number of valence-band surface states from
the SIC calculations, most noticeably the T1 dangling-bond
band, result in very satisfying agreement with the ARPES
data.44 It might well be that some of the valence-band fea-
tures observed in experiment are bulk derived since there is
no counterpart at all for these features in the calculated sur-
face band structure. The same good overall agreement in the
valence bands could also be achieved with the LDA results if
the experimental ARPES data were aligned, in view of the
lack of knowledge of their absolute energy position, with the
T1 band of the LDA surface band structure at the S� point, as
was done in Ref. 42.

FIG. 6. Surface band structure of the BDM of the C-terminated
SiC�001�-c�2�2� surface as resulting from standard LDA calcula-
tions. The gray-shaded areas show the projected bulk band struc-
ture. Surface states and resonances are indicated by thick and thin
lines. The thick lines refer to pronounced surface states or reso-
nances which are predominatly localized on the first two surface
layers. ARPES data from Ref. 44 and ARIPES data from Ref. 45
show measured valence and conduction band states, respectively.
ARPES data have not been reported along the S�-M-S line, to date,
and ARIPES data have only been measured along the S-�-M line.

FIG. 7. Surface band structure of the BDM of the C-terminated
SiC�001�-c�2�2� surface as resulting from SIC calculations. For
further details, see caption of Fig. 6.
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Also the ARIPES data have been referred to the extrinsic
Fermi level of the samples used in Ref. 45. In this case the
Fermi level position with respect to the valence band maxi-
mum has been inferred from other literature data on equally
doped samples to be located 1.5 eV above the top of the
valence bands. If this assignment is correct we can refer the
ARIPES data to the top of the valence bands, as is done in
Figs. 6 and 7 without the need of any rigid relative shift.
Comparing the two figures it becomes obvious that the low-
est empty surface-state band resulting from LDA deviates
more strongly from the lowest band determined in ARIPES,
actually by 1.3 eV, while this deviation is reduced to 0.9 eV
in the SIC surface band structure. In general we note from
the comparison that some of the dispersions of the ARIPES
data �even if the lowest measured empty band was aligned
with the calculated T1

* band� cannot be reconciled with the
theoretical results, neither with the LDA nor the SIC surface
band structure.

We conclude from this comparison that the surface band
structure of 3C-SiC�001�-c�2�2�, calculated within the SIC
approach, shows general improvements over the standard
LDA surface band structure concerning the projected bulk
band structure and the projected gap, in particular, the abso-
lute energy positions of empty surface-state bands, the char-
acter of localized surface states �most noticeably the band
T3

*� and the antibonding T1
* band which is in somewhat better

agreement with experiment. Certainly, these improvements
are less impressive than those for the bulk band structures of
the SiC polytypes discussed above. The fact that the upward
shift of the T1

* band resulting within SIC, as compared to
LDA, is relatively small �only 0.4 eV� ought largely to be
due to the fact that the occupied T1 and the empty T1

* bands
both originate from the triple-bonded CwC surface dimers
and thus are mainly derived from bulk states in the upper
valence bands. These are not influenced dramatically by SIC,
as we have seen in Sec. II, so that the improvements in the
calculated band gap and conduction bands of 3C-SiC do not
fully affect the T1

* band position by the same upward shift in
energy. To the best of our knowledge, there are no GWA
results for this surface available in the literature, to date,
which could be used for further comparison. A better ex-
ample for showing pronounced SIC effects on empty surface
states would certainly be the relaxed cubic 3C-SiC�110�-�1
�1� surface which features an occupied C-derived dangling-
bond band near the top of the valence bands and an empty

Si-derived dangling-bond band near the bottom of the con-
duction bands.46 So the latter can be expected to show a
similar upward shift in energy as the bulk conduction bands
�mainly Si-derived� when calculated within the SIC ap-
proach. Nevertheless we refrained from selecting that ex-
ample since there are no experimental surface spectroscopy
data available in the literature on 3C-SiC�110�-�1�1�.

VI. SUMMARY

In this paper we have shown how atomic self-interaction
corrections can be incorporated in the nonlocal part of ionic
Si and C pseudopotentials to be used in bulk and surface
calculations. Within DFT calculations we have applied these
SIC pseudopotentials to the most commonly considered cu-
bic and hexagonal polytypes of silicon carbide and have
shown that the typical LDA shortcomings in the description
of the electronic band structure of these polytypes can almost
entirely be overcome. From the comparison of our results
with experimental data and other theoretical results from the
literature we arrive at the conclusion that SIC pseudopoten-
tials are most suitable for electronic structure calculations.
Our results have been achieved without any extra computa-
tional effort compared to standard LDA calculations, much
in contrast to GWA calculations. In particular in view of this
fact, the reached agreement with literature data from experi-
ment and GWA calculations is highly satisfactory and em-
phasizes that our approach to account for self-interaction cor-
rections is a powerful tool for a more accurate description of
the electronic properties of 3C- , 2H- , 4H-, and 6H-SiC
bulk crystals. In addition, we have found that structural pa-
rameters, such as lattice constants and bulk moduli, derived
from total energies calculated employing the SIC pseudopo-
tentials, result in excellent agreement with experiment. Fi-
nally, we have shown for an exemplary case that the SIC
approach also yields a number of general improvements in
the description of surface electronic states, as compared to
standard LDA.
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