
PHYSICAL REVIEW B 73, 195126 �2006�
Collective excitations in unconventional charge-density wave systems
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The excitation spectrum of the t-J model is studied on a square lattice in the large N limit in a doping range
where a d-density-wave �DDW� forms below a transition temperature T�. Characteristic features of the DDW
ground state are circulating currents which fluctuate above and condense into a staggered flux state below T�

and density fluctuations where the electron and the hole are localized at different sites. General expressions for
the density response are given both above and below T� and applied to Raman, x-ray, and neutron scattering.
Numerical results show that the density response is mainly collective in nature consisting of broad, dispersive
structures which transform into well-defined peaks mainly at small momentum transfers. One way to detect
these excitations is by inelastic neutron scattering at small momentum transfers where the cross section
�typically a few percent of that for spin scattering� is substantially enhanced, exhibits a strong dependence on
the direction of the transferred momentum and a well-pronounced peak somewhat below twice the DDW gap.
Scattering from the DDW-induced Bragg peak is found to be weaker by two orders of magnitude compared
with the momentum-integrated inelastic part.
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I. INTRODUCTION

The electron density operator � on a lattice has in momen-
tum space the general form

��q� =
1

Nc
�
k�

��k,q�c�
†�k + q�c��k� . �1�

c�
†�k� ,c��k� are electron creation and annihilation operators

with momentum k and spin projection �, Nc is the number of
primitive cells, q is the transferred momentum, and k char-
acterizes the relative motion of electron and hole. If both
particles reside always on the same lattice site � is indepen-
dent on k and � describes a usual density wave. This wave
may condense for some wave vector q different from the
reciprocal lattice vectors of the unmodulated lattice and a
conventional charge density wave �CDW� state is obtained.
If the electron and hole explore different sites � depends on
k and the condensation of this wave yields a CDW state with
an internal symmetry described by the k dependence of �.
We will call this state in the following an unconventional
CDW state.1 Proposals for systems with an unconventional
CDW state include organic conductors1,2 and the pseudogap
phase of high-temperature superconductors.3–7

Static and fluctuating density waves of the general form
of Eq. �1� can be observed by various experimental probes.
The vector potential generated by the magnetic moment of
neutrons influences the hopping elements of electrons via the
Peierls substitution. Thus neutrons probe orbital magnetic
fluctuations associated with density fluctuations. As shown in
Ref. 3 the resulting neutron cross section is related to the
imaginary part of a retarded density-density correlation func-
tion, where � is given by

��k,q� =
8i�e�0teff

�c�q�
· � �

j=x,y

	 j

qj
��1 − cos qj�cos kj

+ sin qjsin kj�� , �2�
with
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� =
�

�0



q

�q�
. �3�

The expression Eq. �2� applies to a solid of square layers
with lattice constant a which we put, together with � to one
in the following. teff is an effective nearest neighbor hopping
integral, c the velocity of light, � the magnetic moment of

the neutrons, and �0=	�2

3 . We neglect hopping between the
layers as well as a small contribution to � from second-
nearest neighbor hoppings 
t�. Similarly, inelastic light and
nonresonant x-ray scattering are determined by the Raman or
the x-ray scattering amplitude which corresponds to the fol-
lowing expression for �:8

��k,q� = �
	�

e	
s �2��k + q/2�

�k	 � k�

e�
i . �4�

ei and es are the polarization vectors of the incident and
scattered light, respectively, and ��k� is the one-particle en-
ergy. In contrast to Refs. 3 and 8 we assumed that the Peierls
substitution is made in the renormalized Hamiltonian so that
the renormalized hopping teff and one-electron band appear
in Eqs. �2� and �4�. For Raman scattering the momentum
transfer is practically zero whereas no such restriction exists
for x-ray scattering.

Microscopic models for interacting electrons usually con-
tain interactions between local charge densities or spin den-
sities, such as, the Coulomb or Heisenberg interaction.
k-dependent densities of the form of Eq. �1� become impor-
tant if the exchange terms are competing or dominating the
direct, Hartree-like terms. The excitonic insulator is such a
case where the Coulombic exchange terms not only create
excitons but force them to condense into a new ground state.9

These ideas were applied to high-Tc cuprates by Efetov10

assuming that the barely screened Coulomb interaction be-
tween layers produces interlayer excitons and their conden-
sation. More recently, it was recognized that the t-J model in
the large N limit �N is the number of spin components�
©2006 The American Physical Society-1
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shows a transition to a charge-density wave state with inter-
nal d-wave symmetry �DDW� at low doping4 with a transi-
tion temperature T�. This model describes electrons in the
CuO2 planes of high-Tc cuprates and identifies the
pseudogap phase at low dopings with a DDW state. One may
expect that near the phase boundary to the DDW state or in
the DDW state density fluctuations of the form of Eq. �1�
become important and, according to the above discussion,
could be detected by neutron or x-ray scattering. It is there-
fore the purpose of this paper to calculate the general density
response of this model, both above and below T�, and to
make predictions for the magnitude and the momentum and
polarization dependence of neutron and x-ray cross sections.

The order parameter of a commensurate DDW state with
wave vector �� ,�� is purely imaginary which follows from
the hermiticity of the large N Hamiltonian. As a conse-
quence, circulating, local currents accompany in general den-
sity fluctuations in the DDW state producing orbital mag-
netic moments localized on the plaquettes of the square
lattice. The circulating currents fluctuate above and freeze
into a staggered flux phase below T�. Most previous calcu-
lations considered q=0 quantities such as the frequency-
dependent conductivity11–14 or Raman scattering.11,15 Calcu-
lations for finite momentum transfers16 to be presented below
are interesting because they probe the local properties of the
density fluctuations and the flux lattice.

In Sec. II we will first reformulate the large N limit of the
t-J model in terms of an effective Hamiltonian which con-
tains usual electron creation and annihilation operators �i.e.,
no constrained operators�, renormalized bands and an inter-
action between several charge density waves. This effective
model contains as a special case the models used in Refs. 1
and 11 in discussing anomalous charge density waves. We
then extend previous normal-state calculations of the density
response, given by a 6
6 susceptibility matrix 
, to the
DDW state using the Nambu formalism. The obtained ex-
pressions hold for all momenta q and are general enough to
discuss the dispersion of collective modes and the momen-
tum and polarization dependencies of experimental cross
sections.

Section III contains numerical results for the formulas
presented in Sec. II. In Sec. III A the density fluctuation
spectrum in the d-wave channel will be discussed as a func-
tion of momentum, both above and below T*. In Secs. III B
and III C results for the cross sections for nonresonant inelas-
tic x-ray scattering and for polarized and unpolarized neutron
scattering will be given, and Sec. III D compares the magni-
tude of q integrated neutron cross sections for spin and for
orbital scattering. Section IV contains our conclusions.

II. DENSITY RESPONSE IN THE D-CDW STATE

In Refs. 17 and 18 it has been shown that the density
response in the normal state of the t-J model at large N can
be obtained by using the following two sets of density op-
erators:

�	��q� =
1

Nc
� E	�k,q�c�

†�k + q�c��k� , �5�

k�
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���q� =
1

Nc
�
k�

F��k�c�
†�k + q�c��k� , �6�

with

E	�k,q� = �1,t�k + q� + J�q�,�3�k�,�4�k�,�5�k�,�6�k�� ,

�7�

and

F��k� = �t�k�,1,2J�3�k�,2J�4�k�,2J�5�k�,2J�6�k�� . �8�

Compared to Refs. 17 and 18 a slight change in the repre-
sentation of the basis functions has been made by using the
symmetrized functions

�3,5 = �cos kx ± cos ky�/2,

�4,6 = �sin kx ± sin ky�/2, �9�

where the subscripts 3 and 4 refer to the + and 5 and 6 to the
− sign. Here, and in the following, we put the lattice constant
of the square lattice to 1. t�k� and J�k� are the Fourier trans-
forms of the hopping amplitudes tij and the Heisenberg term
Jij, respectively. Including nearest and second nearest neigh-
bor hoppings t and t�, respectively, we have

t�k� = 2t�cos kx + cos ky� + 4t�cos kxcos ky . �10�

The corresponding density-density Matsubara Green’s func-
tion matrix is defined by


	��q,i�n� = − �
0

1/T

d�e−i�n��T��	��q����
†�q0�
 . �11�

The general solution for 
 in the normal state has been
given in the large N limit and the dispersion of macroscopic
density fluctuations, determined by the element 
12, have
been discussed.17,19 At low temperatures and dopings the
density component �5�Q� freezes in for a wave vector Q
approximately equal to �� ,��, leading to the DDW state.

The Hilbert space of the t-J model does not contain
double occupancies of sites, its operators are therefore X and
not the usual creation and annihilation operators ci�

† and ci�
of second quantization. In the large N limit the t-J model
becomes, however, equivalent to the following effective
Hamiltonian in terms of usual creation and annihilation op-
erators

Heff = �
k�

��k�c�
†�k�c��k� −

Nc

2 �
	=1

6

�
q

�	��q��	
†�q� . �12�

��k� are the one-particle energies in the large N limit, to be
self-consistently determined from the equation

��k� =
�

2
t�k� −

J�k�
2

1

Nc
�
p

cos�px�f���p� − �� . �13�

� is the renormalized chemical potential and f the Fermi
function. The second term in Eq. �12� represents an effective
interaction originating from the functional derivative of the
self-energy with respect to the Green’s function. This inter-

action is Hermitean though its present form does not show
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this property explicitly because of the chosen compact form
to represent it. Using Eqs. �5� and �6� one easily verifies that
the sum of the terms 	=3¯6 represent the Heisenberg in-
teraction, written as a charge-charge interaction and as a sum
of four separable kernels. The terms 	=1,2 originate from
the constraint which acts in Heff as a two-particle interaction.
Heff and the original t-J Hamiltonian in the large N limit
become equivalent if only bubble diagrams generated by the
second term in Heff and no self-energy corrections are taken
into account. In the DDW state ��	�Q�
 and ��	��Q�
 become
nonzero for 	=5. We rewrite Heff as

Heff = �
k�

��k�c�
†�k�c��k� − Nc��5��Q�
�5

†�Q�

−
Nc

2 �
	=1

6

�
q

�̃	��q��̃	
†�q� . �14�

The tilde at the density operators means that only their fluc-
tuating parts should be considered.

In order to be able to use usual diagrammatic rules in the
DDW state we introduce the Nambu notation, i.e., the row
vector ��

†�k�= �c�
†�k� ,c�

†�k+Q�� and the corresponding col-
umn vector obtained by Hermitean conjugation. We also
make the convention that the momentum in � or �† are al-
ways taken modulo the reduced Brillouin zone �RBZ�, i.e.,
lie in the RBZ. The momentum sums over the �large� Bril-
louin zone �BZ� are then split into parts inside and outside of
the RBZ and the two parts then combined using the Nambu
vectors and Pauli matrices. We obtain then

�	��q� =
1

Nc
��

k�

��
†�k + q�Ê	�k,q����k� , �15�

���q� =
1

Nc
��

k�

��
†�k + q�F̂��k����k� , �16�

with

F̂1�k� = t�1��k�Po�k + q,k� + t�2��k�Pe�k + q,k� ,

F̂2�k� = Pe�k + q,k� ,

F̂��q� = F��k�Po�k + q,k� , �17�

for �=3¯6,

Ê1�k,q� = F̂2�k� ,

Ê2�k,q� = t�1��k + q�Po�k + q,k�

+ �t�2��k + q� + J�q��Pe�k + q,k� ,

Ê	�k,q� = F̂	�k�/2J , �18�

for 	=3¯6, and
Po�k + q,k� = p�k + q,k��3 − i�1 − p�k + q,k���2,

195126
Pe�k + q,k� = p�k + q,k��0 + �1 − p�k + q,k���1. �19�

t�1��k� and t�2��k� are the Fourier transforms of the nearest
and second-nearest neighbor hopping amplitudes, �0 is the
2
2 unit matrix, and �1 ,�2 ,�3 are Pauli matrices. The dash
on the summation sign in Eq. �16� means a restriction of the
sum to the RBZ. p�k+q ,k� with k in the RBZ is equal to
one if k+q, reduced to the BZ, lies in the RBZ and is zero
otherwise. Finally, the first and second terms in Heff can be
combined and read in Nambu notation as

Heff
�0� = ��

k�

��
†�k����+�k� − ���0 + �−�k��3

+ ��5�k��2����k� . �20�

The energies �± are defined by ���k�±��k+Q�� /2. � is an
abbreviation for the amplitude of the DDW and must be real
because of the Hermiticity of Heff.

Using the above Nambu representation the susceptibility
matrix 
	� is obtained by a bubble summation


	��q� = �
�


	�
�0��q��1 + 
�0��q����

−1 . �21�

Here we used the abbreviation q= �i�n ,q� with the bosonic
Matsubara frequencies �n=2�Tn, where T is the tempera-
ture. 
�0��q� stands for a single bubble and is given analyti-
cally by the expression


	�
�0��q� =

T

Nc
��

kn

Tr�G�k + q�Ê	�k,q�G�k�F̂�
†�k�� , �22�

with the Nambu Green’s function

G�k� =
�i�n + � − �+�k���0 + �−�k��3 + ��5�k��2

�i�n − E1�k���i�n − E2�k��
,

�23�

and the two eigenenergies

E1,2�k� = �+�k� − � ± 	�−
2�k� + �5

2�k��2. �24�

After performing the trace over Pauli matrices and the sum
over fermionic Matsubara frequencies in Eq. �22� only the
sum over momenta is left for a numerical evaluation. In the
normal state we obtain


	�
�0��q,i�n� =

1

Nc
�
k

E	�k,q�F��k�
f���k + q�� − f���k��
��k + q� − ��k� − i�n

.

�25�

Two special cases of Eq. �21� should be mentioned. If q is
parallel to the diagonal, i.e., of the form q= �q ,q�, the com-
ponents 5 and 6 in the matrices, which are odd under reflec-
tion at the diagonal, decouple from the other components. At
the points q= �0,0� and �� ,�� they even decouple from each
other so that Eq. �21� can be solved by division, for
instance,20


55�q� = 
�0��q�/�1 + 
�0��q�� , �26�
55 55
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for q= �0,0� and q= �� ,��. In the first case 
55 describes the B1g component of Raman scattering,15 in the second case
amplitude fluctuations of the order parameter.16 The explicit expression for 
55

�0��q� is


55
�0��q,i�n� =

2J

Nc
��

k
�5

2�k��p�k + q,k�
̂33�k,q� + �1 − p�k + q,k��
̂22�k,q�� , �27�


̂ll�k,q� =
2

�E�k��E�k + q� �
	,�=1

2

�− 1�	+� ·
Yl�E	�k + q��f�E	�k + q�� − Yl�E��k��f�E��k��

E	�k + q� − E��k� − i�n
, �28�
with

Yl�E� = �E + i�n + � − �+�k + q���E + � − �+�k��

+ �− 1�l+1��−�k + q��−�k� + �2�5
2�k�� , �29�

for l=2,3. �E�k� is equal to E1�k�−E2�k�. The other special
case refers to a DDW without constraint.11,16 Since the com-
ponents 1 and 2 were caused by the constraint they can be
dropped in this case and Eq. �21� reduces to a 4
4 matrix
equation. The four components arise because a nearest
neighbor charge-charge interaction leads to four separable
kernels. If this interaction is furthermore approximated by
one kernel, associated with the order parameter, Eq. �21�
reduces to one scalar equation, and one arrives at the models
of Refs. 1 and 11. Various generalized density fluctuations
have also been considered in the slave boson approach.21,22

The above formulas allow to calculate density correlation
functions which can be expressed by �� or � defined in Eqs.
�5� and �6�. The most general case may, however, involve
two additional densities �0 and �0� in Eqs. �5� and �6�, respec-
tively, where E0 and F0 are general functions of k. Going

over to the Nambu representation Ê0 and F̂0 are then linear
combinations of the Pauli matrices and general functions of
k. Using the diagrammatic rules and the effective Hamil-
tonian one finds for the general susceptibility 
00�q�,


00�q� = 
00
�0��q� + �

	�


0	
�0��q�
	��q�
�0

�0��q� . �30�


00
�0��q� is given by Eq. �22� where both 	 and � have been

replaced by 0. Similarly, the expressions for 
0�
�0� and 
	0

�0� are
obtained from Eq. �22� by replacing only 	 or �, respec-
tively, by 0. 
	� is given by Eq. �21�.

III. NUMERICAL RESULTS

A. d-wave susceptibility �55

From now on we will write t=−�t� and use �t� as the en-
ergy unit. Furthermore, the Heisenberg constant J and the
doping � will be fixed to the values 0.3 and 0.077, respec-
tively. The mean-field value for the superconducting transi-
tion temperature is then practically zero so that we deal with
a pure DDW system. Figure 1 shows the negative imaginary
part of the retarded susceptibility 
55�q ,��, denoted by 
55�
in the following, as a function of � in the normal state, using

t�=−0.3 and a small imaginary part �=0.001. We have cho-

195126
sen the component 
55 and the wave vector q= �� ,�� be-
cause the transition to the DDW state occurs in this symme-
try channel and near this wave vector. Decreasing the
temperature from T=0.032 to T=0.028 shifts spectral weight
in the overdamped spectrum from large to small frequencies
until a sharp and intense peak appears very near to the tran-
sition point T�
0.028. Decreasing further the temperature
the spectrum becomes again broad and moves to higher fre-
quencies. The inset of Fig. 1 shows the temperature depen-
dence of the DDW order parameter � which exhibits the
usual mean-field behavior.

Figure 2 shows a three-dimensional plot of 
55� as a func-
tion of � in the normal state at T=0.039. The momentum
runs from the point �= �0,0� to the points S= �� ,�� and X
= �0,��, and back to the point �. The curves for �, S, and X
are drawn as thick lines to facilitate the visualization. Ac-
cording to Eq. �25�, and similar as in the case of the usual
charge susceptibility, 
55 exhibits a singular behavior at
small frequencies and wave vectors in the limit �→0: Fixing
the momentum to q= �0,0� 
55�0,�� is zero for any finite
frequency �. Putting � to zero and taking the limit q→0 
55
approaches a finite value. This explains the absence of a
thick line at � in Fig. 2. Moving the momentum from � to S
the zero-frequency peak of measure zero at � acquires a
finite width, i.e., a finite spectral weight, and at the same

FIG. 1. Negative imaginary part of 
55 of the t-J model at large
N for t�=−0.3, �=0.001, q= �� ,��, and doping �=0.077. Inset:

DDW order parameter � as a function of temperature T.
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time peaks at a finite frequency. Both the width and the peak
increase first rapidly with momentum. The peak position
passes then through a maximum at �
0.04, starts to de-
crease, and reaches a minimum at S signalling the transition
to the DDW state at lower temperatures. The width of the
peak as well as the extension and intensity of the slowly
decaying structureless background increases up to the point
S. Moving along the direction S-X-� the low-frequency peak
looses rapidly spectral weight, vanishes practically at X, and
recovers somewhat towards �. At the same time a well-
pronounced, strong high-frequency peak develops, its fre-
quency decreases monotonically along the above path, and
its intensity shows a maximum near the point X. The disper-
sion of this high-frequency peak is 
sin kx between � and X,
i.e., it is identical with the sound wave due to usual density
fluctuations.19 This means that d-wave density fluctuations,
described by 
55� , strongly couple to usual density fluctua-
tions along the path S-X-� whereas such a coupling is for-
bidden by symmetry along �-S.

Figure 3 shows the same 3d plot as Fig. 2 but the calcu-
lation is now performed at T=0 in the DDW state. Differ-
ences in the two figures thus have to be ascribed to the for-
mation of the DDW. Taking the different scales in the two
figures into account one sees that the intensity of the high-
frequency peak due to usual density fluctuations did not

FIG. 2. 
55� in the normal state at T=0.039 calculated for t�=
−0.3, �=0.077, and along the line �-S-X-� in the Brillouin zone.

FIG. 3. 
55� at T�0. calculated for t�=−0.3, �=0.077, and along

the lines �-S-X-� in the Brillouin zone.
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change much. Big changes, however, occur at low frequen-
cies. 
55� no longer vanishes at finite frequencies at the �
point but rather shows there a well-pronounced and strong
peak. Moving away from the � point this peak looses rapidly
intensity whereas its frequency does not change much.

To understand the origin and the properties of the low-
frequency peak in more detail we have plotted in Fig. 4 
55�
and 
55

�0�
� as a function of frequency for several q values

between the � and S point. The dashed line in the upper
diagram represents 
55

�0�
� at the wave vector q= �� ,��. It con-

tains only interband transitions across the DDW gap, mainly
between the points X and Y and between the hot spots on the
boundaries of the RBZ. The intraband contribution is zero by
symmetry at S. Since � is about 0.07 the interband transi-
tions lead to a broad peak somewhat higher than twice the
DDW gap. The solid curve in the upper diagram of Fig. 4
represents 
55� at S. It shows a much more pronounced peak
than the dashed curve which originates from the denominator
in Eq. �26�, i.e., which represents a collective excitation. It
corresponds to the amplitude mode of the DDW, where the
order parameter � is modulated without changing its d-wave
symmetry. Its frequency is somewhat smaller than 2� which
is expected for a d-wave state. For an isotropic s-wave
ground state the two frequencies would be exactly the same.

The lowest panel in Fig. 4 shows the same susceptibilities
at the � point. 
55

�0�
� again contains no intraband but only

interband contributions consisting of vertical transitions
which probe directly the DDW gap. As a result, 
55

�0�
� exhibits

a well-defined peak at 2� and a long-tail towards smaller
frequencies due to the momentum dependence of the order
parameter. The solid curve, representing 
55� , exhibits a well-
pronounced peak much below 2�. It corresponds to a bound
state inside the d-wave gap created by multiple scattering of
the excitations across the gap due to the Heisenberg interac-
tion. Due to its large binding energy the density of states
inside the gap is rather small at the peak position so that the
width of the peak is substantially smaller than that of the

15

FIG. 4. 
55� �solid lines� and 
55
�0�

� �dashed lines� for momenta
along the diagonal q= �q ,q�.
amplitude mode at the momentum �� ,��. Previously, we
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have associated this peak with the B1g peak seen in Raman
scattering in high-Tc superconductors. Note that there is
roughly a factor of 5 difference in the scales of the top and
bottom panels in Fig. 4. It means that the amplitude mode of
the DDW order parameter has a much larger spectral weight
and also smaller width at the �than at the S point.

For momenta q between � and S both intraband and in-
terband transitions contribute to 
55

�0�
�. The intraband part,

reflecting the residual Fermi arcs in the DDW state, turns out
to be in general substantially smaller than the interband part
and consists of a broad peak which disperses roughly as
sin�q� and which looses its intensity when approaching � or
S. So only the low-frequency tails and the structure around
the frequency 0.04 in the second panel from above can be
attributed to intraband scattering, the remaining spectral
weight is due to interband scattering. Going from � to S the
solid lines show the dispersion of the amplitude mode which
is in general well below the main spectral peak in 
55

�0�
�,

representing a resonance mode with a frequency and width
determined mainly by the denominator in Eq. �26�. From the
different scales used in each panel it is evident that the in-
tensity of the amplitude mode strongly decays away from the
� point in agreement with Fig. 3.

B. Nonresonant inelastic x-ray scattering

Specifying the polarization vectors of the incident and
scattered light and using Eqs. �13� and �10� for the electron
dispersion the cross section for inelastic x-ray scattering is
determined by 
X� and 
X is obtained as a linear combination
of the susceptibility matrix elements 
	�. As an example,
consider the case ei= �1,1� /	2,es= �1,−1� /	2, which yields
for q=0 the B1g component of Raman scattering. Choosing
the symmetry direction q= �q ,q�, we find


X�q,i�n� =
2teff

2

J
�cos2�q

2
�
55�q,i�n� + sin2�q

2
�
66�q,i�n�

− sin�q�
56�q,i�n�� , �31�

with the effective nearest-neighbor hopping element teff de-
termined by the large N dispersion of Eq. �13�. The second-
nearest hopping element t� drops out in the considered sym-
metry. In Fig. 5 we have plotted 
X without this prefactor
along the points �-S-X-� generalizing Eq. �31� to an arbi-
trary k point in the Brillouin zone. One feature of 
X� is that
the high-frequency side bands due to usual density fluctua-
tions are practically absent. This may be explained by the
fact that the various contributions to 
X� have both signs caus-
ing large cancellation effects. Another difference between
Figs. 3 and 5 occurs around the point S where additional
structure is seen in 
X� due to the component 
66.

C. Inelastic neutron scattering

Using the symmetry-adapted functions Eq. �9� the expres-
sion for �, Eq. �2�, can be written as
195126
��k,q� =
8�ie�0teff

�c�q� �
�=3

6

B��q����k� , �32�

with

B3,5 =
	x

qx
�1 − cos qx� ±

	y

qy
�1 − cos qy� , �33�

B4,6 =
	x

qx
sin qx ±

	y

qy
sin qy , �34�

where the subscripts 3 and 4 refer to the + and 5 and 6 to the
− signs, respectively. The charge correlation function, de-
scribing neutron scattering, is given by


N�q,�� =
1

2J
�8�e�0teff

c�q� �2

�
�,�

B��q�B��q�
���q,�� .

�35�

Figure 6 shows 
N� �q ,�� as a function of � for momenta
along the symmetry line �-S-X-� in the Brillouin zone for

FIG. 5. d-wave cross section for nonresonant, inelastic x-ray
scattering for the t-J model at large N in the DDW state at T=0. The
momentum varies along the points �-S-X-� in the Brillouin zone.

FIG. 6. 
N� describing neutron scattering as a function of � along
the line �-S-X-� in the Brillouin zone in the DDW state at T=0

using t�=−0.3, �=0.077, qz=0.5, and �=0.05.

-6



COLLECTIVE EXCITATIONS IN UNCONVENTIONAL¼ PHYSICAL REVIEW B 73, 195126 �2006�
the fixed momentuma transfer qz=0.5. The spin of the neu-
trons was assumed to be polarized along the z axis. The
spectra show essentially one more or less well-defined peak
which disperses roughly between the frequencies 0.1 and 0.2.
Similarly as in Fig. 4 this peak describes a mainly collective
excitation of the system related to a bound state inside the
DDW gap. In spite of the rather large momentum transfer
qz=0.5 the peak intensity increases substantially towards the
point �. This increase becomes more and more pronounced
if qz is further lowered until it diverges like 1/ �q�2 in the limit
qz→0.

An important special case of Eq. �35� is scattering by
unpolarized neutrons. Averaging over all spin directions for
the neutrons yields the charge correlation function 
N,u for
scattering with unpolarized neutrons,


N,u�q,�� = �
	�

F	��q�
	��q,�� , �36�

with

F	� =
1

2J
�8�e�0teff

c�q� �2

�B	�q�B��q�
av, �37�

where �. . .
av denotes an average over all directions of the
moment of the neutron. We obtain

�B	�q�B��q�
av =
1

�q�2
��qy

2 + qz
2�f	f� − qxqy�f	g� + g	f��

+ �qx
2 + qz

2�g	g�� , �38�

with f3= f5= �1−cos qx� /qx, g3=−g5= �1−cos qy� /qy, f4= f6

=sin qx /qx, g4=−g6=sin qy /qy. 
N,u�q ,�� diverges at small
momentum transfers in the DDW state. To extract its singu-
lar part one may take the limit q→0 in the f , g, and 

functions. One obtains then


N,u 
 � 1

�q�2
+

qz
2

�q�4
�
66�0,i�n� . �39�

In the normal state 
66 vanishes at q=0 for any finite fre-
quency as can be seen from the explicit expression Eq. �25�.
In contrast to that it is finite at q=0 in the DDW state de-
scribing a continuum of particle-hole excitations with zero
total momentum across the gap. As a result 
N,u diverges
quadratically in the momentum q� parallel to the layers for
qz=0. This divergence is caused by the long-range part of the
interaction between the magnetic moment of the neutron and
the electrons in the layers. It is thus a real effect causing a
singular forward scattering contribution in the cross section.
Integrating 
N,u� over q diverges logarithmically in a strictly
2d description at qz=0 whereas it remains finite in three
dimensions. The large enhancement of 
N,u� near the point �
is illustrated in Fig. 7. The curve at � shows a peak at �

0.1 well inside the gap of 2�0
0.14, which disperses to
higher frequencies moving away from �, especially, along
the diagonal. More dramatic is, however, the rapid decay of
the intensity of the peak away from � which can be seen
from the different scales used in plotting the various panels.

Another special case of Eq. �35� is obtained for an arbi-

trary polarization for the neutron moment and a vanishing

195126
momentum transfer in the z direction, i.e., for q= �qx ,qy ,0�.
The functions Bi assume in this case the form for i=3,4,

Bi =
�z

�0�q�
�− qyfi + qxgi� ,

Bi+2 =
�z

�0�q�
�− qyfi − qxgi� . �40�

The polarization dependence of 
N is simply cos2 � where �
is the angle between the neutron spin and the normal to the
layers. 
N assumes its largest value if the spin is perpendicu-
lar and is zero if the spin is parallel to the layers. In this case

N diverges as 1/ �q�2 for all polarizations of the neutron and
the singular contribution is isotropic in the qz=0 plane. For
qz�0 the dependencies of 
N on the polarization and the
momentum no longer factorize but can be worked out for the
most general case using Eq. �35�.

D. Comparison of scattering efficiencies from spin
and orbital fluctuations

As discussed in the previous sections the total magnetic
neutron cross section contains, in addition to the dominating
spin flip contribution, an orbital part. Above and not too far
away from T� up to the DDW state the scattering from fluc-
tuating orbital moments produced by circulating currents
around a plaquette are mainly concentrated around the wave
vector Q= �� ,��. Below T� there is an elastic Bragg compo-
nent at wave vector Q and a fluctuating part throughout the
Brillouin zone. Though magnetic scattering from spin flip
and orbital scattering have many features in common there
are three main differences: �a� In spin scattering the form
factor reflects the electron density distribution within an
atom whereas in orbital scattering the form factor is related
to the plaquette geometry which gives rise to the trigonomet-
ric functions in the functions B ; �b� The long-range dipole-

FIG. 7. 
N,u� describing scattering with unpolarized neutrons as a
function of � for momenta around the point � in the DDW state at
T=0 using t�=−0.3, �=0.077, and qz=0.5.
�
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dipole interaction between neutrons and the electrons domi-
nates in orbital scattering yielding a singular forward
scattering peak below Tc whereas the interaction between
neutrons and electrons for spin scattering reduces to a local
one; �c� The intensity of orbital scattering is substantially
smaller than that for spin scattering. For instance, a ratio of
1:70 has been obtained in Ref. 3 for Bragg scattering. In the
following we present results on frequency and in-plane mo-
mentum integrated scattering probabilities in the two cases.
In this way the anomalous forward scattering contribution in
orbital scattering can be taken into account in this compari-
son. We also recalculate the intensity for Bragg scattering
and find it much smaller than the value calculated in Ref. 3.

The expression 2
N,u� �q ,���1+n���� describes the scatter-
ing probability of an unpolarized neutron with momentum
and frequency transfers q and �, respectively, from orbital
fluctuations. Integrating over frequency and the in-plane mo-
mentum q� the integrated scattering probability Porb be-
comes, using Eq. �36� and reinserting a and � for clarity

Porb�qz� = Porb
Bragg�qz� + Porb

dyn�qz� , �41�

Porb
Bragg�qz� = 2F55�Q,qz���5��Q�
��5

†�Q�
 , �42�

Porb
dyn�qz� =

2

Nc
2/3�

q�

�
−�

�

d��1 + n����
̃N,u� �q,��

=
2

Nc
2/3 �

q�,	,�
F	��q���̃	��q���̃�

†�q��
 . �43�

In Eq. �41� Porb has been splitted into a static Bragg contri-
bution Porb

Bragg and a dynamic part Porb
dyn. Correspondingly, the

tilde in Eq. �43� indicates that only the fluctuating part of the
densities should be used in the correlation functions.

Similar considerations apply to unpolarized neutron scat-
tering from spin fluctuations. The relevant susceptibility in
the paramagnetic state is23

�2

6
�8�eF�q�

mca3 �2


zz�q,�� . �44�

F�q� is the atomic structure factor and 
zz�q ,�� the zz com-
ponent of the electronic spin susceptibility. Using the
fluctuation-dissipation theorem, approximating F�q� by
F�0�=1, and assuming no magnetic coupling between the
layers, the total scattering probability Ps by spin fluctuations
becomes24

Ps =
�2

12
� 8�e

mca3�2

��1 − �� . �45�

Most interesting are the ratios of integrated orbital to spin
scattering, i.e., RBragg= Porb

Bragg/ Ps and Rdyn= Porb
dyn/ Ps. Using

the above results one obtains
195126
Rdyn�qz� = A
1

Nc
2/3 �

q�,	,�

�B	�q�B��q�
av

�aq�2

· �
−�

�

d�����1 + n����
	�� �q/�t�,�� , �46�

with the dimensionless constant

A =
4

��1 − ���J/�t��� teff

�2/�ma2��2

, �47�

and

RBragg�qz� = A
��B5�Q��2
av

a2�Q2 + qz
2�

��5��Q�
��5
†�Q�
 . �48�

Using �t � =0.5 eV we obtain from Eq. �13� �teff �

0.07 eV, which yields together with a=3.856 Å A
0.09
for our doping �=0.077. Comparison of Eq. �14� with Eq.
�20� gives

��5��Q�
��5
†�Q�
 =

�2

2J

 0.082, �49�

for T=0 and �=0.077. Furthermore, from Eq. �38� we get

��B5�Q��2
av = 8/�2, �50�

which yields

RBragg�0� = 3 
 10−5. �51�

Unlike in the case of spin scattering the momentum and fre-
quency sums in Eq. �46� are nontrivial and we have carried
them out by numerical methods.

Figure 8 shows the results for Rdyn and RBragg as a func-
tion of qz at zero temperature. As expected Rdyn increases
strongly at small qz due to its logarithmic singularity at qz
=0. Integrating Rdyn also over qz yields a value of about 10−2

which is more than two orders of magnitude larger than
RBragg. The reason for this large difference is due to the fact
that in the momentum integration in Rdyn mainly the small

2

FIG. 8. Ratios RBragg and Rdyn for elastic and inelastic orbital to
spin scattering, respectively.
momenta contribute where 1/q is larger than 1. In contrast

-8



COLLECTIVE EXCITATIONS IN UNCONVENTIONAL¼ PHYSICAL REVIEW B 73, 195126 �2006�
to that, RBragg probes the integrand of Rdyn at the large value
�Q� where 1/q2 is very small. The extreme small value
RBragg
10−5casts doubts on the identification of the ob-
served Bragg peak at Q with the Bragg peak due a DDW.25

On the other hand, if a DDW state is realized in some mate-
rial we think that the resulting strong forward scattering peak
in neutron scattering would be observable. According to our
predictions it would exhaust roughly 3% of the sum rule for
spin scattering. Recently, elastic neutron scattering from
weak magnetic moments in underdoped YBa2Cu3O6+x has
been observed26 which has been interpreted in terms of or-
bital moments due to circulating currents. The absence of
breaking of translational symmetry as well as the large cross
section �compared to our RBragg� in the experiment suggest a
different scattering mechanism than that considered in this
paper. Remarkable is, however, that our total cross section is
roughly of the same magnitude as that in Ref. 26.

IV. CONCLUSIONS

The excitation spectrum of the t-J model at large N was
studied for dopings where a DDW forms below a transition
temperature T�. The density response includes “conven-
tional” local density fluctuations, characterized by the energy
scale t, where practically all spectral weight is concentrated
in a collective sound wave with approximately a sinusoidal
dispersion. In addition, and this was the main topic of this
investigation, there is a “unconventional” density response
from orbital fluctuations caused by fluctuating circulating
currents above T� and fluctuations around a staggered flux
phase below T�. The corresponding spectra are again mainly
collective, their energy scale is J or a fraction of it, and they
can be viewed as order parameter modes of the DDW. At

small momentum transfers the spectra are dominated by one

B. Valenzuela, E. J. Nicol, and J. P. Carbotte, Phys. Rev. B 71,
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well-defined peak corresponding to amplitude fluctuations of
the DDW. For larger momentum transfers, unconventional
density fluctuations tend to become broad and their intensity
suppressed. This is especially true near the point X where
practically no weight is left for orbital fluctuations at low
frequencies, but instead a rather sharp peak due to sound
waves appear at large frequencies reflecting the coupling of
the two kinds of density fluctuations.

In principle the above orbital fluctuations show up in the
Raman, x-ray, and neutron scattering spectra. The predicted
scattering intensities are, however, rather small. The reason
for this is that, on the one hand, a rather small effective
nearest-neighbor hopping element teff is needed to provide a
sufficiently large density of states and the instability to the
DDW, on the other hand, the square of teff appears as a pref-
actor in the various cross sections due to the Peierls substi-
tution. As a result, the q integrated inelastic cross section is
only a few percent of that for spin scattering and the elastic
scattering from the Bragg peak is even much weaker. From
our calculations it is also evident that a DDW state in the
unconstrained, weak-coupling case would have very similar
properties as in the t-J model. In particular, the curves for
Rdyn and RBragg would closely resemble those in Fig. 8. An
experimental verification of a DDW state via inelastic neu-
trons seems to be not unfeasible because a good deal of the
scattering intensity is concentrated in a well-pronounced, in-
elastic peak somewhat smaller than the DDW gap and in
small region around the origin in k space.
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