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We investigate transport properties of quantized chaotic systems in the short-wavelength limit. We focus on
noncoherent quantities such as the Drude conductance, its sample-to-sample fluctuations, shot noise, and the
transmission spectrum, as well as coherent effects such as weak localization. We show how these properties are
influenced by the emergence of the Ehrenfest time scale �E. Expressed in an optimal phase-space basis, the
scattering matrix acquires a block-diagonal form as �E increases, reflecting the splitting of the system into two
cavities in parallel, a classical deterministic cavity �with all transmission eigenvalues either 0 or 1� and a
quantum mechanical stochastic cavity. This results in the suppression of the Fano factor for shot noise and the
deviation of sample-to-sample conductance fluctuations from their universal value. We further present a semi-
classical theory for weak localization which captures nonergodic phase-space structures and preserves the
unitarity of the theory. Contrarily to our previous claim �Phys. Rev. Lett. 94, 116801 �2005��, we find that the
leading off-diagonal contribution to the conductance leads to the exponential suppression of the coherent
backscattering peak and of weak localization at finite �E. This latter finding is substantiated by numerical
magnetoconductance calculations.
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I. INTRODUCTION

Closed chaotic systems are classically characterized by
ergodicity, mixing, and a positive Kolmogorov-Sinai �KS�
entropy.1 These three characteristics form a hierarchy: mix-
ing systems are ergodic, and systems with positive KS en-
tropy are mixing, but the reverse is not necessarily true. Er-
godicity means that phase-space averages equal time
averages, while the definition of both mixing and KS entropy
requires the introduction of some phase-space coarse grain-
ing. For mixing, one needs to define finite-sized phase-space
cells inside which points originating from two initially well-
separated distributions of initial conditions are equally likely
to be found. As time goes by, mixing occurs on smaller and
smaller scales, i.e., the minimal volume of these cells de-
creases. The KS entropy is defined from the measure of the
intersection of the cells with their back evolution under the
system dynamics. A positive KS entropy means an exponen-
tial production of information, and thus the generation of
randomness in the Kolmogorov sense, as more and more
different trajectories emerge from apparently indistinguish-
able initial conditions.1 For closed systems, the KS entropy is
related to the exponential sensitivity to initial conditions, and
equals the sum of the associated positive Lyapunov
exponents.1,2

The situation becomes different once the system is open
and scattering trajectories are considered. Phase-space struc-
tures emerge then which are prohibited by ergodicity and
mixing, even in systems that have a positive KS entropy
when closed. These structures and their influence on quan-
tum transport are the focus of this paper. We will see how
their occurrence affects transport through open quantized
chaotic systems in the semiclassical, short-wavelength limit.

They result in a splitting of the cavity into two cavities in
parallel, one where transport is ruled by classical determin-
ism and one where transport exhibits quantum stochasticity.

A. Classical chaos in open systems

We specialize to two-dimensional chaotic cavities in a
two-terminal geometry. Typical nonergodic structures occur-
ring in such open chaotic systems are illustrated in Fig. 1. A
plot of the transmission probability is shown on a phase-
space projection of one of the two openings. The horizontal
axis gives the position on a cross section of the opening,
normalized by the cavity perimeter L, and the vertical axis
gives the momentum component of injection into the system,
parallel to the cavity boundary, and normalized by the Fermi
momentum pF. Both the real-space setup and the dimension-
less phase space we use are defined in Fig. 2.

Bandlike structures such as those appearing in Fig. 1 have
been reported and discussed earlier.3–8 All scattering trajec-
tories whose initial point lies in one of the bands have ap-
proximately the same dwell time through the system.9 The
typical dwell time � of a band determines its width4 as
��W /L�exp�−��� �W is the width of the opening and � is the
Lyapunov exponent�. Thus the largest bands in Fig. 1 corre-
spond to direct reflection and transmission, while thinner
bands correspond to longer dwell times through the system.
Trajectories inside a band are transported in one bunch, and
the phase-space volume they occupy is blocked for other
trajectories by Liouville’s theorem. Because trajectories re-
main inside the system for a finite time, the definition of
ergodicity, that

PHYSICAL REVIEW B 73, 195115 �2006�

1098-0121/2006/73�19�/195115�19� ©2006 The American Physical Society195115-1

http://dx.doi.org/10.1103/PhysRevB.73.195115


�−1�
�

dp dq f�p,q;t� = lim
�→�

�−1�
0

�
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for almost all functions f�p ,q ; t� and almost all phase-space
points �p0 ,q0��� no longer holds, but depends on �p0 ,q0�.
The time integral on the right-hand side of Eq. �1� extends
only up to the dwell time t0 of the one trajectory going
through �p0 ,q0�, and accordingly Eq. �1� cannot be preserved
over the full phase space �. Simultaneously, mixing occurs
on a given scale only for the subset of trajectories longer

than some finite dwell time. Scattering trajectories through
open systems have a continuous distribution of dwell times
P�t� and because of the exponentially decreasing volume of
scattering bands, mixing occurs on exponentially smaller
scales on longer trajectories. Reversing the argument, a given
phase-space resolution volume � corresponds to a time scale
����−1ln��W /L�2 /��. Long trajectories with ���� exhibit
mixing on the scale �, while short trajectories with �	�� lie
on bands well resolved by � cells, which therefore do not
have the mixing property. These two sets of classical scatter-
ing trajectories have no phase-space overlap.

B. Quantum chaos in open systems

A finite resolution scale emerges naturally when the sys-
tem is quantized: the phase space becomes tiled with cells of
volume 2
�. For particles with a finite Fermi wavelength �F,
this is equivalent to tiling the dimensionless phase-space pro-
jection of the leads �see Fig. 2� with cells of volume �eff
=�F /L, the effective Planck constant. This leads to the exis-
tence of a finite number N=Int�2W /�F� of conduction chan-
nels through the system. As �eff is made smaller and smaller,
all classical parameters being kept constant �the semiclassi-
cal limit�, more and more of the band structures of Fig. 1 are
resolved �see Fig. 3�. Conversely, more and more of the con-
duction channels are supported by one and only one classical
transmission or reflection band, and thereby become deter-
ministic. It is thus natural to investigate the effect that the
lack of mixing of short trajectories has on properties of open
quantum chaotic systems.

Transport through ballistic quantum cavities, so-called
quantum dots, has been investigated intensively in recent
years.10 In the regime where the dot’s size is much larger
than the Fermi wavelength, L��F, transport has been shown
to depend on the integrability or lack thereof of the classical
dynamics, as determined by the confinement potential.11,12

Most experimental investigations so far have focused on the
limit of few, 10, conduction channels, where it has been
found that quantum transport in the chaotic case exhibits a
universality which is well captured by the random matrix
theory �RMT� of transport.13,14 Recently, a semiclassical
theory for the conductance of ballistic cavities has been
developed,15 confirming the common belief that RMT uni-
versality applies at least to a certain regime of ballistic chaos.

It is however well known that physically relevant time
scales restrict the range of validity of RMT. In recent years it
has become clear that the Ehrenfest time �E does this in
ballistic quantum chaotic systems, with RMT ceasing to be
valid when �E becomes relevant. The Ehrenfest time is the
time it takes for the chaotic classical dynamics to stretch a
narrow wave packet, of spatial extension �F, to some rel-
evant classical length scale L. Since the stretching is expo-
nential in a chaotic system, one has �E=�−1ln�L /�effL�.16

The scattering of an initially localized wave packet into all
possible modes �similar to s-wave scattering on a restricted
portion of phase space� is only established after classical
mixing has set in on the scale �eff, i.e., for times longer than
�E. For shorter times, the quantum dynamics is deterministic.
One thus expects deviations from RMT to emerge as �E/�D
increases.

FIG. 1. �Color online� Classical phase-space �color� plot of the
transmission probability from the phase-space projection of the in-
jection lead �see Fig. 2�. The phase space has been coarse grained
by a rectangular grid with 9�104 cells, and the transmission prob-
ability in each cell has been calculated by time-evolving 104 clas-
sical trajectories per cell. Dark areas are fully transmitting or fully
reflecting �red and blue, respectively�, while light areas �yellow/
green� indicate a mixture of transmission and reflection . The dy-
namical system used is the open kicked rotator as defined in Sec.
VI.

FIG. 2. �Color online� Sketch of a two-terminal open chaotic
cavity �top left� and its phase space represented as a Poincaré sur-
face of section on the boundary of the cavity �bottom right�. All
momenta on the energy surface �E= pF

2 /2m� are parametrized by the
tangential momentum p running from −pF to pF. All possible posi-
tions on the boundary are parametrized by q running from zero to L,
where L is the circumference of the cavity. The phase space is made
dimensionless by normalizing momenta and real-space coordinates
with pF and L, respectively.
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This line of reasoning has been qualitatively confirmed in
the cavity transport experiments of Ref. 17, which observed
a significant reduction of the electronic shot-noise power be-
low its RMT value upon opening the cavity more and more.
This reduction is very likely due to an increasing fraction of
deterministic channels in the transmission spectrum of the
cavity which can be understood as follows. The shot-noise
power �the intrinsically quantum part of the fluctuations of
the electronic current� is usually quantified by the dimen-
sionless Fano factor F, the ratio of the shot noise to the
Poissonian noise,18 which can be expressed in term of the
transmission spectrum Ti� �0,1� of the cavity as18

F = �
i

Ti�1 − Ti�/�
i

Ti. �2�

Hence deterministic channels, those having Ti=0 or 1, do not
contribute to F. Such channels appear as the classical bands
discussed above are quantum mechanically resolved, which
can be achieved either by reducing the dwell time or by
reducing the Fermi wavelength. The former change was
more appropriate for the experimental setup of Ref. 17, and
the latter change is illustrated in the numerics of Fig. 3. We
show three quantum phase-space plots for a fixed classical
setup �the same as for Fig. 1�. Plotted is the quantum trans-
mission probability 	�x , p� 
T 
 �x , p�� for a fixed grid of initial
coherent states 
�x , p��, i.e., isotropic Gaussian wave packets
centered on �x , p�. The three panels from top to bottom cor-
respond to smaller and smaller �F. It is seen that as �F de-
creases, finer and finer phase-space structures are resolved.
Moreover, coherent states entirely lying on dark regions
�deep blue or deep red� have 	�x , p� 
T 
 �x , p��=0,1, and are
therefore eigenstates of T. Any of them can carry a quantum
channel which does not contribute to shot noise �the total
number of deterministic channels is obtained only after the
orthogonalization of the coherent states; see below�. With
decreasing �F, the number of deterministically transmitted
coherent states increases faster than the total number of
channels, inducing the reduction of the shot-noise power be-
low its RMT value.

The suppression of the Fano factor in the semiclassical
limit was anticipated long ago.19 More recent works quanti-
tatively predicted a suppression F�exp�−�E/�D�, in term of
the new Ehrenfest time scale and the average dwell time �D
through the system,20,21 a suppression that was related to the
phase-space resolution picture of Ref. 4 given above and
confirmed numerically in Refs. 5 and 7. Reference 22 pre-
sented a phase-space semiclassical approach resolving the
classical bands which showed that the fraction of determin-
istic transmission eigenvalues not contributing to noise is
proportional to �1−exp�−�E/�D��. Following the numerous
recent investigations of the quantum-to-classical correspon-
dence in open systems, which we now proceed to briefly
summarize, it has become clear that �E/�D→0 is a necessary
condition for complete RMT universality.23 As is illustrated
in Fig. 4, this condition is never satisfied in the semiclassical
limit �eff→0.

Following Ref. 24 which suggested that the existence of a
finite �E discriminates quantum chaotic from quantum disor-

FIG. 3. �Color online� Quantum phase-space plots of the trans-
mission probability from the injection lead. The system is the quan-
tum equivalent of the classical system of Fig. 1. The phase space
has been coarse grained by a rectangular grid with 9�104 points.
Starting from each point of the grid, an isotropic Gaussian wave
packet has been time evolved and its transmission probability cal-
culated. From top to bottom, the three panels correspond to decreas-
ing effective Planck’s constant �eff=2
 /M with M =512 �with a
conductance g=22.4 and a Fano factor F=0.193�, 8192 �g=375.9
and F=0.121�, and 131 072 �g=5990.8 and F�0.08�, respectively.
More and more fine-structured details of the classical phase space
are resolved as �eff→0. Dark areas are fully transmitting or fully
reflecting �red and blue, respectively�, while light areas �yellow/
green� indicate a mixture of transmission and reflection.
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dered systems �with the former class exhibiting deviations
from universality�, many investigations have been devoted to
the study of open quantum chaotic systems at finite �E.23

Focusing on transport, it is by now well established numeri-
cally that, as �E/�D→�, the Fano factor disappears,5 and
sample-to-sample conductance fluctuations lose their univer-
sality. Simultaneously, parametric conductance fluctuations
appear to remain universal.7,6 The weak localization correc-
tion to the conductance was first predicted to disappear ex-
ponentially as �g�exp�−2�E/�D� �Ref. 24� or �g
�exp�−�E/�D�.25 Early numerical works, on the other hand,
concluded that �g is independent of �E/�D.26 This puzzle was
resolved in Ref. 27 �though some skepticism remained, on
the part of the authors of the present paper amongst others�
whose analytical approach predicted �g�exp�−�E/�D� in
agreement with numerical simulations. Below we will
present both an analytical, semiclassical treatment of weak
localization with a special emphasis on backscattering
and unitarity, and numerical magnetoconductance data
giving a microscopic confirmation of the conclusion �g
�exp�−�E/�D� of Ref. 27.

There are currently several theories for open quantum
chaotic systems at finite �E. First, the stochastic quasiclassi-
cal theory mimics the post–Ehrenfest time mode mixing by
introducing fictitious random scatterers with a scattering rate
appropriately tuned.20,24,27 It is developed from standard
methods in disordered systems, but breaks time-reversal
symmetry at the classical level already. Second, there is a
semiclassical theory,25 which until now had not been shown
to preserve the unitarity of the scattering matrix �and hence
conserve the current�. Third, a phenomenological model
originating from Ref. 4 models the total electronic fluid as
two coexisting phases, a classical and a quantum one. At this
level, the theory is referred to as the two-phase fluid
model.7,22 With the additional surmise made in Ref. 4 that
the quantum phase has RMT properties, one gets the effec-

tive RMT model. The effective RMT model successfully ex-
plains the behavior of shot noise, the transmission spectrum
and conductance fluctuations, but is in contradiction with the
disappearance of weak localization.27 The suppression of
weak localization at large �E/�D invalidates the effective
RMT model, but not the two-phase fluid model, as we will
explicitly see below.

C. Outline of this paper

In this paper, we focus on quantities such as the average
conductance, shot noise, and transmission spectrum in ballis-
tic chaotic cavities, as well as the weak-localization correc-
tion to the conductance as �eff→0. These quantities are
strongly influenced by the emergence of the open-cavity
Ehrenfest time �E

op=�−1ln��W /L�2 /2
�eff�.28 All classical pa-
rameters being fixed, that limit inevitably turns any system
into a nonuniversal quantum chaotic one as �E

op becomes fi-
nite �see Fig. 4�. We calculate the scattering matrix in a basis
that optimally resolves phase-space structures and show that
the system splits into two cavities in parallel. This provides a
foundation for the two-phase fluid model. We go signifi-
cantly beyond our previous work,22 with �i� a detailed con-
struction of a basis that optimally resolves those phase-space
structures and �ii� an explicit semiclassical calculation of the
weak-localization correction to the conductance which pre-
serves the unitarity of the scattering matrix to leading order.

The outline of the paper goes as follows. In Sec. II, we
discuss the nonergodic classical structures of open chaotic
systems such as those shown in Fig. 1 and the Ehrenfest time
scale that accompanies them. Our task requires that we re-
solve quantum mechanically these classical phase-space
structures. This suggests that we employ a semiclassical
theory. The existing such theories11,15 have to be replaced by
a phase-space resolving theory, which requires the construc-
tion of an appropriate orthogonal mode basis. This is done is
Sec. III. We then write the system’s scattering matrix in this
basis, and show how this results in phase-space splitting at
the quantum level in Sec. IV. Amplifying on that, we show
how deterministic modes emerge and calculate the average
Drude conductance and its sample-to-sample fluctuations at
large �E

op. In Sec. V, we present our semiclassical theory for
the weak-localization correction to the conductance. Several
key aspects absent in previous semiclassical treatments are
stressed here. In particular we present a semiclassical calcu-
lation of the coherent backscattering peak at finite �E

op/�D.
We show that both coherent backscattering and weak local-
ization are exponentially suppressed as exp�−�E

cl /�D� with the
closed-cavity Ehrenfest time �E

cl=�−1ln��eff
−1�. This is so, be-

cause weak localization and coherent backscattering come
from trajectories longer than �E

op+�E
cl, which have an expo-

nentially small relative weight exp�−�E
cl /�D� in the stochastic

block of the scattering matrix. The existence of two sepa-
rated fluids is, however, confirmed. We demonstrate that the
classical phase-space structures �which give rise to phase-
space splitting� must be included in the semiclassical treat-
ment to preserve the unitarity of the scattering matrix at
nonvanishing value of �E

op/�D. We also point out the origin
of the discrepancy between our final conclusion, that

FIG. 4. �Color online� Schematic of the different transport re-
gimes through a ballistic chaotic cavity with perimeter L coupled to
leads of width W. Above the separatrix, the system splits into two
effective cavities, one purely classical and the other quantum me-
chanical. Only the latter contains quantum effects such as nondeter-
ministic transmission and quantum interferences. Below the separa-
trix W= ��FL�1/2 �solid curve�, all modes are quantum mechanical
�gray area�. The �red� dashed arrows indicate the semiclassical limit
of �eff→0 at fixed classical parameters. The slope of the arrows is
given by the inverse dwell time �D.
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�g�exp�−�E
cl /�D�, and our earlier claim that �g remains at its

universal value in the deep semiclassical limit.22 We finally
present numerical magnetoconductance data confirming our
theory. Summary and conclusions are presented in Sec. VII,
and technical details discussed in the Appendixes.

II. CLASSICAL SCATTERING STRUCTURES
AND EHRENFEST TIMES

A. Transmission and reflection bands

We consider classical scattering trajectories. They are in-
jected into the cavity from one of the two leads, say the left
�L� lead, with initial position q and momentum p on a cross
section of the lead. The momentum is on the Fermi energy
surface E= pF

2 /2m. The trajectory is determined by ballistic
motion inside the confinement potential defining the cavity,
until the particle hits the boundary between the cavity and
one of the leads, at which time it escapes. Throughout this
paper we will consider perfectly transparent leads.

Scattering trajectories are not isolated; instead they occur
in bands �see Fig. 1�. As mentioned in the Introduction, a
scattering band is a phase-space structure occurring in open
systems, even when their closed counterpart is fully chaotic.
It contains a set of trajectories that exit at approximately the
same time through the same lead,9 having followed similar
trajectories through the cavity, in the sense that any trajectory
in the band can be topologically deformed into any other.
The situation is sketched in Fig. 5. Bands on the injection
lead are defined by the overlap of that lead with the time-
reversed evolution of the exit lead, including absorption at
both leads.

For an individual system, the exact number and area of
the bands depend on the specifics of the lead positions and
widths, and the cavity shape. However, averaged properties
calculated over an ensemble of cavities with the same dwell
time and Lyapunov exponent can be calculated. The
asymptotic average survival probability is exponential,29

���� = exp�− �/�D� . �3�

It depends solely on the average dwell time �D given by

�D =

A

vF�WL + WR�
. �4�

Here A is the area of the cavity and we considered leads with
different widths WL,R.

In the dimensionless phase space defined in Fig. 2, where
momenta and distances are measured in units of pF and L
respectively, the injection lead �we always assume this is the
L lead� has a dimensionless phase-space area of

�L = 2WL/L . �5�

The fraction of the lead phase space that couples to transmit-
ting trajectories is �WR/ �WL+WR�, with the rest coupling to
reflecting trajectories. The average phase-space area of a
single transmission �L→R� or reflection �L→L� band which
exits at time � is given by

	�L→K���� �
WLWK

L2 e−��, �6�

where K=L,R. The average number 	nL→K���� of bands ex-
iting at time � through lead K is given by multiplying
�L/ 	�L→K���� by the probability �WK /L�exp�−� /�D� to es-
cape through the K lead at �. Hence one has

	nL→L���� = 	nL→R���� � exp���1 − ���D�−1�� . �7�

Since we assume fully developed chaos, ��D�1, we see that
the average number of bands diverges as � goes to infinity
even though the sum of their phase-space areas goes to zero.
We also note that the average numbers of reflection and
transmission bands are equal, with only their areas being
dependent on WL,R.

B. Ehrenfest times and modes on classical bands

The Ehrenfest time scale emerges out of the quantum me-
chanical coarse graining of phase space and the partial reso-
lution of scattering bands. It is the time it takes for quantum
mechanical uncertainties to blow up to some relevant classi-
cal scale L in chaotic systems. The scale L depends on the
problem at hand, e.g., on whether the system is closed16 or
open.28,30 For the transport setup we will focus on, this scale
is related to the area of scattering bands. Large scattering
bands, those with phase-space area greater than 2
�, can
carry a number of modes of order their phase-space area
divided by 2
�. All those modes are classical, deterministic,
and exhibit no quantum effects. They are supported by tra-
jectories shorter than the Ehrenfest time. The small bands, on
the other hand, those with area less than 2
�, carry less than
a full mode, which generates quantum �stochastic� modes,
sitting on many small bands with dwell times longer than the
Ehrenfest time, and hence being partially transmitted, and
partially reflected. Equation �6� then defines two open-cavity
Ehrenfest times for states injected from the L lead, one for
transmitting bands and one for reflecting bands,

�E
LK = �−1ln� WLWK

2
�effL
2�, K = L,R. �8�

The difference between �E
LR and �E

LL is only logarithmic in
WR/WL. We will often neglect it and consider instead the
symmetric open-cavity Ehrenfest time �E=�−1ln��W /L�2 /
2
�eff�. The open-cavity Ehrenfest times �E

LK can be inter-
preted as the time it takes for a wave packet of width WL/L
along the stable manifold of the hyperbolic classical dynam-

FIG. 5. �Color online� Time evolution of an L to R transmission
band �parallelograms� on the boundary of the cavity of Fig. 2. The
leads are indicated by the shaded rectangles.
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ics to evolve into a wave packet with width WK /L in the
unstable direction.

We can readily estimate the number of quantum scattering
modes. The proportion of the L lead phase space that couples
to trajectories to the K lead with ���E

LK is on average

e−�E
LK/�DWK / �WL+WR�. Thus the average number of quantum

modes in the L lead is

	NL
qm� = NL

NLe−�E
LL/�D + NRe−�E

LR/�D

NL + NR
. �9�

All other modes of the L lead are in transmission bands with
�	�E

LR or reflection bands with �	�E
LL, and so they are all

classical modes. Their number is thus

	NL
cl� = NL − 	NL

qm� = NL�1 − e−�E
LR/�D� + O„���D�−1

… .

�10�

The counting argument leading to these estimates finds a
rigorous derivation below in Sec. III B, where we explicitly
cover scattering bands with an orthonormal phase-space �PS�
basis. There, we also identify a third class of states, overlap-
ping significantly but still only partially with large bands
with �	�E

LK. Because of their small relative number, how-
ever, these states only have a subdominant effect on the sys-
tem’s properties.

Note that the number of classical PS states varies as
�eff

−1�1−�eff
−1/���D��, while the number of quantum PS states var-

ies as �eff
−1−1/���D�. In the semiclassical limit �eff→0 we see

that the number of quantum PS states goes to infinity, while
their fraction goes to zero.

III. THE PHASE-SPACE BASIS

In order to formally split classical from quantum modes,
our task now is to construct a complete orthonormal basis
resolving maximally the scattering band structure of the clas-
sical phase space. This requires an optimal resolution in both
real-space and momentum coordinates. To achieve that, we
use results from wavelet analysis.

A. Existence of orthogonal phase-space bases

The existence of complete orthonormal bases with states
exponentially localized in time and frequency has been
proven in the context of wavelet analysis.31 We use such a
basis as a PS basis, in which each basis state is exponentially
localized in position and momentum. We are unaware of any
such basis that has closed-form expressions for the basis
states. There are, however, numerous algorithms for generat-
ing such bases.31 In Appendix B we give such an algorithm
which iteratively orthogonalizes a complete but nonorthogo-
nal basis of coherent states, generating a set of PS states of
the form shown in Fig. 6. While we give this explicit ex-
ample, we emphasize that our theory only requires the exis-
tence of such a basis. We use the fact that each basis state is
exponentially localized in position and momentum, and that
any such complete orthonormal basis remains complete and
orthonormal under any rotation, translation, or area-

preserving stretch in phase space. Having constructed the PS
basis, the transformation that takes us from lead modes to PS
states is unitary since both bases are orthonormal.

B. The optimal phase-space basis

In a recent Letter,22 we constructed an orthonormal PS
basis on a square von Neumann lattice. This basis is simple
to explain and work with; however, it underestimates the
number of classical modes and in particular leads one to
predict that the open-cavity Ehrenfest time is half its correct
value.32 To obtain the correct value of �E, the von Neumann
lattice must be adapted to fit in the classical band structures
as best it can. This is done band by band. For parallelogram
bands, the procedure is to rotate and stretch the originally
square von Neumann lattice to a parallelogram von Neu-
mann lattice. This is illustrated in Fig. 7. Each lattice cell still
covers an area 2
� and the intraband orthogonality is en-
sured. The interband basis orthogonality is preserved due to
the exponentially small overlap of PS basis states in different
bands �classical bands do not overlap thanks to Liouville’s
theorem; this effect has been termed Liouville blocking in
Ref. 22�, except for a minority of states lying directly at the
boundary of the band which we will deal with below. This
procedure can still be applied as long as the band’s curvature
is not too large, or for bands that look more trapezoidal than
parallelogramlike. All one needs to do then is adapt locally
the aspect ratio of the von Neumann lattice, as shown on Fig.
8. Bands with small curvatures dominate at short dwell
times. However, some bands with larger dwell times inevita-
bly display a fold. For those bands, the procedure is to bend
the von Neumann lattice along the axes defined by the eigen-
vectors of the stability matrix of the classical dynamics at
each point in the band’s phase space, as in Fig. 8. The aspect
ratio of the lattice is chosen so it obeys Eq. �11� locally. For
intermediate values of �eff, the local curvature of the result-
ing lattice destroys the orthogonality of the PS states; how-

FIG. 6. �Color online� Main plot: Real-space wave-function
components �	Q 
ps;0 ,0��2 of a PS basis state �black line�, and
�	Q 
cs;0 ,0��2 of a coherent state �gray �red� line�. Both wave func-
tions are symmetric in the dimensionless phase space under Q↔P,
up to a scaling factor. Inset: Logarithmic plot of �	Q 
ps;0 ,0��2,
showing that the PS state decays exponentially in position �dashed
line�. The oscillations in �	Q 
ps;0 ,0��2 ensure it is orthogonal to PS
states centered at finite Q, while its broader central peak ensures
that it is orthogonal to PS states centered at finite P.
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ever, as �eff is reduced further and further, the curvature
drops out of the problem, any smooth curve being locally
well approximated by a straight line. To formally show that
an optimal orthogonal basis can be generated from the square
von Neumann basis of Ref. 22 it is thus sufficient to �i�
consider parallelogram and trapezoidal bands only, keeping
in mind, however, that �ii� at any finite value of �eff, devia-
tions from parallelogram shape generate additional nonopti-
mal PS basis states. The latter result from a further orthogo-

nalization �e.g., Gram-Schmidt� required for edge-of-band
states and for states on folds whose curvature is not yet well
resolved at this value of �eff. Below in Appendix C we will
see that those states build up a negligible fraction
Nqm/ ���D��Nqm�Ncl of the total number of modes in the
semiclassical limit. The completeness of the basis follows
from the orthogonality and the conservation of the total num-
ber of basis states, the above procedure being area conserv-
ing. We are now ready to extend the discussion of Ref. 22
and derive an optimal phase-space basis for parallelogram
bands, which gives the correct Ehrenfest time. This is done
in a four-step process.

Step (i). Pick a scattering band with phase-space area
larger than 2
�, and cover it with a lattice of PS states. Both
the lattice and the states must be stretched and rotated to the
same angle and aspect ratio as the band, and positioned in
such a way as to minimize the number of edge-of-band
states. This is illustrated in Fig. 7. This can be done without
relaxing either the mutual orthogonality, or the normalization
of the PS states. Since the PS states have the same aspect
ratio as the band, their longitudinal and transversal exten-
sions x and y, as indicated in Fig. 7, are given by33 �� is the
dwell time of the band under consideration�

x � �2
�effWL/WR�1/2exp���/2�, y � 2
�eff/x . �11�

While we pay attention to minimizing their number, we do
not include edge-of-band states in the basis at this stage. We
will deal with them later in step �iv�.

Step (ii). We evolve the states generated in step �i� under
the cavity’s dynamics. The lattice of PS states on an injection
band uniquely determines the lattice of PS states on the exit
band. All trajectories in the band under consideration exit the
cavity after a time shorter than the open-cavity Ehrenfest
time. On this time scale the quantum dynamics of the PS
states are well approximated by the Liouville flow34 �see also
Appendix A�. This is a well-known property of coherent
states that can be extended to the exponentially localized PS
states that we consider here. Thus a PS state with initial
spread of �Q in the unstable direction at �=0 will evolve
into a PS state with spread �Q���Qe�� in the unstable
direction at time �. The initial spread in the stable direction is
�P� � /�Q, and since the quantum dynamics is Liouvillian
inside classical bands, it is area preserving, i.e., �P�
� � /�Q�. The PS states are stretched and rotated in the
same manner as the exiting band, while still forming an or-
thonormal basis on that band. The orientation and stretch of
the lattice and PS states are given in linear approximation
�which eventually becomes valid as �eff→0� by the eigen-
values and eigenvectors of the stability matrix of the classi-
cal dynamics, and thus have the same aspect ratio and angle
as the exiting band. We choose to use these states to cover
that band in the phase space.

Step (iii). We simply repeat the process in steps �i� and �ii�
for each band with area greater than 2
� not yet covered by
PS states. The crucial point here is that bands cannot overlap;
hence if we only place PS states within classical bands, Liou-
ville blocking ensures that PS states in different bands must
be orthogonal with exponential accuracy.

Step (iv). Steps �i�–�iii� generate an incomplete orthonor-

FIG. 7. �Color online� Sketch of two parallelogram bands �dark
�green� areas� with the PS states superimposed on them �ellipses�.
The upper band has a phase-space area which is a bit more than 16
times 2
�, while the lower band has a phase-space area a bit more
than 2
�. In both cases the basis is optimized; the lattice of PS
states is stretched and rotated such that the maximum number of PS
states can be fitted into each band �solid-edged ellipses� with the
minimum number partially in the band �dashed-edged ellipses�.
Note that these optimally chosen PS states have the same aspect
ratio as the classical band in which they sit, thus their longitudinal
and transversal extensions x and y are given by Eq. �11�.

FIG. 8. �Color online� Sketch of a trapezoidal and a folded
scattering band with a lattice of PS states superimposed on each of
them. Both bands cover a phase-space area larger than 2
�. In both
cases the basis is optimized; the lattice of PS states is locally
stretched and rotated such that the maximum number of PS states
can be fitted into each band. Some of them are indicated by solid-
edged ellipses.
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mal basis in the vector space of lead modes. This basis can
be made complete by adding the adequate number of states
orthogonal to those generated in steps �i�–�iii�. This construc-
tion gives us very little information about the nature of these
additional states, except that they must sit on more than one
band. They thus evolve in a quantum, stochastic manner, and
we refer to them as quantum PS states. The set of quantum
PS states divides into two broad categories: first those that sit
on many classical bands, and second those that sit mostly,
but not completely, on a single band. We already mentioned
the second category of edge-of-band PS states �the dashed
ellipses in Fig. 7�. In Appendix C we estimate that the num-
ber of edge-of-band PS states is

Neob � ���D�−1Nqm. �12�

Hence they form a small fraction of the total number of
quantum modes, and we do not consider them separately
from pure quantum modes.

IV. SCATTERING MATRIX IN THE PHASE-SPACE BASIS

A. Splitting of the scattering matrix and deterministic
transmission

By construction, the PS basis is chosen so that there is a
one-to-one correspondence between incoming and outgoing
classical PS states, given that their quantum dynamics can be
approximated by the Liouvillian flow. The unitarity of the
scattering matrix means that the quantum PS states remain
orthogonal to the classical ones as they evolve inside the
cavity. Thus, despite the fact that quantum PS states are not
well described by the Liouvillian flow, they cannot penetrate
the regions of phase space containing bands larger than
2
�eff. In the PS basis, each incoming classical PS state goes
to exactly one outgoing classical PS state, while each incom-
ing quantum PS state goes to multiple outgoing quantum PS
states, but no outgoing classical PS states. Correspondingly,
the scattering matrix in the PS basis is of the form

S = Scl � Sqm = �Scl 0

0 Sqm
� . �13�

The matrix Scl is Ncl�Ncl while the matrix Sqm is Nqm

�Nqm, with Ncl=NL
cl+NR

cl and Nqm=NL
qm+NR

qm.
The matrix Scl has only one nonzero element in each row

and each column. The modes on the left and right of S can be
reordered such that the transmission part tcl of Scl is diagonal
with all its nonzero elements in the first n elements of its
diagonal, where n is the number of classical transmission
modes. Thus we can write

tcl = �t̃cl 0

0 0
� , �14�

where all nonzero elements of tcl are contained in the n�n
matrix t̃cl. Doing the same for tcl� , rcl, and rcl� , we write the
classical part of the scattering matrix as

Scl � �rcl tcl�

tcl rcl�
� = �

0 0 t̃cl� 0

0 r̃cl 0 0

t̃cl 0 0 0

0 0 0 r̃cl�
� , �15�

where t̃cl and t̃cl� are n�n matrices, r̃cl is an �NL
cl−n�� �NL

cl

−n� matrix, and r̃cl� is an �NR
cl−n�� �NR

cl−n� matrix. The ma-
trix t̃cl is diagonal with elements given by

�t̃cl�ij = ei�i�ij . �16�

The matrix r̃cl also has exactly one nonzero element in each
row and each column. Its elements obey


�r̃cl�ij
 = 
�r̃cl� ji
 = �1 when i reflects to j ,

0 otherwise.
�17�

Anticipating discussions to come, we note that coherent
backscattering is carried here by matrix elements �r̃cl�ij

where j denotes the time reversal of i. Since the classical
probability to go from i to its time reversal is equal to the
probability to go from i to itself, the number of nonzero such
matrix elements is determined by the probability to sit on a
periodic orbit that does not visit the contact to any of the two
leads except for one point. This probability is zero. The ab-
sence of reflection matrix elements carrying coherent back-
scattering in r̃cl qualitatively explains the exponential sup-
pression of coherent backscattering.

We next calculate the transmission matrix T= t†t. The
block-diagonal nature of S in the PS basis given in Eq. �13�
ensures that T has the same structure in that basis; hence

T = Tcl � Tqm = �Tcl 0

0 Tqm
� , �18a�

Tcl = tcl
† tcl, Tqm = tqm

† tqm. �18b�

From Eqs. �14� and �16� we get the eigenvalues of Tcl,

Ti = �1 for 1 � i � n ,

0 for n 	 i � NL
cl.

�19�

This is a proof of a longstanding hypothesis that in the clas-
sical limit the vast majority of transmission eigenvalues are
zero or one.19 We know that there are NL

cl such classical
modes, with the remaining modes having a quantum nature,
making them unlikely to have transmission eigenvalues that
are exactly zero or one. The block-diagonal structure �18� of
the transmission matrix means that the dimensionless con-
ductance g=�iTi and the Fano factor for shot noise of Eq. �2�
can be written as

g = gcl + gqm, �20�

F =
gclFcl + gqmFqm

gcl + gqm
, �21�

where we have introduced the conductance and Fano factor
for the two cavities �classic and quantum�, gcl,qm=�i�cl,qmTi
and Fcl,qm= ��i�cl,qmTi�1−Ti�� / ��i�cl,qmTi�. From Eq. �19�
we see that
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gcl = n, Fcl = 0. �22�

Anticipating the calculation of the average values 	gcl,qm�
�see the next subsection�,

F = Fqmexp�− �E
LR/�D� . �23�

Since Fqm	1, one see there is an exponential suppression
of F.

The PS basis does not give us much information about the
quantum PS states. However, since each incoming PS state
sits on multiple bands, exiting at different times, it must
couple to multiple outgoing PS states. It is extremely rare for
these outgoing PS states to be all transmitting �or all reflect-
ing�, and thus we expect that the vast majority of their trans-
mission eigenvalues lie between zero and one, and thus con-
tribute to shot noise. The fact that quantum and classical PS
states exist in two separate subblocks of the scattering and
transmission matrices �see Eqs. �13� and �18�� establishes the
two-phase fluid model.7

B. The average Drude conductance

From the estimates in Sec. II B, the ensemble-averaged
Drude conductance is the sum of the Drude conductances of
the quantum and classical cavities,

	g�D = 	gqm� + 	gcl� , �24a�

	gqm� =
NL

qmNR
qm

NL
qm + NR

qm =
NLNR

NL + NR
e−�E

LR/�D, �24b�

	gcl� =
NL

clNR
cl

NL
cl + NR

cl =
NLNR

NL + NR
�1 − e−�E

LR/�D� . �24c�

Thus the ensemble-averaged Drude conductance is

	g�D = NLNR/�NL + NR� . �25�

The splitting of the cavity has little effect on 	g�D, even
though classical modes and quantum modes do not mix. For
strong asymmetry there is an additional term of order
NL���D�−2 on the right of Eq. �24c�; however, our calculation
is not valid to that order because we ignored various order
���D�−1 terms, such as edge-of-band states, in Eq. �10�.

Sample-to-sample conductance fluctuations

The precise shape, size, and number of the nonergodic
phase-space structures fluctuates from sample to sample.
These fluctuations strongly affect gcl. They are of a classical
nature, and as such they induce the departure of conductance
fluctuations from their universal behavior.6,7 Indeed, once
�eff is small enough that quantum mechanics resolves the
largest scattering band on average, the sample-to-sample
conductance fluctuations are dominated by the band fluctua-
tions. Since each resolved band carries a number propor-
tional to �eff

−1 of channels, one expects sample-to-sample con-
ductance fluctuations to exceed the universal value in the
semiclassical limit,

��gcl� � �eff
−1 � 1. �26�

The above argument predicts the onset for deviations of ��g�
from its universal behavior once the largest band is quantum
mechanically resolved, i.e., for �eff	 �W /L�2exp�−��0�,
where �0 is the minimal escape time, of order the time of
flight through the cavity. Both this onset and the magnitude
�26� of the sample-to-sample conductance fluctuations have
been observed numerically.6,7

V. WEAK LOCALIZATION

We calculate the leading-order quantum correction to the
Drude conductance. Our treatment applies to both the uni-
versal ��E/�D→0� and deep semiclassical �finite �E/�D� re-
gimes. We present an explicit treatment of the coherent back-
scattering peak showing that our theory preserves the
unitarity of the scattering matrix, as well as a calculation of
the magnetoconductance. Thus far we have constructed a
special basis �the ps basis� which is aligned along the band
structures in the classical phase space. This made it easy to
calculate the properties of the parts of phase space covered
by bands larger than 2
�, allowing us to calculate the deter-
ministic transmission eigenvalues T=0,1. However, the
complexity of the quantum modes of that basis makes it
difficult to explicitly calculate the transport properties of
those modes.21 We therefore return to the lead-mode basis to
calculate weak localization. Unlike previous works we do
not neglect the classical bands, however. Indeed, our semi-
classical approach is able to extract the conductance �includ-
ing weak localization� of both the classical and quantum
cavities.

A. Drude conductance

Semiclassically, the transmission matrix reads11,35

tji = − �2
i � �−1/2�
L

dy0�
R

dy�
�

�dpy/dy0��
1/2

� 	j
y�	y0
i�exp�iS�/ � + i
��/2� , �27�

where 
i� is the transverse wave function of the ith lead
mode. This expression sums over all trajectories � �with
classical action S� and Maslov index ��� starting at y0 on a
cross section of the injection �L� lead and ending at y on the
exit �R� lead. Inserting Eq. �27� in the Landauer-Büttiker
formula for the conductance g=Tr�t†t�, one gets a double
sum over trajectories �1 and �2 and over lead modes 
n� and

m�. We make the semiclassical approximation that
�n	y� 
n�	n 
y����y�−y�.36 The conductance is then given
by a double sum over trajectories which both go from y0 on
lead L to y on lead R,

Tr�t†t� =
1

�2
 � ��L
dy0�

R
dy �

�1,�2
A�1A�2ei�S/�. �28�

Here, A�= �dpy /dy0��
1/2. Reflection, R=Tr�r†r�, is given by

the same expression, with both y0 and y on lead L. We are
interested in quantities averaged over variations in the energy
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or the cavity shape. For most �1,�2� the phase of a given
contribution �S /� will oscillate wildly with these variations,
so the contribution averages to zero. The most obvious con-
tributions that survive averaging are the diagonal ones with
�1=�2. These contributions give the Drude conductance
�25�.

We define P(Y ,Y0 ; t)�y���t as the product of the initial
momentum along the injection lead, pF cos �0, and the clas-
sical probability to go from an initial position and momen-
tum angle Y0= �y0 ,�0� to within ��y ,��� of Y= �y ,�� in a
time within �t of t. Then the sum over all trajectories � from
y0 to y is

�
�

A�
2�¯�� = �

0

�

dt�
−
/2


/2

d�0�
−
/2


/2

d�P�Y,Y0;t��¯�Y0
.

�29�

For an individual system, P has � functions for all classical
trajectories. However, averaging over an ensemble of sys-
tems or over energy gives a smooth function

	P�Y,Y0;t�� =
pFcos �0cos �

2�WL + WR��D
exp�− t/�D� . �30�

This last expression �30� is valid as long as no restriction is
imposed on the trajectory inside the cavity. Using Eqs. �29�
and �30� to calculate the conductance within the diagonal
approximation, one recovers the Drude conductance �25�,

gdiag = gD =
NLNR

NL + NR
, �31a�

Rdiag =
NL

2

NL + NR
. �31b�

One also sees that at the level of the diagonal approximation,
there is unitarity. We stress that, unlike in Ref. 37, we do not
include coherent backscattering in the diagonal contribution;
it is dealt with separately below.

B. Weak localization for transmission

A pair of trajectories giving the leading-order correction
to the Drude conductance is shown in Fig. 9. The trajectories
are paired almost everywhere except in the vicinity of an
encounter.37 Going through an encounter, one of the trajec-
tories intersects itself, while the other one avoids the cross-
ing. Thus, they travel along the loop they form in the oppo-
site direction. It has been shown in Ref. 38 that for any
self-intersecting trajectory with a small enough crossing
angle �, there exists a partner, crossing-avoiding outer trajec-
tory. For the relevant case of small �, the probability to find
a weak-localization pair is thus given by the probability to
find a self-intersecting trajectory. The two trajectories are
always close enough to each other that their stability is the
same, i.e., one can set ��1,�2A�1A�2→��1A�1

2 . To evaluate
the weak-localization correction to conductance, we perform
a calculation similar to Ref. 37, adding the crucial fact that
pairs of trajectories such as depicted in Fig. 9 have highly
correlated escape probabilities due to the presence of

an encounter.27 The situation is depicted in more detail in
Fig. 10.

The presence of the encounter introduces two new ingre-
dients, both of these were overlooked in Ref. 37. First, pairs
of trajectories leaving an encounter escape the cavity in ei-
ther a correlated or an uncorrelated way. Uncorrelated escape
occurs when the perpendicular distance between the trajec-
tories is larger than the width WL,R of the leads. This requires
a minimal time TW��� /2 between encounter and escape,
where39

TW��� = �−1ln��−2�W/L�2� . �32�

The two pairs of trajectories then escape in an uncorrelated
manner, typically at completely different times, with com-

FIG. 9. �Color online� Sketch of the leading-order quantum cor-
rection to the conductance. Trajectory �1 �solid line� is injected at
Y0= �y0 ,�0�, crosses itself, and escapes at Y= �y ,��. Its first visit to
the crossing �the open dot� occurs at R1= �r1 ,�1�, where r1 is the
position in the cavity, and �1 is the angle of the momentum to a
reference axis �not shown�. Trajectory �2 �dashed line� starts and
ends at the same positions as �1; however, it avoids the crossing.
We divide �1 into three segments: leg1, loop, and leg2.

FIG. 10. �Color online� Sketches of the trajectory pairings
which give the leading off-diagonal contributions to �a� transmis-
sion �conductance� and �b� reflection. All contributions involve a
trajectory �1 crossing itself at an angle �, and a trajectory �2 that
avoids the crossing. The action difference between the two trajec-
tories is thus small and does not fluctuate under averaging. For
transmission, y0 is on L lead and y is on R lead; for reflection both
y0 and y are on L lead. There are two reflection contributions. On
the left is weak localization, and on the right is coherent back-
scattering �details of the latter are in Fig. 12�.
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pletely different momenta �and possibly through different
leads�. Correlated escape occurs in the other situation when
the distance between the trajectories at the time of escape is
less than WL,R. Then the two pairs of trajectories escape to-
gether, at the same time through the same lead. This latter
process affects coherent backscattering �see Fig. 10�. The
second new ingredient is that the survival probability for a
trajectory with an encounter is larger than that of a generic
trajectory. This is so, because the encounter duration affects
the escape probability only once. In other words, if the tra-
jectory did not escape in its first passage through the encoun-
ter, neither will it during its second passage �this was first
noticed in Ref. 27�.

We calculate the contribution from pairs of transmitting
trajectories sketched in Fig. 10�a�. For preserved time-
reversal symmetry, the action difference for this contribution
is �Swl=EF�

2 /�.37 We now note that the probability to go
from Y0 to Y in time t, is the product of the probability to go
from Y0 to a point on the energy surface inside the cavity
R1= �r1 ,�1� �where �1 defines the direction of the momen-
tum� in time t1 and the probability to go from R1 to Y in time
t− t1, when one integrates R1 over the energy surface C. Thus
the quantity P introduced above can be written as

P�Y,Y0;t� = �
C

dR2dR1P̃�Y,R2;t − t2�

�P̃�R2,R1;t2 − t1�P�R1,Y0;t1� �33�

where P̃�R2 ,R1 ; t� is the probability density to go from R1 to
R2 in time t, but P�R1 ,Y0 ; t� is a probability density multi-
plied by the injection momentum, pFcos�0. We then restrict
the probabilities inside the integral to trajectories that cross
themselves at phase-space positions R1,2 with the first �sec-
ond� visit to the crossing occurring at time t1 �t2�. Using Fig.
11, we write dR2=vF

2 sin �dt1dt2d� and set R2��r2 ,�2�
= �r1 ,�1±��. Next, we note that the duration of the loop must
exceed TL���=�−1ln��−2�, because for shorter times, two tra-
jectories leaving an encounter remain close enough to each
other that their relative dynamics is hyperbolic, and the prob-
ability of forming a loop is zero. Similarly, the path cannot
transmit unless t1,t− t2�TW��� because for t1,t− t2	TW���

the legs �see Fig. 9� are so close to each other that if one leg
escapes through a given lead the other one will escape with it
through the same lead. Then the probability that a trajectory
starting at Y0 crosses itself at an angle ±� and then transmits,
multiplied by its injection momentum pF cos �0, is

I�Y0,�� = 2vF
2sin ��

TL+TW

�

dt�
TL+TW/2

t−TW/2

dt2�
TW/2

t2−TL

dt1

� �
R

dY�
C

dR1P̃�Y,R2;t − t2�

� P̃�R2,R1;t2 − t1�P�R1,Y0;t1� , �34�

where TW ,TL are shorthand for TW��� ,TL���.
To get the weak localization correction to conductance we

sum only contributions where �1 crosses itself, we then take
twice the real part of this result to include contributions
where �1 avoids the crossing �and hence �2 crosses itself�.
Thus

gwl = �
 � �−1�
L

dY0d� Re�ei�Swl/��	I�Y0,��� . �35�

We perform the average of the P’s as follows. Within
TW��� /2 of the crossing the two legs of a self-intersecting
trajectory are so close to each other that their joint escape
probability is the same as for a single trajectory. Self-
intersecting trajectories thus have an enhanced survival prob-
ability compared to noncrossing trajectories of the same
length, i.e., the duration of the crossing must be counted only
once in the survival probability.27 Outside the correlated
region, the legs can escape independently through either
lead at any time. Furthermore, the probability density for
the trajectory going to a given point in phase space is as-
sumed to be uniform. Thus the probability density for leg 1
gives 	P�R1 ,Y0 ; t1��= �2
A�−1exp�−t1 /�D�pF cos�, and the

probability density for the loop 	P̃�R2 ,R1 ; t2− t1��
= �2
A�−1exp−�t2− t1−TW��� /2��D�, where A is the real-
space area of the cavity �Ref. 40�. Finally, the conditional
probability density for leg 2 �given that leg 1 exists

for a time t1�TW���� is 	P̃�Y ,R2 ; t− t2��= �2�WL

+WR��D�−1cos� exp−�t− t2−TW��� /2� /�D�. One gets

	P̃�Y,R2;t − t2�P̃�R2,R1;t2 − t1�P�R1,Y0;t1��

=
1

�2
A�2

pFcos � cos �0

2�WL + WR��D
exp− �t − TL����/�D� ,

�36�

so that 	I�Y0 ,��� becomes

	I�Y0,��� =
�vF�D�2


A
pFsin � cos �0

�
NR

NL + NR
exp�− TL���/�D� . �37�

We insert this into Eq. �35�. The � integral is dominated by
contributions with ��1, so that we write sin ��� and push

FIG. 11. �Color online� Sketch of a trajectory �solid line� which
crosses itself at point r1= �x ,y�, visiting this point first at time t1 and
second at time t2. Superimposed is an infinitesimally different tra-
jectory �dashed line� which also visits the point �x ,y� at t1, but is at
point r2= �x+�x ,y+�y� at time t2. This trajectory also intersects
itself; however, it visits the self-intersection �which is no longer
�x ,y�� at times t1+�t1 and t2+�t2.
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the upper bound for the � integration to infinity. The � inte-
gral can then be computed to give an Euler � function.25 To
leading order in ���D�−1 it equals −
� �2EF�D�−1. The inte-
gral over Y0 yields a factor of 2WL. Finally noting that NL
= �
� �−1pFWL and �NL+NR�−1= �mA�−1��D, the weak-
localization correction to the conductance reads

gwl = −
NLNR

�NL + NR�2 exp�− �E
cl/�D� . �38�

We see that weak localization is exponentially suppressed
with �E

cl /�D in term of the closed-cavity Ehrenfest time �E
cl

��−1��eff
−1�.

C. Quantum corrections to reflection

The above result �38� has already been derived in Ref. 25
by a similar approach. We go beyond that by showing ex-
plicitly that our semiclassics preserves the unitarity of the
scattering matrix. There are two leading-order off-diagonal
corrections to reflection. They are shown in Fig. 10�b�. The
first is weak localization while the second is coherent back-
scattering. The former reduces the probability of reflection to
arbitrary momentum, while the latter enhances the probabil-
ity of reflection to the time reverse of the injection state. The
distinction between these two contributions is whether or not
the legs escape while correlated: for weak localization the
legs escape independently, while for coherent backscattering
the legs escape together in a correlated manner.

1. Weak localization

The weak-localization contribution to reflection, Rwl, is
derived in the same manner as gwl, replacing, however, a
factor of WR/ �WL+WR� with WL/ �WL+WR�. One obtains

Rwl = −
NL

2

�NL + NR�2 exp�− �E
cl/�D� . �39�

2. Coherent backscattering

Contributions to coherent backscattering are shown in
Fig. 10�b�, with Fig. 12 showing the trajectories in the cor-
related region in more detail. These contributions require
special care because �i� their action phase difference �Scbs is
not given by the Richter-Sieber expression used so far and

�ii� injection and exit positions and momenta are correlated.
From Fig. 12, and noting that �2b decays exponentially

toward �1a, we find the action difference between these two
path segments to be

S2b − S1a = pF�y0 − y�sin �0 + 1
2m��y0 − y�2cos2�0. �40�

We have dropped cubic terms which only give � corrections
to the stationary-phase integral. The action difference be-
tween �2a and �1b has the opposite sign for y0−y and �0
replaced by �. We get for the total action difference, in terms
of �r0� , p0��,

�Scbs = − �p0� + m�r0��r0�. �41�

The coherent backscattering contribution to the reflection
reads

Rcbs = �2
 � �−1� dY0dY�
0

�

dt	P�Y,Y0;t��Re�ei�Scbs/�� .

�42�

Note that this contains all those contributions where �1
crosses itself and all those contributions where it avoids
crossing �so �2 crosses itself�, thus there is no need to take
twice the real part here �unlike for gw1�. To perform the
average we define TW� �r0� , p0�� and TL��r0� , p0�� as the times
for which the perpendicular distance between the �1a and
�1b is W and L, respectively. For times less than
TW� �r0� , p0�� the escape probability for two trajectories is the
same as for one, while for times longer than this the trajec-
tories evolve and escape independently. For Rcbs we consider
only those trajectories that form a closed loop; however,
they cannot close until the two trajectory segments are of
order L apart. The t integrals must have a lower cutoff at
2TL��r0� , p0��; hence

�
R

dY�
2TL�

�

dt	P�Y,Y0;t��

= pFcos �0
NL

NL + NR
exp�− T��r0�,p0��/�D� , �43�

where T��r0� , p0��=2TL��r0� , p0��−TW� �r0� , p0��. For small
�p0�+m�r0�� we estimate

T��r0�,p0�� � �−1ln�W�p0� + m�r0��
m�L2 � . �44�

We substitute the above expression into Rcbs, write
pFcos �0dY0=dy0d�pFsin �0�=dr0�dp0�,11 and then make
the substitution p̃0= p0�+m�r0�. We evaluate the r0� inte-
gral over a range of order WL, take the limits on the resulting
p̃0 integral to infinity, and write it in terms of Euler � func-
tions. Finally we systematically drop all terms O�1� inside
logarithms. The result is that

Rcbs =
NL

NL + NR
exp�− �E

cl/�D� . �45�

Thus we see that coherent backscattering is also suppressed

FIG. 12. �Color online� Trajectories for the backscattering con-
tributions to reflection. Trajectory �1 �solid black line� start on the
cross section of the L lead at position y0 with momentum angle �0

and ends at y with momentum angle �. In the basis parallel and
perpendicular to �1 at injection, the initial position and momentum
of path �1 at exit are r0�= �y0−y�cos �0, r0� = �y0−y�sin �0, and
p0��−pF��−�0�.
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exponentially in exactly the same manner as weak localiza-
tion. Hence Rcbs+Rwl=−gwl and unitarity is preserved.

D. The off-diagonal nature of coherent backscattering

Continuous families of trajectories that are present in
open chaotic systems, such as �2 and �1 in Fig. 12, have an
action difference given in Eq. �41�. This action difference
does not fluctuate under energy or sample averaging; more-
over, these contributions are not diagonal in the lead mode
basis. The stationary phase integral over such trajectories is
dominated by p0��−m�r0� where r0� is integrated over the
total lead width. Thus p0� varies over a range of order
m�W�
� /W, coupling to many lead modes. Such contri-
butions were not taken into account in the previous analysis
of coherent backscattering.37 This caused the erroneous be-
lief �of the authors of the present paper amongst others� that
coherent backscattering originates from trajectories that re-
turn to any point in the L lead with �� ±�0, which would
have implied that the coherent backscattering was indepen-
dent of the Ehrenfest time.

Once we correctly sum the many off-diagonal contribu-
tions to �nm 
rnm
2 that have an encounter near the L lead, we
conclude that coherent backscattering approximately doubles
the weight of all returning trajectories in a strip defined by

� − �0 � − pF
−1m��y − y0�cos �0 �46�

across the lead. This strip sits on the stable axis of the clas-
sical dynamics, with a width in the unstable direction of
order ��pFW�−1. Therefore, trajectories in the strip first con-
verge toward each other, and only start diverging at a time of
order �E

op/2. Such trajectories cannot form a loop on times
shorter than �E

op+�E
cl.

E. Magnetoconductance

A weak magnetic field has very little effect on the classi-
cal dynamics. Its dominant effect is to generate a phase dif-
ference between two trajectories that go the opposite way
around a closed loop. This phase difference is Aloop� where
Aloop is the directed area enclosed by the loop, and � is the
flux in units of the flux quantum. To incorporate this in the
theory we must introduce a factor of exp�iAloop�� into
I�Y0 ,�� in Eq. �34� and inside the average in Rcbs in Eq. �42�.
To average 	exp�iAloop���, we divide the loop into two
parts—the correlated part �within TL��� /2 of the crossing�,
and the uncorrelated part �the rest of the loop�. We average
the two parts separately.

For the uncorrelated part, we use the fact that the distri-
bution of area enclosed by classical scattering trajectories in
a chaotic system is Gaussian with zero mean and a variance
that increases linearly with time.11 One then has

	eiAuncorr�� = exp− �A2�2�t2 − t1 − TL����/�f� , �47�

where A is the area of the cavity, � is a system-dependent
parameter of order unity, and �f is the time of flight between
two consecutive bounces at the cavity’s wall.

We comment on the correlated part in Appendix D, where
we show that it provides at most only small corrections

O��f /�D� which we henceforth ignore. Multiplying the inte-
grand in Eq. �34� with �47� and integrating over t1 , t2 gives

	I�Y0,��� =
�vF�D�2


A
pFsin � cos �0

�
NR

NL + NR

exp�− TL���/�D�
1 + �A2��D/�f��2 . �48�

After a similar analysis for Rcbs, we conclude that for finite
flux, the quantum corrections to the average conductance ac-
quire a Lorentzian shape,

gwl��� = −
NLNR

�NL + NR�2

exp�− �E
cl/�D�

1 + �A2��D/�f��2 , �49a�

Rwl��� = −
NL

2

�NL + NR�2

exp�− �E
cl/�D�

1 + �A2��D/�f��2 , �49b�

Rcbs��� =
NL

NL + NR

exp�− �E
cl/�D�

1 + �A2��D/�f��2 . �49c�

Interestingly enough, there is no Ehrenfest dependence in the
width of the Lorentzian.

F. Weak localization in the two-fluid model

Weak localization can also be calculated in the framework
of the special basis constructed in the first half of this paper.
We can split all contributions to conductance into classical
and quantum contributions using the classical dynamics. By
construction the classical modes couple to the trajectories
shorter than �E

op, while the quantum ones couple to the ones
longer than �E

op. We cut the time integrals in all the above
quantities at �E

op. The result is that the classical cavity has

gD
cl =

NLNR

NL + NR
�1 − e−�E

op/�D� , �50a�

Rdiag
cl =

NL
2

NL + NR
�1 − e−�E

op/�D� , �50b�

gwl
cl = Rwl

cl = Rcbs = 0. �50c�

The quantum modes carry the remaining contributions. In-
serting by hand the phase-space splitting into the sum rules
and bound of time integrations in the above semiclassical
treatment, one recovers the exponential suppression of weak
localization, Eq. �38�. The quantum fluid is thus clearly not
RMT, which invalidates the effective RMT model.4 This is
because contributions to weak localization and coherent
backscattering come from trajectories longer than �E

op+�E
cl,

and the proportion of such trajectories in the quantum cavity
varies as exp�−�E

cl /�D�.
The existence of classical bands is key to both the exis-

tence of the two separate fluids �block-diagonal nature of S,
Eq. �13�� and the exponential suppression of coherent back-
scattering and the unitarity of the semiclassical theory pre-
sented here �see also Ref. 21�.
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VI. NUMERICAL SIMULATIONS

We finally check our semiclassical theory for weak local-
ization at finite �E

cl /�D against numerical simulations. We
consider open systems with fully developed chaotic dynam-
ics, for which �D�1. Because �E

cl grows logarithmically with
the Hilbert space size M =�eff

−1, and since we want to investi-
gate the regime of finite �E

cl /�D, we model the electron dy-
namics by the kicked rotator map.5,7,23 The Hamiltonian is
given by

H =
�p + p0�2

2
+ K cos�x + x0��

n

��t − n�f� . �51�

The kicking strength K drives the dynamics from integrable
�K=0� to fully chaotic �K�7, with Lyapunov exponent ��f

� ln�K /2��. The parameters p0 and x0 are introduced to break
the Hamiltonian’s two symmetries.41 Only when these two
symmetries are broken does one witness a crossover from the
 =1 to the  =2 universality class,13 corresponding to break-
ing the time-reversal symmetry.41 The procedure of varying
p0 followed in Refs. 26 and 27 results in a strongly non-
Lorentzian magnetoconductance. Thus the agreement be-
tween numerics and analytics in Ref. 27 could not be ex-
tended to the magnetoconductance curve, which is the
trademark of weak localization. This motivated us to perform
numerical investigations following the same procedure as in
Ref. 42, i.e., taking a finite, constant p0, while varying x0. In
this case, the magnetoconductance curves are Lorentzian.

We consider a toroidal classical phase space x , p
� �0,2
�, and open the system by defining contacts to bal-
listic leads via two absorbing phase-space strips �xL−�x ,xL

+�x� and �xR−�x ,xR+�x�, each of them with a width 2�x
=
 /�D. We quantize the map by discretizing the momentum
coordinates as pl=2
l /M, l=1, . . . ,M. A quantum represen-
tation of the Hamiltonian �51� is provided by the unitary
M�M Floquet operator U, which gives the time evolution
for one iteration of the map. For our specific choice of the
kicked rotator, the Floquet operator has matrix elements

Ul,l� = Me−�
i/M���l + l0�2+�l� + l0�2�

��
m

e2
im�l−l��/Me−�iMK/2
�cos�2
�m+m0�/M� �52�

with l0= p0M /2
 and m0=x0M /2
.
We restrict ourselves to the symmetric situation with

NR,L=N. A 2N�2N scattering matrix can be constructed
from the Floquet operator U as43

S�!� = P�exp�− i!� − U�1 − PTP��−1UPT, �53�

using a 2N�M projection matrix P which describes the cou-
pling to the leads. Its matrix elements are given by

Pn,m = �1 if n = m � mi
�R�� � mi

�L�� ,

0 otherwise.
�54�

An ensemble of samples with the same microscopic param-
eters can be defined by varying the position mi

�R,L��, i
=1, . . . ,N, of the contacts to the left and right leads for fixed
�D/�f=M /2N and K ��f is the time of flight through the

system; in this particular instance it is the time between
kicks; see Eq. �51��. We calculate the conductance from the
scattering matrix, which we numerically construct via an it-
erative procedure as in Refs. 7 and 26.

In the universal regime �E
cl /�D=0, Ref. 42 found, for the

 =1 to 2 crossover, a magnetoresistance given by

�g =
1

4

1

1 + �m0/mc�2 , mc =
4


�M�DK
, �55�

which has to be compared to Eq. �49a�. Our task here is to
investigate the fate of �55� as �E

cl /�D increases, and in par-
ticular to check our analytical predictions �49a� that �i� the
magnetoconductance is Lorentzian with �ii� a width that is
independent of �E

cl, but �iii� an amplitude that is suppressed
exponentially as exp�−�E

cl /�D�.
Figure 13 shows magnetoconductance curves as �E

cl /�D
increases while keeping all classical parameters unchanged.
The data confirm our prediction �49a�, i.e., the curves are
Lorentzian, which depend on �E

cl /�D only through their am-
plitude. The inset of Fig. 13 makes it clear that the typical
field necessary to break time-reversal symmetry does not
depend on �E

cl—after rescaling the magnetoconductance am-
plitude, all curves fall on top of each other. This was also
confirmed by least-squares Lorentzian fitting of the magne-
toconductance curves with �g�m0�=�−� / �1+���m0 /mc�2�,
which found ��=1±0.06 for all cases.

Figure 14 finally gives a closer look at the suppression of
the amplitude of the weak-localization correction. We ex-
tracted the amplitude parameter � both from a least-squares
Lorentzian fitting of the magnetoconductance curve, and
from the magnetoconductance amplitude at m0=2.2mc,

FIG. 13. Magnetoconductance curves �g�m0�=g�m0�−g�0� for
the open kicked rotator model �defined in the text� at fixed classical
configuration K=14 ���1.95�, �D/�f=5, and different Hilbert
space sizes M =256 �squares, �E

cl /�D�0.57�, 512 �diamonds,
�E

cl /�D�0.64�, 1024 �upward triangles, �E
cl /�D�0.71�, 2048 �down-

ward triangles, �E
cl /�D�0.78�, and 4096 �circles, �E

cl /�D�0.85�. The
solid line gives the best Lorentzian fit for the M =512 curve,
�g�m0�=0.15−0.15/ �1+1.03�m0 /mc�2�. Data have been obtained
after averaging over 100 000 �1000 classically different samples,
each with 100 different quasienergies for M =256� to 25 000 �500
classically different samples, each with 50 different quasienergies
for M =4096� different samples. Inset: rescaled magnetoconduc-
tance data �g�m0� /�g�2.2mc�. The data collapse onto a single
curve, confirming our theory that mc does not depend on �E

cl.
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g�2.2mc�−g�0�. The two procedures confirm the exponential
suppression of weak localization �38�, in agreement with
Ref. 27.

VII. CONCLUSIONS

In this paper we investigated the noncoherent transport
properties of open quantum chaotic systems in the semiclas-
sical limit. We have shown how to incorporate the noner-
godic structures appearing in the classical phase space �see
Fig. 1� into quantum transport. We followed the scattering
approach to transport and showed how large phase-space
structures result in a block-diagonal form of the scattering
matrix and the splitting of the system into two subsystems
put in parallel. One of these subsystems is of a purely clas-
sical nature, consisting of deterministic transmission modes
�transmission eigenvalues are all 0 or 1�. We were able to
calculate the corresponding transmission eigenvectors and
connect the emergence of determinism to the suppression of
the Fano factor for shot noise as well as the breakdown of
universality for sample-to-sample conductance fluctuations.
The classical phase-space structures also cause the exponen-
tial suppression of coherent backscattering, preserving the
unitarity of the semiclassical theory of weak-localization pre-
sented here.

At this point, the quantum mechanical subsystem is
known not to conform to RMT. Even though all its modes
undergo a certain amount of mixing, and thus carry quantum
effects, weak localization and coherent backscattering come
from trajectories longer than �E

op+�E
cl, which have an expo-

nentially small relative weight exp�−�E
cl /�D� in the quantum

cavity. The existence of two separated fluids is, however,
confirmed.

We finally point out that the phase-space method devel-
oped in the first half of this paper should work as well in
regular systems. However, we anticipate difficulties not
present in the chaotic systems treated here due to the power-

law decay of the band areas and diffraction effects at the
leads. One open question is why open regular systems with
large dwell times have a RMT transmission spectrum,45,46

but a nonuniversal weak-localization behavior.11,47

Recently, a preprint appeared in which the same
conclusions were independently reached about coherent
backscattering.49
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APPENDIX A: GAUSSIAN WAVE PACKETS
AND HYPERBOLIC DYNAMICS

We show that the time evolution of a Gaussian wave
packet in a uniformly hyperbolic infinite system follows the
Liouvillian flow. This example supports the claim that a
Gaussian wave packet in a chaotic system follows the Liou-
villian flow up to the time scale at which the wave packet
becomes so large that the Liouvillian dynamics ceases to be
hyperbolic.34

The uniformly hyperbolic Hamiltonian we consider is H
= px

2 / �2m�−m�2x2 /2. With the change of variable px

= �m� /2�1/2�q+ pq� and x= �2m��−1/2�q− pq�, the Hamiltonian
can be written as

H = ��qpq − i � /2� .

Solving the classical Hamilton equations of motion one gets
q�t�=q�0�e�t and pq�t�= pq�0�e−�t. Next, it is easily checked
that a solution of the Schrödinger equation is provided by the
wave packet

	q
"�t�� = A exp− �−2�t��q − q�t� − i�2�t�pq�t�/ � �2� ,

with ��t�=��0�e�t. Thus we see that a Gaussian wave packet
remains Gaussian, simply stretched and shifted by the Liou-
villian flow. This quantum calculation is exact if the system
is infinite. In finite systems, initially narrow classical distri-
butions undergo a crossover from hyperbolic dynamics to
diffusive behavior once their extension become comparable
to some characteristic length scale of the system.1 In our case
we can thus expect that Gaussian wave packets cease to be
Gaussian once the wave packet has spread to a width of
order the lead width. In other words a Gaussian wave packet
will remain Gaussian for times shorter than the Ehrenfest
time.34

APPENDIX B: ALGORITHMIC CONSTRUCTION
OF AN ORTHOGONAL PHASE-SPACE BASIS

A basis of coherent states can be made complete �and not
overcomplete� but not orthogonal, by placing coherent states
at the vertices of a von Neumann lattice.48 This complete
basis can be orthogonalized by following standard proce-
dures �e.g., Gram-Schmidt orthogonalization�, upon which,
however, the basis states become very different from one

FIG. 14. Amplitude of the weak-localization correction to the
conductance as a function of the size of Hilbert space. Data have
been extracted from the curves shown on Fig. 13 via either a fitting
of the magnetoconductance curve with the Lorentzian �g�m0�
=�−� / �1+���m0 /mc�2� �squares� or taking �=�g�2.2mc� �circles�.
Both methods confirm the exponential suppression �
�exp�−�E

cl /�D� �dashed and dot-dashed lines� with an effectively
smaller Lyapunov exponent ��1.26 �compared to ln�K /2��1.95�
�Ref. 44�.

SEMICLASSICAL THEORY OF QUANTUM CHAOTIC¼ PHYSICAL REVIEW B 73, 195115 �2006�

195115-15



another and extended in phase space. We here describe a
numerical algorithm that orthogonalizes a complete basis of
coherent states on a von Neumann lattice, keeping all states
identical �up to a translation in phase space� while preserving
the phase-space localization property of the basis states.

One starts from coherent states with wave functions


cs;i, j� = exp�− 1
2 
�ij
2�exp��ijâ

†�
0. �B1�

The creation and annihilation operators are �here �=1�

â† = 2−1/2�Q̂ − iP̂�, â = 2−1/2�Q̂ + iP̂� , �B2�

where �ij =2−1/2�Qi+iPj� and using dimensionless position Q

and momentum P with �P̂ , Q̂�= i. The vacuum state 
0� is a
Gaussian wave packet centered at P=Q=0,

	Q
0� = 	Q
cs;0,0� = 
−1/4exp�− 1
2Q2� . �B3�

The coherent state �B1� is a Gaussian wave packet centered
at Q=Qi and P= Pj with the same spread in both directions,

	Q
cs;i, j� = 
−1/4exp�iPjQ − 1
2 �Q − Qi�2� ,

	P
cs;i, j� = 
−1/4exp�− iPQi − 1
2 �P − Pi�2� , �B4�

where we have dropped irrelevant overall phases.
To get a complete basis, coherent states are placed at each

vertex but one of a square von Neumann lattice, i.e., a regu-
lar lattice on the Q-P plane with each unit cell covering an
area �2
�.48 Translational invariance means that the empty
lattice vertex may be anywhere. This basis of coherent states
is complete but it is not orthogonal. To orthogonalize it, we
make the ansatz that there exists a set  i� such that the wave
function


ps;i, j� = �
i�,j�

 i� j�
cs;i� + i, j� + j �B5�

obeys

	ps;k,l
ps;i, j� = �ik� jl. �B6�

Note that the form of Eq. �B5� is such that we assume that
the basis states will be symmetric under interchange of Q
and P just like the coherent states are.

To satisfy Eq. �B6�, we see that the elements of the set
 i� must obey

�i,0 = �
i�i�

 i�
* i�exp�− �
/2��i + i� − i��2� . �B7�

We define a set of vectors v���� written in a nonorthogonal

basis êi� such that v���=�i ̃i−�êi, i.e., the ith element of the
�th basis vector is vi

���= i−�. The basis is chosen such that
the basis vectors have the inner product �êi · êj�
=exp�−�
 /2��i− j�2�. The condition that the vectors v����
form an orthonormal basis is

��,0 = �v��� · v�0�� = �
ij

 i−�
*  j�êi · êj� . �B8�

This is identical to the condition �B7�; thus orthogonalizing
this set of vectors is equivalent to finding the  ’s that satisfy

Eq. �B7�. We use the following algorithm to orthogonalize
these vectors.

�1� Take a complete normalized �but nonorthogonal�
basis vi�.

�2� Define a new basis vi�� such that vi�=Ai�vi

− 1 # 2� j�i�vi ·v j�v j�. We then choose Ai such that it normal-
izes the vector vi�.

�3� Repeat the procedure, taking the new basis vi��
and deriving a basis vi��, and so on.
We take the coherent states described above as the initial
nonorthogonal basis, so initially  i=�i,0. In Table I we
present data for the first ten iterations of the algorithm; by
the sixth iteration the results satisfy Eq. �B7� with an accu-
racy of 10−7. Each iteration improves the accuracy by more
than one order of magnitude. A PS state generated by this
procedure is shown in Fig. 6. We note that  i decays approxi-
mately exponentially with i. Thus the PS states given by Eq.
�B5� are exponentially localized in position and momentum,
as shown in Fig. 6.

Area-preserving stretches

�Q,P,Qj,Pj� → �$Q,$−1P,$Qj,$
−1Pj�

and rotations

�Q,P,Qj,Pj� → �Q cos � + P sin �,P cos � − Q sin �,

Qj cos � + Pjsin �,Pjcos � − Qjsin ��

are unitary operation for any $ ,�. Thus the stretched-rotated
basis will also be orthonormal and complete. This legitimizes
the procedure discussed in Sec. III B for optimizing the PS
basis by fitting it to the PS scattering band structure.

APPENDIX C: EDGE-OF-BAND PHASE-SPACE STATES

The tail of the PS state shown in Fig. 6 decays exponen-
tially with the number of lattice points away from the center
of the PS state. Strictly speaking, any PS state has thus a
finite amplitude outside the band. We can, however, treat PS
states as classical, i.e., completely inside one band, if they
are more than jmax lattice sites away from the edge of that
band. If we choose jmax=1, we would call states “classical”
even if they have �3% of their squared amplitudes outside
the band �this is similar to the situation sketched in Fig. 7�.
If, however, we take jmax=3, then a PS state is only classical
if less than 10−5 of its squared amplitude is outside the band.
The number of edge-of-band states �PS states that are par-
tially inside and partially outside a band with area �2
�eff�
of a band that exits at time � is

neob
L→K��� � 4jmax� WLWK

2
�effL
2�1/2

exp�− ��/2� , �C1�

where K=L,R. Thus the number of edge-of-band states is

Neob = �
K
�

0

�E
LK

d� Nband
L→K���neob

L→K��� �
jmaxNqm

��D
�C2�
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where the sum is over K=L,R and jmax is a number of order
1. Note that the error we make decays exponentially with
jmax, hence the choice of acceptable error changes Neob only
logarithmically. From Eq. �C2� we conclude that the edge-
of-band PS states are a subdominant proportion of the total
number of quantum PS states, and can be ignored.

APPENDIX D: FLUX ENCLOSED BY THE CORRELATED
PART OF THE LOOP

Here we analyze the part of the area enclosed by a loop-
forming trajectory when it is in the correlation region close
to the crossing, i.e. within TL�� /2� of the crossing. The situ-
ation is depicted in Fig. 15. We consider a loop formed after
N bounces at the cavity’s wall. In the correlation region, the
segment of the trajectory between the �n−1�th and nth col-
lisions with the cavity walls is highly correlated with the
segment between the �N−n+1�th and the �N−n+2�th colli-

sions. We consider the directed area Ãn enclosed by these
two segments �dashed region in Fig. 15�. We assume that


Ãn
 is uncorrelated with 
Ãm�n
, and take each such area
from a Gaussian distribution. The typical perpendicular dis-
tance between the trajectories at time t �measured from the

crossing� is ±vF��
−1sinh��n�0�. Thus we assume 	Ãn�=0

and

	Ãn
2� = �vF

2��−1�
�n−1��0

n�0

dt sinh��t��2

. �D1�

This grows exponentially with n. Thus the sum over the Ãn’s
is dominated by the largest of them with nmax=TL��� /2�f,
whose variance is �A2. Anticorrelations in the signs of con-
secutive directed areas in the correlated region further reduce
the total directed area. The flux enclosed in the correlated
region is thus at most �A2�2. This is smaller than the flux
enclosed in the uncorrelated region by a factor �f /�D�1.
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FIG. 15. �Color online� A sketch of the area enclosed by the

correlated part of the weak-localization loop. The area Ãn is defined
by the segment of the loop-forming trajectory between the �n−1�th
and nth collisions and the segment between the �N−n+1�th and the
�N−n+2�th collisions �dashed region�.
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