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The system of interacting spinless fermions hopping on a two-leg ladder exhibits a series of quantum phase
transitions when subjected to an external magnetic field. At half-filling, these are either U�1� Gaussian phase
transitions between two phases with distinct types of long-range order or Berezinskii-Kosterlitz-Thouless
transitions between ordered and gapless phases.

DOI: 10.1103/PhysRevB.73.195114 PACS number�s�: 71.10.Pm, 71.30.�h

I. INTRODUCTION

The behavior of interacting electron systems under the
action of an external magnetic field, affecting orbital motion
of the particles, is a subject of intense research of the last
several decades. It has long been established that the mag-
netic field has a dramatic effect on all properties of the sys-
tem. Even in the absence of interaction, the spectrum of the
free Fermi gas is modified and exhibits Landau quantization1

in the continuum or the Hofstadter spectrum2 on a two-
dimensional �2D� lattice. The most spectacular consequence
of this phenomenon is the quantum Hall effect �QHE�.3
Electron-electron interaction compounds the complexity of
the problem, giving rise to the fractional quantum Hall effect
�FQHE�.4

The current theoretical understanding of the effect of the
magnetic field on the properties of electron systems was
achieved by a combination of various methods and tech-
niques, each of which is strictly speaking only applicable in
a certain parameter range. What is still lacking is a compre-
hensive approach that would unify all of the different aspects
of the problem into a single coherent picture. Perhaps at
present such a goal is too ambitious. However, as a first
small step in this direction, one can ask whether such a com-
prehensive approach can be formulated for a simpler model,
that would on one hand be a problem of interacting electrons
in the magnetic field and on the other hand would, at least in
principle, allow a generalization towards the original prob-
lem.

The simplest model of interacting fermions that incorpo-
rates orbital effects of an external magnetic field is that of
spinless fermions hopping on a two-leg ladder. This model is
simple enough not to exhibit the multitude of small gaps in
the single-particle spectrum �characteristic of the Hofstadter
problem2�. Yet the magnetic flux piercing the plaquettes of
the ladder changes the ground state properties of the system
giving rise to nontrivial phases and inducing quantum phase
transitions.

Ladder models5,6 occupy a special place in the field of
strongly correlated electron systems. On the one hand, they
describe �at least within some range of temperatures� behav-
ior of many naturally found compounds,7 including carbon

nanotubes,8,9 as well as artificially manufactured structures.10

On the other hand, they provide a fertile ground for applica-
tion of theoretical techniques developed for one-dimensional
systems11—i.e., nonperturbative approaches leading to as-
ymptotically exact results. Furthermore, they are a first step
for various attempts at generalization of the lore of physics
in one spatial dimension to higher-dimensional problems.12

As is often the case, situations where the number of par-
ticles is commensurate with the lattice attract the most atten-
tion since only then can long range order �LRO� develop. We
have previously shown13 that at a one-quarter filling, the
presence of the flux results in exciting effects which do not
exist in the absence of the flux. In particular the uniform
external magnetic field can lead to a staggered flux �or or-
bital antiferromagnet� phase, which furthermore has fraction-
ally charged excitations.

The purpose of the present paper is to describe the full
phase diagram of interacting spinless fermions on the two-
leg ladder at 1 /2-filling in the presence of an external mag-
netic field. To drive a system to criticality by applying the
magnetic field is an intriguing possibility which should be
more accessible in experiment than varying coupling con-
stants. The phase diagram displays a multitude of quantum
phase transitions induced by the flux. There are two types of
these phase transitions: �i� Berezinskii-Kosterlitz-Thouless
�BKT� transitions14 between ordered and disordered ground
states, and �ii� U�1� Gaussian phase transitions between dif-
ferent ordered ground states. Here we choose the fermions to
be spinless in order to eliminate Zeeman splitting and focus
on the orbital effects of the magnetic field. The case of spin-
1 /2 particles will be discussed in a separate presentation.

Traditionally15,16 ladder models have been treated in two
complimentary approaches. On the one hand, one can start
with the model of two decoupled chains, define the low en-
ergy effective theory for each of them, and then treat both the
single-particle transverse hopping and two-particle interchain
correlations perturbatively.17 On the other hand, one could
start with the exact single particle basis �given by two bands�
and then proceed with the corresponding low energy limit.6

For the major part of this paper we will be using the latter
approach which allows us to treat intrachain and interchain
processes on equal footing. However, it is well known18 �at
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least in the absence of the magnetic field� that for weak
enough interchain tunneling there exists the phenomenon of
Anderson confinement, i.e., the suppression of the interchain
single-particle tunneling by intrachain two-particle correla-
tions. This effect can be seen in either picture, but it is more
intuitive to discuss it within the chain approach. Both ways
should produce the same physical results, but understanding
the relation between the two approaches allows us to estab-
lish the limits of applicability of the effective low energy
theories that can be derived within either picture. Moreover,
we discuss how the Anderson confinement regime is affected
by the magnetic flux.

The remainder of the paper is organized as follows. We
start by defining the microscopic Hamiltonian of the model
and proceed directly to the results, discussing the phase dia-
gram and the other physical properties of the model. Then
we outline the details of the calculations within the weak
coupling �bosonization� approach. In Sec. III we derive the
effective low energy theory in the band picture. In Sec. IV
we turn to the chain picture and discuss its relation to the
band approach. Section V is devoted to the strong coupling
limit of our model and is followed by a brief summary of the
results. Mathematical details are relegated to Appendixes.

II. MODEL AND RESULTS

In this section we present our results. We start by defining
the microscopic Hamiltonian of our model and proceed to
discuss the zero-temperature phase diagram.

A. The Hamiltonian

We consider a tight-binding model of spinless fermions
on a two-leg ladder described by the Hamiltonian

H = −
1

2�
i�

�t����ci,�
† ci+1,� + H.c.� + V�

i�

ni,�ni+1,�

− t��
i

�ci,1
† ci,2 + H.c.� + U�

i

ni,1ni,2. �1�

Here ci,� is the electron annihilation operator on the chain
�=1,2 at the site i; ni�=ci,�

† ci,� are the occupation number
operators; t� and t� are the transverse and longitudinal hop-
ping amplitudes, respectively. The remaining two terms in
Eq. �1� describe nearest neighbor intrachain and interchain
interactions. The chosen form of short-range interaction is
quite representative because it reflects the generic symmetry
of the ladder and yields the most general effective field
theory in the low-energy limit. Our notation reflects the well-
known analogy between ladder models of spinless fermions
and Hubbard-type chains of spin-1 /2 particles. In our case
however, the SU�2� symmetry is explicitly broken in the
Hamiltonian �1� by the interchain hopping and the V interac-
tion term �the former is analogous to a Zeeman energy due to
an external magnetic field alng the x axis, while the latter is
a counterpart of an exchange anisotropy along the z axis�.

The external magnetic field B is introduced by means of
the Peierls substitution.19 In the Landau gauge20 with the
vector potential A=B�−y ,0 ,0� the transverse hopping term

is independent of the field, while the longitudinal hopping
amplitude can be written as

t��� = 1,2� = t0e±i�f , �2�

where f is the magnetic flux through the elementary
plaquette in units of flux quantum �0=hc /e. Expressed in
terms of the flux the model is explicitly gauge invariant.

B. Phase diagram

At one-half filling �one fermion per rung� the model �1� is
characterized by a rather rich phase diagram. Depending on
the values of microscopic parameters the ground state of the
model may possess true long-range order. Possible ordered
phases are illustrated in Fig. 1. The cartoons show a strong-
coupling picture of the phases: charge density waves �CDW�,
where particles are localized on sites of the ladder; bond
density waves �BDW� with dimerized links along the chains;
and the orbital antiferromagnet17 �OAF�, sometimes referred
to as the staggered flux phase or a d-density wave, where the
particle density remains uniform, but there exist nonvanish-
ing local currents that have opposite directions on alternate
bonds. Notice that, in the spin language, the relative CDW is
similar to a spin density wave �SDW� with spins polarized
along z �a Neel state SDWz�, whereas the OAF is equivalent
to a SDWy.

In addition, the model �1� allows for various phases that
do not possess long-range order. Using the aforementioned
analogy with the Hubbard chain, we may discuss the model
�1� in terms of “spin” �or “relative”� and “charge” �or “total”�
sectors. In Sec. III B we show that, in the low-energy limit,
the “charge” and “relative” sectors of the model asymptoti-
cally decouple. In all of the ordered phases both sectors are
gapped. However, it is possible to have a phase where only
one of the sectors acquires a spectral gap. Phases where only
the “charge” sector is gapped, irrespective of the type of
dominant correlations, we will call the Mott insulator �MI�.
The cases where the gap exists in the “relative” sector only
will be called the Luther-Emery liquid �LEL�.21 Finally,
when both sectors are gapless, the system represents a Lut-
tinger liquid �LL�.

FIG. 1. Cartoon depictions of possible ordered phases at 1 /2
filling. The dots represent excess fermion occupation on the sites.
The ellipses represent excess dimerization on the bonds. The arrows
represent local currents. Note that the OAF and the BDW coexist—
see Sec. III for an explanation.
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The phase diagram in the absense of the flux is
known.15,16 For the sake of clarity we include it in Fig. 2.
This phase diagram is valid for suffiently large values of t�

where delocalization of the fermions across the rungs sup-
presses the CDW phase �which happens in the absence of the
interchain tunneling�. There are two ordered phases: �i� for
purely repulsive interactions U ,V�0, one has a relative
CDW as to be expected �see Sec. V�; �ii� for repulsive inter-
chain interaction and not too strong attractive in-chain inter-
action, the ground state is the orbital antiferromagnet.17,22

The phase diagram in Fig. 2 was obtained within a weak-
coupling bosonization approach. The phases do exist when
the coupling becomes strong, however the exact location of
the phase boundaries might change.

Once the magnetic field is applied, the system may exhibit
additional phase transitions. In Fig. 3 we plot the entire
weak-coupling phase diagram for the model at half-filling

and sufficiently large t� �see next section�. The magnetic flux
varies along the vertical axis, so that the diagram in Fig. 2
corresponds to the bottom axis of Fig. 3. The ratio of the
microscopic interaction parameters of the Hamiltonian �1�,
U /2V, is represented in Fig. 3 through the angular variable
�=tan−1 U /2V which varies along the horizontal axis. Four
different regions corresponding to various signs of the con-
stants U and V are indicated on the upper horizontal line in
Fig. 3. The analytic description of the phase boundaries,
based on the weak-coupling theory, is given in Appendix A.
The position of the boundaries depends on the applied field,
the ratio U /2V �i.e., �� and the ratio of the hopping param-
eters, �= t� / t0. We plot the phase diagram as a function of �
and flux for �=0.25, the value is arbitrary but representative
as long as � exceeds a possible gap in the “relative” sector.
At other values of � the topology of the phase diagram and
classification of the phases do not change qualitatively. Simi-
larly, if we modify our model �1� to include other short-range
interaction terms, the only effect on the phase diagram would
again be just the shift of the phase boundaries.

Let us now describe the phase transitions induced by the
applied field �i.e., the vertical direction in Fig. 3�. We assume
that the interchain hopping parameter � is not too small �see
the next section�. Note, that since the model �1� is invariant
under the transformation f →1− f and interchange of the two
chains, we only need to consider the flux within the range
0� f �1/2. Moreover, when the flux is large enough,
sin2 �f �1−�2, there is a band gap in the single particle
spectrum of the model. That state is largely unaffected by
interaction effects �at least within the weak-coupling limit�,

FIG. 2. Phase diagram at B=0 �after Ref. 16�. Phase boundaries
correspond to the lines V=0, U /2V=−2+�2 and U /2V=−�2.

FIG. 3. �Color online� The weak-coupling phase diagram in the magnetic field. We plot the flux along the vertical axis and the angle �
�defined as �=tan−1 U /2V� along the horizontal axis. As the phases depend on the signs of the interaction parameters, they are indicated at
the top of the diagram. Ordered phases are illustrated pictorially in Fig. 1. The corresponding order parameters are listed in Table I. The
disordered phases are characterized by dominant correlations �indicated in parentheses�. For large values of the flux �sin2 �f �1−�2�, there
is a band gap in the noninteracting picture. The thick solid lines �blue and green online� represent U�1� Gaussian transitions between
mutually dual ground states with long-range order, and the thick dotted lines �black and red online� are Berezinski-Kosterlitz-Thouless phase
transitions corresponding to opening of a gap in one of the sectors.
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and thus we will restrict our discussion to smaller values of
f . While the weak-coupling approach cannot be trusted at
fields too close to the band gap limit �since the Fermi veloc-
ity becomes too small�, we continue the phase boundaries up
to that point. All phase transitions of interest happen suffi-
ciently far from that region. Apart from a brief discussion in
Sec. V, we will not consider the details of the transition to the
band insulator in this paper.

The most interesting features of the phase diagram in Fig.
3 are a sequence of U�1� phase transitions between different
ordered states and reentrant transitions. Understanding of
these transitions is based on the fact that, as shown in Sec.
III B, in the low-energy limit the “charge” and “relative”
degrees of freedom of the model decouple, and each sector is
described by a sine-Gordon model �see Eq. �13� and Appen-
dix A�. Phases with LRO correspond to strong-coupling re-
gimes in both sectors. The phases whose order parameters
are mapped onto each other under a sign change of the cor-
responding coupling constant �the amplitude of the cosine
term� are mutually dual. The associated U�1� Gaussian criti-
cality occurs at the self-dual lines, i.e., when the one of those
coupling constants vanish. Such a duality is commonplace in
low-energy effective theories, indeed more complicated non-
Abelian dualities were found recently in the SU�4� Hubbard
model.23 However, it has also been recently shown24 that for
certain ladder models the �Abelian� duality between different
phases turns out to be not only a symmetry emerging in the
low-energy limit but an exact property of the underlying mi-
croscopic model.

Gaussian transitions occur in two domains of the phase
diagram: �i� for repulsive intrachain interaction �V�0� and
weak attractive interchain interaction �U�0�, and �ii� for
U�0 and weak V�0. In the first case �i�, at zero flux the
system is a MI. The dominant �longest-range� correlation
turns out to be that of the 2kF component of the total charge
density �hence the label “�CDW�” in Fig. 3; see Sec. III D for
details on dominant correlations�. As the flux is increased,
the system becomes a relative BDW �via the BKT transition
where a gap opens in the “relative” sector of the effective
theory�. Further increase of f drives the system through the
U�1� transition to a CDW phase. At larger values of the flux
�approaching the band gap limit� values of flux, the system
eventually becomes an OAF, again through the Gaussian
transition.

The second transition �ii� occurs at small values of the
flux. The zero-field ground state is an OAF. As we turn on
the flux, the system undergoes a U�1� transition towards a
relative CDW state. Further increase of the flux results in
closing of the gap in the relative sector �via the BKT transi-
tion� and the system becomes a MI, but now the dominant
correlation is that of the 2kF component of the transverse
bond density, labeled by “�BDW�.”

This latter transition turns out to be reentrant. As the flux
is further increased the system returns �again via the BKT
transition� back to the relative CDW state. There is another
example of a reentrant transition in the phase diagram, for
U�0 and small V the zero-field ground state is a Luttinger
liquid, which once subjected to the external field first be-
comes a LEL by opening a gap in the “relative” sector, and
then at higher field comes back to the LL state in which the

most singular fluctuations are those of the pairing operator at
momentum �−2kF. In the LEL phase the “relative” sector is
gapped and the “charge” sector is characterized by the domi-
nant correlation of the pairing operator at zero momentum.

Finally there is a large part of the phase diagram which is
robust against the application of the external field. When
both interchain and intrachain interactions are attractive, the
LL �that is the zero-field ground state� is mostly unaffected
by the field. More interesting is the situation when both in-
teractions are repulsive. The zero-field ground state is the
relative CDW. It turns out that this long-range order survives
under the application of the field �except possibly for the
transition to the MI for weak V discussed above�.

C. Commensurate-incommensurate transition

The above phase diagram breaks down if the parameter
h= �sin2��f�+�2�1/2, which in the noninteracting case deter-
mines the splitting between the Fermi momenta of different
bands, is too small �see Secs. III and IV�. Then, the part of
the phase diagram that corresponds to attractive interchain
interaction U�0 acquires additional ordered phases. This is
the result of additional interband scattering processes that at
larger h violate momentum conservation in the low energy
effective theory �based on the two-band description�. The
latter issue reveals the dichotomy between the two starting
points already mentioned in the Introduction: chain basis ver-
sus band basis. If one starts with a solution �however com-
plete� for two independent chains and then tries to take into
account the interchain hopping �as well as the flux� in per-
turbation theory, then the processes mentioned above are
present in the theory from the beginning. In the case when
these processes generate a gap in the spectrum of relative
degrees of freedom, a finite splitting of the Fermi momenta
would not take place unless the parameter h exceeds its criti-
cal value comparable with the gap. This is the well-known
commensurate-incommensurate transition.16 As the param-
eter h increases further, the “two-chain” approach fails be-
cause renormalization of the parameters of the theory be-
comes sizable at sufficiently large h. At that point one would
be forced to start with the exact, two-band single-particle
spectrum of the ladder. However, this would seemingly ne-
glect the processes in question as they appear to violate mo-
mentum conservation.

In Sec. IV we discuss the relation between the two ap-
proaches to ladder problems and show that if one uses either
approach properly, then the final result is independent of the
starting point, as should be expected. The new phases at U
�0 naturally emerge through the commensurate-
incommensurate transition.16

We shall also show that, regardless of the starting point,
some properties of the system are not accessible within the
effective low energy theory. The quantity in question is the
diamagnetic �or persistent� current, which turns out not to be
an infrared property. All electrons participate in this current.
In particular, the curvature of the single-particle spectrum at
the Fermi points becomes important, so that linearization of
the spectrum, being the usual prerequisite in the derivation of
any effective low-energy theory, completely destroys this ef-
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fect. Consequently, within the bosonization approach in the
context of the fermion ladder, it is impossible to describe the
analog of the Meissner effect that can be seen in bosonic
ladders.25 Details are presented in Sec. IV.

III. LOW-ENERGY EFFECTIVE THEORY: BAND BASIS

In this section we derive the effective low-energy theory
for the model �1� taking the exact single particle spectrum as
our starting point. As mentioned above, there exists an alter-
native approach, which starts with disconnected �but inter-
acting� chains. The relation between the two will be dis-
cussed in the next section.

A. Single-particle spectrum

The single-particle part of the Hamiltonian �1� can be di-
agonalized by the unitary transformation

c1�k� = uk	k + vk
k,

c2�k� = vk	k − uk
k, �3�

where the “coherence factors” uk, vk �which are positive as
the signs are written explicitly in Eq. �3�� are given by �if not
stated otherwise, in this section we will measure the momen-
tum k in units of the inverse longitudinal lattice spacing,
1 /a�

uk
2 =

1

2�1 −
sin k sin �f

�sin2 k sin2 �f + �2	 ,

vk
2 =

1

2�1 +
sin k sin �f

�sin2 k sin2 �f + �2	 . �4�

The resulting single-particle Hamiltonian describes two
bands

H0 = �
k

��		k
†	k + �

k

†
k� ,

with the spectrum

�	�
� = − t0�cos k cos �f ± �sin2 k sin2 �f + �2� . �5�

In the absense of the flux the coherence factors are indepen-
dent of momentum �u2=v2=1/2� and the Hamiltonian H0

consists of the usual symmetric and antisymmetric bands
each with the cosine spectrum, split by 2t�.

In the presence of the flux the spectrum can take one of
four typical shapes depending on the value of � and the flux.
These are illustrated in Fig. 4. If sin2 �f �� cos �f , then the
bands acquire a double-well shape as shown in plots II and
IV of Fig. 4. Futhermore, if cos �f ��, then the system ex-
hibits a single particle gap and the noninteracting system is a
band insulator at half-filling �as in Fig. 4 III and IV�. In that
case interaction effects �as well as the external field� are not
expected to drastically change the nature of the ground state
of the noninteracting system. We will not discuss that case in
the present paper. The two aforementioned conditions,
namely,

cos �f2 = �, sin2 �f1 = � cos �f1 �6�

define the two boundaries in the phase diagram of the non-
interacting system shown in Fig. 5. These two lines separate
the phase diagram of the non-interacting system �Fig. 5� into
four parts, where the spectrum has one of the four shapes
shown in Fig. 4.

The top two graphs in Fig. 4 describe the “metallic” phase
of the noninteracting system. In this case at half-filling both
bands are partially filled and each band is characterized by its
own Fermi momentum kF

	�
� satisfying kF
	+kF


=�. In what
follows we will use the notation kF
kF

	 �so that kF

=�−kF�

with

cos kF = �sin2 �f + �2. �7�

In the presence of the magnetic flux there exists a finite
diamagnetic current in the ground state of the system. The
current operator along the oriented link between sites n and
n+1 of the chain � is

FIG. 4. Possible types of the single-particle spectrum as a func-
tion of in-chain momentum. For any given �, increasing the flux
will eventually open a band-gap in the noninteracting spectrum.
Close to this transition one of the two bands is almost empty while
the other is almost full. At this point, curvature effects of the spec-
trum become important; these are beyond the scope of this paper.

FIG. 5. The phase diagram of the noninteracting system. The
vertical axis is the external flux and the horizontal axis is the ratio
between interchain and in-chain hopping amplitudes. Figure 4 de-
monnstrates the four typical shapes of the spectrum corresponding
to the four corners in which the phase diagram is separated by the
two lines, Eq. �6�.
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jn,�=1�2� = − it0�e±i�fcn,�
† cn+1,� − H.c.� . �8�

This current flows in opposite directions on the two legs of
the ladder, so that the total current jtot= jn,1+ jn,2 will have
zero expectation value, while the expectation value of the
relative current jrel= jn,1− jn,2 �in the absence of interaction�
is given by

�jrel� = − 2t0 sin �f  dk

2�
�cos k�n	�k� + n
�k��

−
sin2 k cos �f�n	�k� − n
�k��

�sin2 k sin2 �f + �2 	 , �9�

where n	�
��k�= �c	�
�
† �k�c	�
��k�� are the occupation numbers

of the two bands. The current �9� is a periodic function of the
flux with a period �f =1. In Fig. 6 we plot the flux depen-
dence of � jrel� within a single period. Notice that the current
changes its sign under transformation f →�− f; at f
=1/2� jrel�=0 due to the recovery of time reversal symmetry
at this point.

In the limit �→0, when the ladder decouples into two
completely disconnected chains, the appearance of the flux in
the Hamiltonian �1� is a gauge artifact. Indeed, a careful
evaluation of the integral in Eq. �9� will show that � jrel�=0 at
�=0. Expanding Eq. �9� for small f ,�1 and recovering the
dependence on the lattice spacing a, one finds that

� jrel� =
vF

3a
f�2�1 + O�f2,�2�� . �10�

Despite being small in this limit, the diamagnetic current
is not an infrared phenomenon. Its dependence on � is appar-
ently the effect of a finite curvature of the single-particle
spectrum. Notice, that as seen from Fig 6, � jrel� is nonzero
even in the insulating phase. Thus the current is a nonuniver-
sal quantity contributed by all electrons and not only those in
the vicinity of the Fermi points. Consequently, effects related
to such a persistent current cannot be addressed in terms of
any Lorentz-invariant effective low-energy theory �we will
further comment on this issue in Sec. IV�. Thus, at present
we are unable to calculate the effect of the interaction on the
diamagnetic current. However, it is clear that even in the

presence of interaction the current will still persist and all the
correlation-related phenomena discussed in this paper will
coexist with it.

B. Interaction Hamiltonian

Now we are going to apply the standard rules of Abelian
bosonization15,16 to derive the effective low-energy theory.
First, we will assume that the Fermi energy is sufficiently far
from the bottom of the 
-band. Then we linearize the two-
band spectrum Eq. �5� in the vicinity of the four Fermi
points, ±kF

	 and ±kF

. The associated low-energy degrees of

freedom are described in terms of smoothly varying chiral
�right and left� fermionic fields, R	�
��x� and L	�
��x�. This
defines the continuum limit of the model in which the non-
interacting part of the lattice Hamiltonian, including both the
interchain hopping and the coupling to the flux, transforms to
the kinetic energy of the chiral particles,

H0 = − ivF �
�=	,


 dx�R�
†�xR� − L�

†�xL�� ,

where vF=2t0a sin kF / cos �f is the Fermi velocity which at
half-filling is the same for both bands.

Specializing to the vicinity of the four Fermi points in the
coherence factors Eqs. �4� we find the low-energy correspon-
dence between the original lattice operators ci,� and the chi-
ral fields R� and L�. Then, the interaction terms in the model
�1� become

Hint � a�
i

�g1�:JR	JL	: + :JR
JL
:� + g2�:JR	JR
: + :JL	JL
:�

+ g3�:JR	JL
: + :JL	JR
:� + g4�:R	
†L	R


†L
:

+ :L	
†R	L


†R
:� − g5�:R	
†L	

†R
L
: + :R	L	R

†L


†:�

+ g6�:R	
†�xi�R	

†�xi+1�L
�xi�L
�xi+1�:

+ :R	�xi�R	�xi+1�L

†�xi�L


†�xi+1�:�

+ g6�:L	
†�xi�L	

†�xi+1�R
�xi�R
�xi+1�:

+ :L	�xi�L	�xi+1�R

†�xi�R


†�xi+1�:�� , �11�

where JR�¬R�
†R�: and JL�¬L�

†L�: are the chiral densities of
the right- and left-moving fermions with the band index �
�the symbol “::” stands for normal ordering�.

The first three terms in Eq. �11�, characterized by cou-
pling constants g1, g2, and g3, describe the density-density
interaction, whereas terms with amplitudes g4, g5, and g6
correspond to the interchain Umklapp, interchain back-
scattering and in-chain Umklapp terms, respectively. Explicit
expressions for the gi in terms of the original microscopic
theory is given in Appendix A. The coupling constants de-
pend on the interaction constants of the microscopic model
�1� and, through the coherence factors Eq. �4�, on the exter-
nal flux. The latter dependence plays an important role be-
cause it is responsible for the sequence of phase transitions,
described in Sec. II B, that are not accessible at f =0.

The interaction Hamiltonian Hint in Eq. �11� is the most
general form of four-fermion interaction in the band repre-
sentation, consistent with momentum conservation �modulo

FIG. 6. �Color online� Diamagnetic current as a function of flux
in the absence of interaction. Only one period in f is shown. The
cusps correspond to the band gap opening.
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the reciprocal lattice vector�. All other terms contain strongly
oscillating exponentials and thus do not contribute to the
low-energy theory. In particular, this argument applies to the
term

g7e2i�kF
	−kF


�xR	
†L	L


†R
 + H.c. �12�

Note, that if one starts building the low-energy theory ap-
proximating the ladder by two uncoupled chains, then the
Fermi momenta of the two bands are equal and the above
term should be included in Eq. �11�. We will discuss this
term and the relation between the two approaches to
bosonization in ladder models in Sec. IV. However it is im-
mediately clear, that omitting Eq. �12� from Eq. �11� can
only be valid at long distances �x�� �kF

	−kF

�−1 or, equiva-

lently, at low energies ���vF�kF
	−kF


�.
Now we bosonize the theory in the standard manner �our

conventions are outlined in Appendix B�. As usual, the
density-density terms �represented in Eq. �11� by g1, g2, and
g3� renormalize the Fermi velocities and the scaling dimen-
sions of the vertex operators. Introducing symmetric and an-
tisymmetric combinations of the bosonic fields, �±
= ��	±�
� /�2, we diagonalize the quadratic part of the ef-
fective bosonized Hamiltonian. The latter is then represented
by two sine-Gordon models defined in the symmetric and
antisymmetric sectors which are coupled by the in-chain
Umklapp term g6,

H =
vF

+

2
�K+��x�+�2 +

1

K+
��x�+�2	 −

g4

2�2	0
2 cos �8��+

+
vF

−

2
�K−��x�−�2 +

1

K−
��x�−�2	 +

g5

2�2	0
2 cos �8��−

−
g6

�2	0
2 cos �8��+ cos �8��−. �13�

The cosine terms in Eq. �13�, when relevant �these are the
cases K+�1, K−�1, respectively�, are responsible for a dy-
namical generation of a mass gap in the corresponding sector
and, therefore, for the U�1� phase transitions described in
Sec. II B. For weak interaction, �gi� /�vF1, the “Luttinger
liquid” parameters K± are close to unity �see Appendix A�.
Consequently, the cosine terms having scaling dimensions
2K+ and 2/K− in the symmetric and antisymmetric sectors,
respectively, are nearly marginal. The g6 term that couples
the two sectors is therefore strongly irrelevant because of its
scaling dimension 2K++2/K−�4. The only situation when
the g6 term may become important is the case when one of
the sectors is gapped, while the amplitude of the cosine term
in the other sector vanishes, i.e., either g4=0 or g5=0. In this
case the g6 term can generate the missing cosine in the
Gaussian sector and even make the latter massive. This
mechanism was recently discussed in Ref. 26 in the context
of the Mott instability of a half-filled fermionic ladder with
U=0. Since in our model the presence of the g4 and g5 terms
is generic, and the lines g4=0 and g5=0 characterize the
phase boundaries, the only effect of the in-chain �g6� Um-
klapp scattering would be to modify the equations that deter-
mine the phase boundaries without changing the topology of

the phase diagram. Being interested in the description of dis-
tinct phases rather than their precise location, we will ignore
the g6 term in the remainder of this paper.

Thus the effective low-energy theory for our model Eq.
�1� consists of two asymptotically decoupled sectors, each
being a sine-Gordon model. In the case when a strong-
coupling regime developes in either sector, a mass gap gets
generated in the spectrum, and semiclassical solutions of the
equations of motion describe locking of the bosonic field in
one of the infinitely degenerate minima of the cosine poten-
tial. Physical quantities evaluated on such solutions may ei-
ther vanish or acquire a nonzero expectation value. The
former would mean that the quantity in question is charac-
terized by exponentially decaying correlations. In contrast,
the latter corresponds to long-range correlations. Since local
operators of the theory have a multiplicative structure, they
can indeed serve as order parameters if gaps are generated in
both sectors simultaneously. The multiplicity of the actual
values that the order parameter would take on the semiclas-
sical solutions, differing by a period of the cosine potential,
determines the degeneracy of the ordered ground state. The
latter always appears to be associated with a unit cell dou-
bling and is Z2. The complexity of the formulas, relating the
four coupling constants in �13� to the two interaction param-
eters in the original Hamiltonian �1�, as well as the magnetic
field, leads to a rich phase diagram, as we will now demon-
strate using the just outlined strategy.

C. Ordered phases

As there are four distinct Fermi points in our model, any
local operator will contain four dominant Fourier compo-
nents

O�xn� = O0�x� + �− 1�nO��x� + cos�2kFxn�

��O2kF
�x� + �− 1�nO�−2kF

�x�� .

Here O0 is the smooth part of the operator O�xn� correspond-
ing to characteristic momentum q�0; O� is the staggered
part contributed by momenta q��, which can originate
from some interband pairing; the components O2kF

and
O�−2kF

can be present due to in-band pairing. At half-filling,
it is only the staggered part that can acquire an expectation
value and serve as an order parameter; however in some of
the gapless phases dominant correlations may occur at 2kF or
�−2kF rather than �.

Local operators of interest in the case of half-filled ladder
are listed in Table I, which includes the microscopic lattice
definitions and the bosonized form of the dominant Fourier
components. These are given up to multiplicative factors; we
preserve, however, prefactors proportional to the magnetic
flux to make clear which quantities do not exist in zero field
limit. We also indicate the LRO that appears when order
parameters �first five operators in the Table I—which also
correspond to the five “cartoons” in Fig. 1� acquire nonzero
expectation values.

An interesting observation that can be made from Table I
is that the OAF and the BDW are both proportional to the
same low-energy operator, implying that the two phases co-
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exist. However, the OAF can exist already at zero flux
whereas the BDW order parameter is proportional to the flux
�at small f�. This coexistence can be understood by noticing
that at f �0 the BDW order parameter is defined in a gauge
invariant way, i.e., with flux-dependent phase factors explic-
itly included into its definition �we remind that we have cho-
sen the longitudinal Landau gauge, see Eq. �2��. As a result,
the BDW operator describing dimerization of the two chains
with zero relative phase acquires an admixture of the stag-
gered relative current, proportional to the flux at f 1. This
admixture actually represents the longitudinal part of the
OAF order parameter �which is identical to J� by current
conservation�. The very appearance of such an admixture is a
consequence of the explicit breakdown of time reversal sym-
metry, caused by the external flux, which is superimposed on
the spontaneous breakdown of this symmetry in the OAF
phase.

Another ordering in which the flux plays a crucial role is
the CDW phase. As already mentioned, the ground state of
the ladder at f =0 and not too small � does not display this
type of LRO as the interchain hopping tends to prevent
double occupancy of the rungs. It is a curious fact that under
application of the flux this state can be recovered due to a
similar, although more subtle, admixture with a staggered
flux phase. Indeed, the bosonized low-energy projection of
the operator �+ has the form fJdiag, where the operator

Jdiag � i�− 1�n��cn,1
† cn+1,2 − H.c.� − �1 ↔ 2�� , �14�

represents an order parameter for an OAF state with local
currents effectively flowing across the diagonals of the
plaquettes.22 The scalar nature of the CDW under time rever-
sal is not violated for the reason already mentioned in the
preceding paragraph.

Let us now turn to the derivation of the phase diagram.
For the cosine terms to become relevant and generate a gap
in the spectrum, the “Luttinger liquid” parameters K+ and K−
should be smaller and larger than 1, respectively. According
to the definition of K±, Eqs. �A4�, this translates into the
following conditions on the parameters of the theory:

g1 + g3 � 0, g1 − g3 � 0. �15�

Strictly speaking, these conditions are valid only to first or-
der in the Kosterlitz-Thouless RG equations. When the cou-

plings gi�i=1,3 ,4 ,5� are all of the same order, there are
important renormalizations of the parameters K± emerging in
the second order.16 This means that the exact positions of the
phase boundaries depend also on g4 and g5. These correc-
tions, however, do not cause qualitative changes in the over-
all phase diagram and can therefore be neglected in the lead-
ing order. For this reason, when drawing conclusions on
relevance or irrelevance of various perturbations, we will
resort to an estimation of their Gaussian scaling dimension.

In the effective Hamiltonian �13� there are two cosine
terms with amplitudes g4 and g5. Both terms have the same
period in their respective variables that defines the values of
the fields �+ and �− for any semiclassical solution. Depend-
ing on the sign of g4 the field �+ may take one of the two
possible sets of values, �0=n�� /2, or ��=�� /8
+n�� /2�n=0, ±1, . . . �. Similarly, �− may take one of the
above values depending on the sign of g5. Consequently
there are four possible ordered phases.

�i� If both g4 and g5 are negative, then the semiclassical
solutions are �+=�� and �−=�0. Of all the operators listed
in Table I only the staggered component of the total charge
density �+

�s� has a nonzero expectation value on the above
solution. Therefore, the conditions g4�5��0 define the charge
density wave �CDW�. This phase exists only in the presence
of the magnetic field, which mixes it up with an OAF phase,
as explained previously.

�ii� For g4�0 and g5�0 we find the orbital antiferro-
magnet �OAF�, since now �+=�−=�0 and the staggered
component of the interchain current J� gains the expectation
value. In contrast to the quarter-filled case,13 the OAF phase
exists even in the absence of the magnetic field.16,22 We will
clarify this issue in Sec. V. At f �0 the OAF coexists with
BDW, as we already mentioned.

�iii� When both interaction constants are positive the stag-
gered component of the relative charge density �−

�s� has an
expectation value �since in this case �+=�0 and �−=���. We
call the corresponding ordered phase a relative charge den-
sity wave �relative CDW�. The magnetic field has little effect
on this phase except for the exact location of the phase
boundary on the phase diagram, which is beyond the scope
of this paper.

�iv� Finally, if g4�0 and g5�0 then �+=�−=�� and the
staggered component of the relative longitudinal bond den-

TABLE I. Local operators in the half-filled ladder

Local
operator

Lattice
definition

Dominant
component

Bosonized
form

Ordered
phase

J� −it��c1
†c2−H.c.� � cos �2��+ cos �2��− OAF

�− c1
†c1−c2

†c2 � cos �2��+ sin �2��− Rel. CDW

��,+ ei�fc1
†�xn�c1�xn+1�+e−i�fc2

†�xn�c2�xn+1�+H.c. � sin �f cos �2��+ cos �2��− BDW

��,− ei�fc1
†�xn�c1�xn+1�−e−i�fc2

†�xn�c2�xn+1�+H.c. � sin �2��+ sin �2��− Rel. BDW

�+ c1
†c1+c2

†c2 � tan �f sin �2��+ cos �2��− CDW

2kF sin �2��+ cos �2��−

�� c1
†c2+c2

†c1 2kF cos �2��+ sin �2��−

Osc c1c2 �−2kF iei�2��+ cos��2��−− ��−2kF�x�
0 tan �fei�2��+ cos �2��−
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sity ��,−
�s� acquires a nonzero expectation value yielding the

relative bond density wave �relative BDW�. Although the
operator ��,−

�s� �and therefore its expectation value� does not
vanish in the absense of the magnetic field the relative BDW
does not exist at f =0 �see Fig. 3� since the two conditions
g4�0 and g5�0 can be resolved only when f �0.

All of the above long-range ordered states break sponta-
neously translational symmetry of the underlying lattice �pe-
riod doubling� and thus are doubly degenerate. Topological
excitations in these phases �Z2 kinks� carry unit charge Q
=1, as opposed to fractional charge Q=1/2 in the one-
quarter-filled case. This follows from the definition of the
fermionic number carried by a single kink,

Q = �
�=	,



−�

�

dx�JR��x� + JL��x�� =� 2

�


−�

�

dx�x�+�x�

�16�

and the fact that each kink interpolates between the vacuum
values of the field �+ at x→ ±� that differ by a period of the
cosine potential, equal to �� /2.

D. Nonordered phases

In the preceding section we have discussed the ordered
phases occuring under the conditions Eq. �15�, i.e., when
both sectors in the effective Hamiltonian �13� acquire gaps.
In all other cases there exist gapless excitations. These are
characterized by correlation functions that at large distances
decay as a power law

�O�x�O�0�� � 1/x2d,

where d is the scaling dimension of the operator O. Corre-
lations with slowest decay are usually referred to as domi-
nant. In the phase diagram Fig. 3 we categorize the gapless
phases according to their dominant correlations, indicating
the corresponding order parameter in parentheses. In this
section we briefly describe such phases.

If the conditions Eq. �15� are reversed and K+�1, K−
�1, then both sectors are gapless and the system is a Lut-
tinger liquid. In this case the dominant correlation function is
that of the pairing operator Osc at wave vector �−2kF,

�Osc
† ��,x�Osc�0�� �

cos��� − 2kF�x/a�
�v+� − ix�1/K+�v−� − ix�K−

. �17�

There are two other cases when only one of the conditions
Eq. �15� is violated. Then only one of the sectors acquires a
gap while the other remains gapless.

�i� If K+�1, K−�1, then the “charge” sector is gapped,
but the “relative” sector remains gapless. By formal analogy
with the Hubbard model we call this phase a Mott insulator.
In such state, incommensurate density or bond-density cor-
relations with characteristic momentum 2kF�� are domi-
nant. Indeed, depending on the sign of g4, either cos �2��+
or sin �2��+ acquire finite expectation values. Therefore,
either the transverse bond density �� or the 2kF part of the
total charge density �+ display slowest algebraic decay of the
corresponding correlation function determined by the “rela-

tive” sector �see Table I for bosonized expressions�. So at
g4�0,

�����,x����0�� �
cos�2kFx/a�
�v−� − ix�K−

. �18�

If g4�0, then Eq. �18� applies to the correlation function of
�+.

�ii� If K+�1, K−�1, then the “charge” sector is gapless,
but the relative sector acquires a gap. By analogy with spin-
gap systems, we call such a phase a Luther-Emery liquid.21

Now it is �− that takes one of the two semiclassical values
depending on the sign of g5. It turns out, however, that this
phase can only occur when g5�0, so that �cos �2��−��0,
and the dominant correlation is that of the pairing operator at
zero momentum �with the power law determined by the
“charge” sector�

�Osc
† ��,x�Osc�0�� �

1

�v+� − ix�1/K+
. �19�

The phase boundaries as a function of U ,V , f ,� can be
calculated by solving Eqs. �A1� for when g4 or g5 is zero, or
K+ or K− is one. For completeness, these are written in Ap-
pendix A. The complete weak-coupling phase diagram is
plotted in Fig. 3 and was discussed in Sec. II B.

IV. LOW-ENERGY EFFECTIVE THEORY: CHAIN BASIS

In this section we briefly review the effective low-energy
theory that one can derive taking two independent chains as
a starting point. Interchain hopping is then taken into account
already at the bosonization level similarly to interaction
terms. This approach is valid as long as t�vF�f�a, where
vF�f� is the renormalized velocity �see below�. In the absence
of the magnetic field the chain-basis description of the spin-
less ladder has been widely used in literature.15,16 Skipping
inessential details, below we will give a brief review which
will help to analyze differences between the two approaches
and further clarify the role of the magnetic flux.

In the chain-basis approach, one starts by linearizing the
fermion dispersion on each chain in the vicinity of the two
Fermi points, ±kF= ±� /2, defines chiral fermion fields, and
then expresses the interchain hopping in terms of these
fields. On the lattice, the magnetic field was introduced in the
Hamiltonian �1� via the Peierls substitution Eq. �2�. Here it is
convenient to split the phase exponential in Eq. �2� into its
real and imaginary part. The real part contributes to the
renormalization of the Fermi velocity, vF→vF�f�
=vF cos��f�, which is of minor importance as long as f is
not too close to 1/2. The imaginary part can be written in
terms of the densities of the left and right particles, so that
the single-particle perturbation to free chiral fermions is of
the form:

H1�x� = − hR · JR − hL · JL, �20�

where the chiral densities �vector currents� are defined as

SPINLESS FERMIONIC LADDERS IN A MAGNETIC¼ PHYSICAL REVIEW B 73, 195114 �2006�

195114-9



JR = 1
2R�

† ���R�, JL = 1
2L�

† ���L�. �21�

Here �a�a=x ,y ,z� are the Pauli matrices and � and � are the
chain indices. In Eq. �20� the vector currents appear to be
coupled to the effective chiral “magnetic” fields

hR = �h�,0,− h��, hL = �h�,0,h�� . �22�

with

h� = 2t0 sin��f�, h� = 2t�.

Bosonizing Eq. �20� directly one can find

H1 =
h�

�	0
cos �2��− sin �2��− − h�� 2

�
�x�−. �23�

Notice that only the relative field, �−= ��1−�2� /�2 and its
dual, �−= ��1−�2� /�2 appear in Eq. �23� since we are dis-
cussing interchain processes. To avoid confusion, we remind
that here �− and �− are the differences between the corre-
sponding bosonic fields defined at each chain. The remainder
of the Hamiltonian in the relative sector originates from the
kinetic term and the interaction, so the total Hamiltonian has
the form

H− = HG + HSG + H1, �24�

where HG is the Gaussian model with the interaction param-
eter K expressed in terms of gs= �4V−U�a in the standard
way, Eq. �A4�, and HSG�U cos �8��− is the sine-Gordon
term.

The last term in Eq. �24� H1 is the sum of a nonlocal
vertex operator and a derivative of the dual field �−. The
latter appears only in the presence of the magnetic field and
may be interpreted as the bosonized version of the Lorentz-
invariant current j̃�JR

z −JL
z . It is important to realize, how-

ever, that this is not the physical relative current already
discussed in Sec. III A. Moreover, j̃ appears not to be gauge
invariant: its expectation value in the ground state of the
noninteracting system is nonzero even in the absence of in-
terchain hopping. In what follows we demonstrate that,
physically, H1 �Eq. �23�� describes the splitting of the two
Fermi points in the chain basis into the four Fermi points
introduced in Sec. III A.

Treating Eq. �24� presents certain difficulties related to the
nonlocal nature of the perturbation �23�. Global rotations of
the quantization axis for the Abelian bosonization, which
proved to be efficient at f =0 �see Refs. 16 and 17�, are not
helpful here because of the more complicated structure of
H1. Let us therefore perform a chiral rotation which makes
the “magnetic” fields hR and hL antiparallel and aligned
along the z axis,

hR� = �0,0,− h�, hL� = �0,0,h� , �25�

where h2=h�
2 +h�

2. This simplifies the bosonic form Eq. �23�
which now contains only the derivative term

H1 = − h� 2

�
�x�−. �26�

To achive this result we need to rotate the right field by �
and the left field by −� about the y axis where tan �
=h� /h� �so that �=� /2 corresponds to the absence of flux�.
In terms of the fermion operators this chiral SU�2� rotation
can be written as

R� → �ei��y/2���R�, L� → �e−i��y/2���L�. �27�

The transformation �27� is closely related to the Bogolyubov
transformation Eq. �3� used to diagonalize the single-particle
Hamiltonian in the band approach. Below we analyze the
relation between the two in detail.

While the rotation �27� simplifies the single-particle terms
in the Hamiltonian, the interaction terms undergo a nontrivial
modification. Since the rotation involves only “relative”
fields, the “charge” sector is left unaffected and is a usual
sine-Gordon model, with a cosine term �−U cos �8��+. For
the rest of this Section we will assume this interaction to be
strong enough to generate the gap in the “charge” sector and
focus on the “relative” degrees of freedom. The Hamiltonian
density describing the “relative” sector transforms to

H− =
v−

2
�K−�−

2 +
1

K−
��x�−�2	 −

g�

��	0�2 cos �8��−

−
g�

��	0�2 cos �8��− − h� 2

�
�x�−

+
gr

�3/2	0
���x�−

R�sin �8��−
L + ��x�−

L�sin �8��−
R� ,

�28�

with all the coupling constants listed in Appendix A. In Eq.
�28� the relative sector represents a Z4 model27,28 modified by
the gr term. Notice that the latter has zero conformal spin and
scaling dimension

dr = 1 +
1

2
�K− +

1

K−
	 � 2

for any K−�1, so this term is irrelevant in the RG sense.
Thus, as for the ladder in the absence of the magnetic flux,
the effective model appears to be two-cosine Z4 model with a
topological term. The only but important difference with the
f =0 case is a nontrivial dependence of the coupling con-
stants on the ratio � / sin �f through the rotation angle �.

At h=0, the Z4 model in Eq. �28� always displays a
strong-coupling regime in the infrared limit accompanied by
a dynamical generation of a mass gap. If K�1, then g� term
is relevant while the term g� with the dual field is irrelevant.
Hence the field �− gets locked and the term h�x�− has no
effect on the corresponding long-range order. In particular if
g��0, then the ground state is the relative CDW, which
becomes the OAF when g� changes sign �e.g., due to the
variation of the flux�. However, locking of the field �− does
not prevent the gradient of the dual field �x�− to acquire a
finite expectation value and, thus, produce a finite splitting of
the Fermi momenta proportional to h �see the discussion be-
low�.
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In the opposite case K�1, the g� term is relevant and
leads to locking of the dual field �−. As long as h remains
smaller than the gap generated in the “relative” sector, the
ground state is the commensurate CDW, which replaces the
MI shown in the phase diagram �3�. In this phase the vacuum
value of �− resides in one of the minima of the cosine poten-
tial and remains spatially uniform, implying that ��x�−�=0.
Thus no band splitting occurs in this regime reflecting the
fact that the chains remain effectively decoupled. This is a
manifestation of the Anderson confinement18—the in-chain
correlations suppress single-particle tunneling between the
chains in the low-energy limit. Consequently the flux has
little effect on this phase.

The situation changes when h reaches a critical value hc
proportional to the mass gap

hc � �s/vFa � exp�− 2�vF/�gs��  1 �gs � 0� . �29�

At this point a commensurate-incommensurate transition
takes place, the long-range order disappears and a finite gra-
dient ��x�−� emerges in the ground state, following the uni-
versal square-root increase ��h−hc slightly above the
threshold.16 The commensurate CDW gets replaced by the
MI phase with incommensurate leading correlations. The ap-
pearance of a finite average ��x�−� indicates that the two
doubly degenerate Fermi points, characterizing the bare-
particle spectrum in the chain basis, are getting split.

Note, that the commensurate-incommensurate transition
can be seen within the band basis approach if one takes into
account an additional interaction process mentioned previ-
ously in Eq. �12�, which is usually disregarded since for-
mally it does not conserve momentum. The term is the inter-
band backscattering

R	
†R
L


†L	 + H.c. �30�

In bosonized form this can be written as

g7

�2�	0�2 cos��8��− + 2hx� , �31�

where the relation between g7 and the microscopic param-
eters of the model is given in Eq. �A1g�. Adding this term to
the bosonic two-band Hamiltonian �13� and making a shift

�− → �− − hx/�2� �32�

one transforms the relative part of the Hamiltonian �13� to
the form identical to the Z4 part in Eq. �28� �up to duality
transformation �−↔�−�. The above analysis holds identi-
cally for this representation. While the case h1 may be
easier to describe within the chain approach, the band picture
should always give the correct result. In particular, to find the
above CDW order, one must notice that for sufficiently small
h when �cos �2��−��0, the 2kF component of the CDW
order parameter listed in Table I acquires a nonzero expecta-
tion value �now 2kF=��, and the MI phase in the bottom left
of the phase diagram �3� becomes a CDW phase with long-
range order.

V. STRONG COUPLING

In this section we discuss the behavior of the system in
the strong-coupling limit, �U� , �V�� t0. In the atomic limit
when hopping is completely neglected �t0= t�=0�, the par-
ticles are localized on sites, and there are four possible
ground states. Which state has the lowest energy is deter-
mined by the signs of the interaction parameters U and V: �i�
if U ,V�0, then the ground state is the relative CDW �the
SDWz in the “spin” language� depicted in Fig. 1; �ii� when
U�0 and V�0 the state is the CDW also shown in Fig. 1;
�iii� in the opposite case U�0 and V�0 all particles fully
occupy one chain keeping the other empty; and finally, �iv�
when U ,V�0 we have complete phase separation.

Of the above four ground states the first two are acces-
sible in the weak-coupling approach as can be seen from the
phase diagram in Fig. 3. The phases �iii� and �iv� do not have
the lowest energy when the bandwidth t0 is greater or of the
same order as U and V and thus have no analog in weak
coupling.

To make further links with the weak-coupling approach
we now need to take into account the hopping terms and the
magnetic field. Of the above four cases only the first one
needs to be discussed in detail. Indeed, the last two do not
appear in weak coupling, while in the case �ii� we have either
doubly occupied or empty rungs, so that interchain hopping
and the flux do not affect the properties of the ground state.
This ground state �CDW� was discussed in the preceding
section �this is the case where h is smaller than the gap, see
Eq. �29��.

Consider the limit where U�0 is the largest scale in the
problem. Then we can project out states with doubly occu-
pied rungs. Then at half-filling and at energies well below the
local charge gap, there only remain configurations with ex-
actly one fermion per rung. Accordingly, the relative degrees
of freedom can be conveniently described in terms of local
spin-1 /2 variables using the correspondence between two
single-fermion states at a given rung n and the eigenstates �↑�
and �↓� of the operator Sn

z . The standard Schrieffer-Wolff
transformation29 leads to the following effective spin-chain
model:

Heff = J0�
n

� 1
2 �e2i�fSn

+Sn+1
− + e−2i�fSn

−Sn+1
+ � + �Sn

zSn+1
z + h�Sn

x� ,

�33�

where J0=2t0
2 /U is the exchange constant, �= �J0+V� /J0 is

the anisotropy parameter, h�= t� /J0 is the transverse field
and f is the external flux in the original ladder model. Notice,
that the Schrieffer-Wolff transformation leaves the “charge”
sector gapped, so that all subsequent analysis pertains to the
“relative” sector.

In the spin language, the relative CDW order parameter
�see Table I� corresponds to the staggered magnetization in
the z-direction �−1�nSn

z , while the OAF order parameter is the
staggered magnetization in the y direction, �−1�nSn

y. Magne-
tization in the x direction corresponds to the transverse bond
density. Since the uniform transverse field h� breaks the
U�1� symmetry of the XXZ chain, the staggered component
�−1�nSn

x never acquires a nonzero expectation value.
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The effective spin model Eq. �33� is not integrable and its
general solution remains unknown. Nevertheless, there exist
at least three cases where further progress can be made: �a�
the case f =0 which has been studied previously �see, e.g.,
Ref. 30�; �b� the vicinity of the SU�2�-symmetric point �
=1 and f 1; and �c� the vicinity of f =1/2. In what follows
we discuss these three cases.

�a� In the absence of the flux f =0 the Hamiltonian �33�
becomes equivalent to the transverse field XXZ model. De-
spite not being integrable, much is known about such
models.30 Here, we summarize the results for the sake of
completeness referring the interested reader to the literature
for more details.

First consider the case V�0 �so that ��1� and the limit
V�2t0

2 /U in which the exchange anisotropy becomes very
large, ��1. In this case one can retain only the last two
terms in �33�, so that the Hamiltonian becomes equivalent to
the one-dimensional Ising model in a transverse magnetic
field. At h��� /2 the ground state is the ordered Néel phase
with ��−1�nSn

z��0. This ordering translates to the relative
CDW for the original ladder, in agreement with the weak-
coupling picture. However, when h�=� /2 a Z2 �Ising� tran-
sition to a disordered phase takes place. This transition is not
present in the weak-coupling phase diagram, so we will not
discuss it any further.

Now, if V�0 but is sufficiently small �−1���1�, then
in the absence of h� the Hamiltonian �33� corresponds to the
critical XXZ model, which has a gapless excitation spectrum
and displays dominant antiferromagnetic fluctuations in the
xy plane. A nonzero transverse field breaks the U�1� symme-
try down to Z2 partially polarizing the spins in the x direc-
tion, so that ��−1�nSn

y� develops an expectation value. This is
the OAF phase already discussed in connection with the
weak-coupling phase diagram.

Finally, if ��−1 then the model is the easy axis XXZ
ferromagnet with �Sn

z��0. Such a ground state corresponds
to the case �iii� above, i.e., all particles localized on one of
the chains.

�b� We now consider the case ��−1�1 and f 1. In this
limit the Hamiltonian �33� can be represented �to lowest or-
der in f� in the form

H = J0�
n

�S�n · S�n+1 + �� − 1�Sn
zSn+1

z + h��S�n � S�n+1�z + h�Sn
x� ,

�34�

i.e., we have a model of a weakly anisotropic XXZ spin chain
in a magnetic field h�= t� /J0 along the x direction, and also
perturbed by the term proportional to the z-component of the
spin-current �Sn�Sn+1�z with an amplitude proportional to
the flux, h� =�f . Bosonizing around the SU�2�-symmetric
point in the standard way,16 one can show that the last two
terms in Eq. �34� can be written in the form Eq. �20� with the
chiral “magnetic” fields, Eq. �22�, renormalized by the new
“bandwidth” J0. Thus we find that the bosonized form of Eq.
�34� has the structure of Eq. �24�, where the first two terms
HG and HSG constitute the Abelian bosonic representation of
the SU�2�-symmetric Heisenberg model in the scaling limit,
with the Lutting parameter and the effective coupling con-

stant renormalized by the weak anisotropy term ��−1��V in
Eq. �34�.

Notice that the resulting Hamiltonian is basically the same
as that obtained at weak coupling in the chain basis �24�.
Therefore the next step, namely the rotation Eq. �27� and its
result Eq. �28�, can be performed in exactly the same manner
as before. As a result, at least in the region U�0, all con-
clusions drawn at weak coupling also hold true in the strong-
coupling limit. In particular the region of the phase diagram
discussed in the preceding section survives �up to renormal-
izations of the phase boundaries� in the strong-coupling re-
gime as well.

�c� Finally, we consider the case where flux is close to
one-half. Here we are close to the transition to a band insu-
lator. This region of the phase diagram cannot be well treated
in our weak-coupling approach. In this sense, the strong-
coupling arguments compliment the weak-coupling picture
presented in Sec. III.

Consider a gauge transformation

Sn
+ → Sn

+e2i�fn, Sn
− → Sn

+e−2i�fn, �35�

which transforms the Hamiltonian �33� to

Heff = J0�
n

� 1
2 �Sn

+Sn+1
− + Sn

−Sn+1
+ � + �Sn

zSn+1
z + h��Sn

+e2i�fn

+ Sn
−e−2i�fn�� . �36�

The model �36� is completely equivalent to Eq. �33� but now
the transverse field is nonuniform. The situation significantly
simplifies when �f −1/2�1. In the case this field becomes
almost staggered and can be directly bosonized �in the region
����1, i.e., V�0�.16 As a result, Eq. �36� becomes

H =
u

2
 dx�K�2 +

1

K
��x��2	 + h� dx cos�����x�

− 2��1

2
− f	 x

a
� , �37�

where the Luttinger liquid parameter is given by

K = �/2�� − cos−1 �� . �38�

For f =1/2, the cosine term is relevant and generates a
gap in the spectrum. The resulting ground state is the band
insulator and the gap corresponds to that seen already in the
single-particle problem in Sec. III A. This can be seen from
the fact that cos����� �which gains a nonzero expectation
value at f =1/2� corresponds to the uniform bond density.

As f decreases away from 1/2, eventually the gap will
close via a commensurate-incommensurate transition. The
system will now have gapless excitations in the relative sec-
tor �i.e., as in a MI�, in qualitative agreement with the weak-
coupling phase diagram Fig. 3.

Finally, if V�0 so that ��1 one can still bosonize the
Hamiltonian �36�, although now there is an extra term pro-
portional to cos �16�� which is relevant �formally, this is
the case K�1/2 which is not captured Eq. �38��. We now
have two competing cosine terms in the Hamiltonian,
cos �16�� and cos�����x�−2��1/2− f�x /a�. The dual
field term has the smallest scaling dimension and therefore,
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when f =1/2, determines the character of the ground state. If
the flux is decreased, then again the order is destroyed. In
this case, however, the other relevant operator in the prob-
lem, cos �16�� should at this point acquire a nonzero ex-
pectation value. This is the transition between the band insu-
lator and the relative CDW, again in agreement with Fig. 3.

VI. SUMMARY

We have investigated a model of interacting spinless fer-
mions hopping on a two-leg ladder in the presence of an
external magnetic field at half-filling. Using bosonization
techniques, we constructed the effective low-energy theory
where the coupling constants acquired nontrivial dependence
on the external flux. Consequently the flux results in several
phase transitions shown in the weak-coupling phase diagram
Fig. 3, i.e., BKT transitions between ordered and disordered
phases and U�1� transitions between different ordered
phases.

Furthermore, we extended our weak-coupling picture by
the special consideration of the case of weakly coupled
chains at small flux. We solved the corresponding effective
theory using the chiral rotation Eq. �27�. As a result we de-
scribed the commensurate-incommensurate transition from
the MI phase shown in Fig. 3 at U�0 to the CDW. This
transition happens when the parameter ��2+sin2 �f becomes
small enough �see Eq. �29��.

The weak-coupling analysis is complimented by the
strong-coupling arguments. In particular we showed that in
some cases �in particular, for small flux and small in-chain
interaction V�, that the weak-coupling approach and strong-
coupling approach lead to identical low-energy theories.

Finally, we discussed the persistent �diamagnetic� current
flowing in the ladder when the external magnetic field is
applied. We showed that even in the limit of small f and
small t�, all electrons in the system contribute to this current
and therefore it is a nonuniversal feature which cannot be
described in the traditional field-theoretic approach. We
speculate that it may be an interesting physical quantity to
investigate within the nonlinear bosonization scheme.31
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APPENDIX A: RELATION BETWEEN PARAMETERS AND
PHASE BOUNDARIES

Here we list the effective coupling constants for the effec-
tive low-energy theory and their relation to the microscopic
parameters in the original ladder Hamiltonian Eq. �1�.

First, we show the parameters of the g-ology for the ef-
fective interaction Eqs. �11� and �12� in Sec. III B,

g1 =
cos2 �f − �2

sin2 �f + �2 �Ua tan2 �f + 2Va
�2

cos2 �f
	 , �A1a�

g2 = Ua + 2Va
�2

cos2 �f
, �A1b�

g3 = 2Va +
1

sin2 �f + �2� Ua�2

cos2 �f
+ 2Va�sin2 �f

− �2 tan2 �f�	 , �A1c�

g4 = g2, �A1d�

g5 = g1, �A1e�

g6 =
Va

4
�1 + tan2 �f

cos2 �f − �2

sin2 �f + �2 	 , �A1f�

g7 = −
�2

cos2 �f
�2Va +

Ua − 2Va

sin2 �f + �2	 . �A1g�

The two “Luttinger parameters” are then given by

K± = �1 − �g1 ± g3�/4�vF
±

1 + �g1 ± g3�/4�vF
±	1/2

. �A2�

The phase boundaries in Fig. 3 �within the accuracy of
one-loop renormalization group approach� are given by the
following conditions:

g1 + g3 = 0:
U

2V
= −

2 cos2 �f − �2

cos2 �f
,

g1 − g3 = 0:
U

2V
=

sin2 �f�2 cos2 �f − �2� + �4

sin2 �f�cos2 �f − �2� − �2 ,

g4 = 0:
U

2V
= −

�2

cos2 �f
,

g5 = 0:
U

2V
= −

�2

sin2 �f
. �A3�

Notice that the boundaries depend only on the ratio U /V.
Finally, we list the effective constants for the effective

low-energy theory in the “chain basis” Eq. �28�,

g� = 1
2 �2Va sin2 � + Ua cos2 �� ,

g� =
2Va − Ua

2
sin2 � ,

gr = �2Va − Ua�sin 2� ,

gs = �4Va cos2 � + Ua�sin2 � − cos2 ��� ,

Ks = �1 − gs/2�vs

1 + gs/2�vs
	1/2

. �A4�
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APPENDIX B: BOSONIZATION CONVENTIONS

Here for completeness we define our bosonization con-
ventions. The chiral bosonic fields are introduced via the
correspondence

�R��x�,L��x�� → ��� /�2�	0�e±i�4���
R�L�

, �B1�

JR� = �x�R� /��, JL� = �x�L� /�� . �B2�

Here �=	 ,
, 	0 is an ultraviolet cutoff in the bosonic
theory, �� are Klein factors that ensure proper anticommuta-
tion relations between the fermionic fields with different
band indices in representation �B1�. The �� satisfy

���,��� = 2���, �	�
 = − i . �B3�

In addition, we impose a nontrivial commutation relation be-
tween the right and left bosonic fields belonging to the same
band,

���
R,��

L� = i��� /4. �B4�

The left- and right-moving fields can be combined into the
field � and its dual counterpart �

�	 = �	
R + �	

L, �	 = �	
R − �	

L , �B5�

with �=−�x�� being the momentum conjugate to ��. The
linear combinations

�± = ��	 ± �
�/�2, �± = ��	 ± �
�/�2

describe collective bosonic degrees of freedom and the sym-
metric and antisymmetric sectors of the theory.
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