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Correlated, or extended, impurities play an important role in the transport properties of dirty metals. Here,
we examine, in the framework of a tight-binding lattice, the transmission of a single electron through an array
of correlated impurities. In particular we show that particles transmit through an impurity array in identical
fashion, regardless of the direction of traversal. The demonstration of this fact is straightforward in the
continuum limit, but requires a detailed proof for the discrete lattice. We also briefly demonstrate and discuss
the time evolution of these scattering states, to delineate regions �in time and space� where the aforementioned
symmetry is violated.
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I. INTRODUCTION

In a one-dimensional lattice, correlated impurities or de-
fects may give rise to extended electronic states for particular
energy levels.1–3 Various disordered systems with correlation
have been investigated, such as the random dimer,1,3 the ran-
dom trimer,4 nonsymmetric dimers,5 the random
trimer-dimer,6 the Thue-Morse lattice,7 the random polymer
chain,8 the Fibonacci chain,9,10 and other systems.11–13

A built-in internal structure of the impurity configuration
is important1,3 even if an internal symmetry is not necessary.5

In the context of electronic transport, the transmission reso-
nance for a certain energy value implies the disordered sys-
tem behaves like an ordered lattice for the corresponding
electronic state, which is extended throughout the entire lat-
tice. In this respect, it is possible to understand the increase
in the conductivity for a conducting polymer2 and to apply to
a quasiperiodic chain.14

One may, in fact, envision many other impurity configu-
rations that give rise to extended states for various energy
values. For example, let us consider a pair of impurities with
a potential V with respect to the lattice potential �taken to be
zero�. We assume that the spacing between the two impuri-
ties is always nda, where a is the lattice constant and nd is a
positive integer. This is then a “dimer,” whose length can be
any value. If we adopt a tight-binding model, so that energies
are given by E=−2t0 cos�ka�, where t0 is the nearest-
neighbor hopping amplitude, then one can obtain the trans-
mission probability �T�2 for this state. It is

�T�2 =
sin2�k�

sin2�k� + V2�cos�knd� +
V

2

sin�knd�
sin�k� �2 . �1�

where t0 and a have been set to unity for simplicity. Inspec-
tion of Eq. �1� reveals a critical strength of the impurity
potential Vc / t0= ±2/nd for repulsive and attractive interac-
tions, respectively, which determines how many states are
extended, i.e., have unit transmission. A graphical construc-
tion readily shows that, for V�2/nd, there are nd−1 ex-
tended states while for V�2/nd, there are nd extended states.

As in the nearest-neighbor dimer case, consideration of one
dimer helps us to understand electronic transport in a lattice
with many dimers, following the analysis of Ref. 1. In Fig. 1,
we show �T�2 as a function of E for randomly distributed 50
impurity dimers �blue� and 500 dimers �green� in comparison
with a single dimer �red�. The inner spacing of a pair nd=3
and the potential V=1/2. Note that in this instance V�Vc
=2/3. The transmission probability is calculated to be an
ensemble average over 50 impurity configurations. Remark-
ably, the transmission remains unity at the three energies for
which a single dimer has unit transmission, and the “width”
of the resonance narrows as the number of impurities in-
creases.

This specific example is given by way of introduction to
more general considerations of impurity potentials on a lat-

FIG. 1. �Color online� Transmission probability as a function of
E for randomly distributed 50 impurity dimers �blue� and 500
dimers �green� in comparison with a single dimer �red�. The inner
spacing of a pair nd=3 and the potential V=1/2 while the critical
value V0=2/3. The transmission probability is calculated as an en-
semble average over 50 impurity configurations.
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tice. In this paper we will show there exist hidden symme-
tries underlying the physics of electronic transport in a one-
dimensional lattice with an arbitrary impurity configuration,
using the transfer matrix formalism. We will also demon-
strate the time evolution of a wave packet by direct diago-
nalization of the Hamiltonian since the transfer matrix for-
malism does not produce the dynamics of a wave function.
While the dynamics can be insightful, we are also hopeful
that present-day technology can spatially and temporally re-
solve some of the interesting dynamics that result from our
�and future� work.

Perhaps the most general correlated impurity configura-
tion is the following. Suppose there are N impurities
A1A2¯AN embedded at the sites 1 through N in a host
lattice. The corresponding impurity potentials are given by
�U1 ,U2 , . . . ,UN�, where Ui�i=1, . . . ,N� can be positive, zero,
or negative. Our main result is that the transmission ampli-
tude T for this impurity configuration is identical to T for its
reverse configuration; namely, T�U1 ,U2 , . . . ,UN�
=T�UN ,UN−1 , . . . ,U1�. Given this then obviously the equality
holds for the transmission �T�2 and reflection �R�2 probabili-
ties. In other words, �T�2 and �R�2 are independent of the
direction of the incoming wave. This symmetry is striking
because the impurity configuration is assumed arbitrary with-
out possessing any parity. For example, it has been shown
that the chains of ABBABAAB¯ and BAABABBA¯

contribute identically for electronic transport.7 This is a
simple example of the general symmetry we describe. Note
that an exchange of any two impurity potentials does not
show this symmetry; for example, T�U1 ,U2 ,U3 ,U4�
�T�U2 ,U1 ,U3 ,U4�.15

We should emphasize now that this symmetry does not
hold in the impurity region �as perhaps one would expect�,
but this can only be determined by solving the time-
dependent Schrödinger equation �see below�. We also ex-
plain another symmetry associated with a particular momen-
tum k=� / �2a�, where a is the lattice constant:
�T�U1 ,U2 , . . . ,UN��2= �T�−U1 ,−U2 , . . . ,−UN��2. This equality
indicates a potential barrier or well produces identical trans-
mission and reflection probabilities for the electronic state
with k=� / �2a�. This is unrelated to the other remarkable
feature of wave packets on a one-dimensional lattice with
nearest-neighbor hopping and k=� / �2a�: They do not dif-
fuse as a function of time, because they lack group velocity
dispersion. One can show that no matter what the range of
the hopping is, there will be a wave vector for which the
wave packet retains its initial width. In fact, this symmetry is
a particular example of a general case; �T�U1 ,U2 , . . . ,UN��2
with E is identical to �T�−U1 ,−U2 , . . . ,−UN��2 with −E.

II. FORMALISM

We start with a tight-binding Hamiltonian for a one-
dimensional lattice with N impurities:

H = − t0�
i

�ci
+ci+1 + ci+1

+ ci� + �
i�I

Uici
+ci �2�

where the hopping amplitude t0 will be set to be unity, ci
+

creates an electron at a site i, and I represents an impurity

configuration. The Schrödinger equation is H��	=E��	 with
��	=� j� jcj

+�0	; this becomes

− �� j+1 + � j−1� + Uj� j = E� j �3�

where � j is an amplitude to find an electron at site j. In order
to use the transfer matrix formalism we write Eq. �3� in a
matrix form as follows:


� j+1

� j
� = 
Ui − E − 1

1 0
�
 � j

� j−1
� � Mj
 � j

� j−1
� . �4�

Note that Mi is a unimodular matrix, i.e., det�Mi�=1. The
wave functions �L �for i�1� and �R �for i�N� are �L
=eikxi +Re−ikxi and �R=Teikxi, where xi=a · i. Using the trans-
fer matrix formalism, one can express the coefficients R and
T in terms of k, Ui, and E as follows:


 T

iT
� = P
 1 + R

i�1 − R�
� , �5�

where P=S−1MS with S= � cos�k� sin�k�
1 0

�, and M
=MNMN−1¯M1. It is misleading to express M =�i=1

N Mi be-
cause Mi and Mj�i� j� do not commute with each other.
Solving Eq. �5�, one can obtain16

T =
2i

i�P11 + P22� + P12 − P21
�6�

R =
P12 + P21 − i�P11 − P22�
i�P11 + P22� + P12 − P21

. �7�

Consequently, the transmission probability �T�2=4/ �tr�PP̃�
+2� and the reflection probability �R�2= �tr�PP̃�−2� / �tr�PP̃�
+2�, where tr�P� means the trace of P, and P̃ is the transpose
of P. Note that Eq. �1� is readily obtained with this formal-
ism by using M�=MVM0

nd−1MV, where MV=M1�U1=V� and
M0=M1�U1=0�, and nd is the inner spacing of the impurity
pair.

One of the symmetries we introduced earlier is
T�U1 ,U2 , . . . ,UN�=T�UN ,UN−1 , ¯ ,U1�. In order to show
this equality, let us introduce Q=S−1M�S where M�
=M1M2¯MN. Notice the order of the matrix multiplication
because Mi and Mj�i� j� do not commute with each other.
Since the desired equality implies that T�P�=T�Q�, we need
to show P11+ P22=Q11+Q22 and P12− P21=Q12−Q21. On the
other hand, from the definitions of P=S−1MS and Q
=S−1M�S, this equality in turn implies that M11=M11� , M22
=M22� , and M12−M21=M12� −M21� . Note, however, that in gen-
eral M �M�, as we will show later.

For simplicity, we define Ui=Ui−E. We also introduce 2
�2 matrices � and 	 such as �= � 1 0

0 0
� and 	= � 0 −1

1 0
� to have

Mi=Ui�+	. Note that �2=�, 	2=−1, �	+	�=	, and
�	�=0. Since M =MNMN−1¯M1, we obtain
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M = �UN� + 	��UN−1� + 	� ¯ �U1� + 	� = 	N

+ �
n

N

�
jn�

N

�U j1
U j2

¯ U jn
�	N−jn�	 jn−jn−1−1� ¯ �	 j2−j1−1�	 j1−1,

�8�

where jn� means j1 , j2 , . . . , jn=1,2 , , ¯ ,N with j1� j2

� ¯ � jn. Since �	�=0 and 	2=−1, nonvanishing terms
should have jl− jl−1−1=even, where l=2,3 , . . .n for a given
n. Therefore, we obtain

M = 	N + �
n

N

�
jn��

N

�U j1
U j2

¯ U jn
��− 1�1/2�jn−j1−n+1�	N−jn�	 j1−1,

�9�

where jn�� means jn� with jl− jl−1−1=even. Since �
= � 1 0

0 0
�, �	= � 0 −1

0 0
�, 	�= � 0 0

1 0
�, and 	�	= � 0 0

0 −1
�, we use these

as the basis matrices to expand M:

M = c1� + c2�	 + c3	� + c4	�	 = 
c1 − c2

c3 − c4
� . �10�

As we mentioned, the equality of the transmission amplitude,
T�P�=T�Q�, is associated with some particular relations
among the components of the two matrices M
=M1M2¯MN and M�=MNMN−1¯M1. Following the same
way as for M, we expand M� in terms of Ui�i=1,2 , . . . ,N�,
�, and 	 to obtain

M� = �U1� + 	��U2� + 	� ¯ �UN� + 	� = 	N

+ �
n

N

�
jn�

N

�U j1
U j2

¯ U jn
�	 j1−1�	 j2−j1−1� ¯ �	 jn−jn−1−1

��	N−jn. �11�

It is also true for M� that non-vanishing terms have jl− jl−1
−1=even because �	�=0. Therefore,

M� = 	N + �
n

N

�
jn��

N

�U j1
U j2

¯ U jn
�

��− 1�1/2�jn−j1−n+1�	 j1−1�	N−jn. �12�

Expanding M�, again, in terms of the basis matrices, we
know

M� = c1�� + c2��	 + c3�	� + c4�	�	 = 
c1� − c2�

c3� − c4�
� . �13�

Comparing Eqs. �10� and �13�, the equalities M11=M11� ,
M22=M22� , and M12−M21=M12� −M21� are equivalent to the
equalities c1=c1�, c4=c4�, and c2+c3=c2�+c3�. Since 	N does
not depend on Ui and 	N= �−1�N/2 or �−1��N−1�/2	 for even �or
odd� N, we can ignore 	N for the purpose of showing these
equalities, or, alternatively, we can redefine M as M −	N and
M� and M�−	N. To obtain �i� c1 of M, we should have j1
−1= even and N− jn=even. Similarly, �ii� for c2, j1−1= odd
and N− jn=even, �iii� for c3, j1−1= even and N− jn= odd,
and �iv� for c4, j1−1=odd and N− jn=odd. In terms of Ui, we
obtain

c1 = �
n

N

�
jn��1

N

�U j1
U j2

¯ U jn
��− 1�1/2�N−n�

c2 = �
n

N

�
jn��2

N

�U j1
U j2

¯ U jn
��− 1�1/2�N−n−1�

c3 = �
n

N

�
jn��3

N

�U j1
U j2

¯ U jn
��− 1�1/2�N−n−1�

c4 = �
n

N

�
jn��4

N

�U j1
U j2

¯ U jn
��− 1�1/2�N−n−2�

where jn��1 means jn�� with �j1−1 ,N− jn�= �even,even�.
Similarly, jn��2= jn�� with �odd, even�, jn��3= jn�� with
�even, odd�, and jn��4= jn�� with �odd, odd�.

For c1�, c2�, c3�, and c4� of Eq. �13�, we should have �j1

−1 ,N− jn�= �even,even�, �even, odd�, �odd, even�, and �odd,
odd�, respectively. Note that we need �even, odd� for c2�
while �odd, even� for c2. On the other hand, we need �odd,
even� for c3� while �even, odd� for c3. Therefore, we obtain

c1� = �
n

N

�
jn��1

N

�U j1
U j2

¯ U jn
��− 1�1/2�N−n�

c2� = �
n

N

�
jn��3

N

�U j1
U j2

¯ U jn
��− 1�1/2�N−n−1�

c3� = �
n

N

�
jn��2

N

�U j1
U j2

¯ U jn
��− 1�1/2�N−n−1�

c4� = �
n

N

�
jn��4

N

�U j1
U j2

¯ U jn
��− 1�1/2�N−n−2�

Consequently, we have c1=c1�, c4=c4�, and c2+c3=c2�+c3�; in
other words, T�P�=T�Q�, or equivalently,
T�U1 ,U2 , . . . ,UN�=T�UN ,UN−1 , . . . ,U1� In fact, M12=−M21�
and M21=−M12� . Note, however, that in general M �M�.

One may anticipate a similar symmetry in the continuum
limit.17 Consider a time-dependent Schödinger equation:
i�t��t ,x�=H�x���t ,x�, where the Hamiltonian H�x� includes
an impurity potential V�x� for �x�� l. The wave function for
�x�� l can be represented as ���x�� l�= �eikx+Re−ikx�
�−x
− l�+Teikx
�x− l�, where 
�x� is the step function. Let us
introduce another time-dependent Schödinger equation:
i�t���t ,x�=H�−x����t ,x�, where ���x�� l�= �eikx+R�e−ikx�
�
�−x− l�+T�eikx
�x− l�. Invoking both space inversion
and time reversal, one can see that ��t ,−x� and �*�−t ,−x�
satisfy the same equation as ���t ,x� does. Equating a1��t ,
−x�+a2�*�−t ,−x�=���t ,x� for �x�� l leads to T�=T and
R�T*+R*T=0. The first relation corresponds to T�P�=T�Q�
in a lattice. The second relation, however, does not hold in a
lattice. Instead, we found in a lattice
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T*�P��R�Q� − R�P��
T�P��R*�Q� − R*�P��

= e2ik. �14�

Nevertheless, we can still define R�Q�=ei�R�P�. The phase �
is determined by ei�=−e2ikR*T / �RT*� in a lattice while ei�

=−R*T / �RT*� in the continuum limit.
We also found another symmetry associated with elec-

tronic transport in a one-dimensional lattice; in this case
there is no applicability in the continuum limit. Suppose k

=� /2; then S= � 01
10

�, and S= S̃=S−1. Note that for a symmetric

�2�2� matrix X such that X= X̃, Mi satisfies MiXM̃i

=M̃iXMi with Ui→−Ui. Now let us consider tr�PP̃�:

tr�PP̃� = tr�MN ¯ M1M̃1 ¯ M̃N�

= tr�M̃N ¯ M̃1M1 ¯ MN�U→−U = tr�Q̃Q�−U = tr�QQ̃�−U

�15�

This symmetry indicates that for k=� /2, �T�2 and �R�2
depend only on �Ui�. If E=−2 cos�k�, then Ui=Ui. In
this instance, �T�U1 , . . . ,UN��2= �T�−UN , . . . ,−U1��2. Since
�T�U1 , . . . ,UN��2= �T�UN , . . . ,U1��2 from a general derivation,
�T�U1 , . . . ,UN��2= �T�−U1 , . . . ,−UN��2. Consequently, a po-
tential barrier and a potential well give identical transmission
and reflection probabilities for k=� /2 and E=−2 cos�k�. In
fact we found a general symmetry to which this case belongs
as an example. Since cos�k�=−E /2 and sin�k�=�1−E2 /4 for

0�k��, one can show that S�E�S̃�E�= �1−E2 /4�S̃−1

�−E�S−1�−E� and S�−E�S̃�−E�= �1−E2 /4�S̃−1�E�S−1�E�.
Then, a similar procedure will show that �T�U1 , . . . ,UN��2
with E is identical to �T�U1 , . . . ,UN��2= �T�−U1 , . . . ,−UN��2
with −E.

III. TIME EVOLUTION OF A WAVE PACKET

So far we have been using the transfer matrix formalism.
Since, however, the transfer matrix formalism is based on the
time-independent Schrödinger equation, we cannot see the
time evolution of a wave function, which may indicate the
significance of the symmetries we have shown. Let us con-
sider a wave packet with average position x0 and average
momentum k0 at time t=0: ���0�	=�i�xi ,0�ci

+�0	, where

�xi,0� =
1

�2��2�1/4eik0�xi−x0�e− 1
4

�xi − x0�2/�2
. �16�

We introduced the initial uncertainty � associated with posi-
tion. We wish to propagate �in real time� this wave packet
towards the potentials. To do this we first diagonalize the
Hamiltonian, which is an �L�L� matrix, where L is the total
number of lattice sites under consideration. We thus obtain
the eigenstates �n	 and the corresponding eigenvalues �n such
that H�n	=�n�n	. An eigenstate is a column vector with L
components which describes the probability of finding an
electron at a particular site in the lattice. With eigenstates in
hand, the time evolution of the wave packet is given by

���t�	 = �
n=1

L

�n	�n���0�	e−i�nt. �17�

As time goes on, the wave packet initially at x0 moves to the
potential region and scatters off the potential. A part of the
wave packet is reflected and the other part is transmitted.
Mathematically we can define the reflection and the trans-
mission as �R�2=�left��xi , t��2 and �T�2=�right��xi , t��2, re-
spectively, as t→�, where �left�right� means the summation
includes only the left�right� side of the impurity region.

Figure 2 shows the time evolution of a wave packet im-
pinging on five impurities located at sites 300–304. The pa-
rameters of the wave packet are given as follows: x0=150,
�=20, and k0=� /3. Note we choose �=20 so that the size
of the wave packet is much greater than the size of the im-
purity region. This means that we can consider the wave
packet as a plane wave in this case. In fact, the numerical
results of the transmission and reflection probabilities are in
close agreement with those obtained through the transfer ma-
trix analysis. The impurity configuration is determine by five
impurity potentials: �U1 ,U2 ,U3 ,U4 ,U5�. For �I� �red solid�,
we have �−0.5,0 ,0.5,1.5,1� while for �II� �blue dashed
curve�, we have the reverse order. As clearly shown in Fig. 2,
the time evolution of the wave packet is different depending
on the impurity configurations. In particular, the scattering
completely differentiates �I� from �II�, as indicated by the
very differently behaved red and blue curves in the scattering
region. Nonetheless the probability that emerges �either in
transmission or reflection� is identical for both, in agreement
with the symmetry we just proved. Note that the transmitted
wave packets are identical in all other respects as well
whereas the reflected wave packets have identical shape, but
are phase-shifted with respect to one another. In fact, one can
show that the phase shift originates from the phase � in

FIG. 2. �Color online� Time evolution of a wave packet in two
impurity configurations �I� �red solid� and �II� �blue dashed curve�.
Each configuration has five impurities: For �I� the potential is
�−0.5,0 ,0.5,1.5,1� while for �II� its reverse holds.
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R�Q�=ei�R�P�. The shift measured by the difference be-
tween the two reflected wave packets for �I� and �II� at their
half width is determined by ����k� /�k�k0

.

IV. CONCLUSIONS

We have determined the transmission and reflection char-
acteristics for various impurity configurations on a one di-
mensional lattice. In particular we proved that the transmis-
sion of a particle through an array of impurities is
independent of the direction of travel. This theorem may help
understand, among other things, weak localization, where
time-reversed paths play an important role. Some important
differences arise because of the lattice: First, it becomes clear
that the group velocity is most important �in the continuum
limit the energy is usually emphasized�. Secondly, other
symmetries exist on a lattice. As far as the transmission prob-

ability concerns, for a given impurity configuration with
�Ui ,E� there always exists an equivalent configuration with
�−Ui ,−E�. Naturally these symmetries do not hold in the
actual scattering region. While we have no specific proposals
at present, we hope this work motivates experimentalists to
look for these violations in the vicinity of particular impurity
configurations. Further work is in progress with trimer impu-
rity configurations, more general band structures, and higher
dimensionality.
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