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Motivated by the recent finding that doped edge-sharing Cu-O chain compounds such as Na3Cu2O4 and
Na8Cu5O10 are realizations of one-dimensional �1D� Wigner crystals, we study the optical spectra of such
systems. Charge excitations in 1D Wigner crystals are described in terms of domain-wall excitations with
fractional charge. We investigate analytically and numerically the domain-wall excitations that dominate the
optical absorption, and analyze the dispersion and the parameter range of exciton states characteristic for the
long-ranged Coulomb attraction between domain walls. Here we focus on the Wigner lattice at quarter-filling
relevant for Na3Cu2O4 and analyze, in particular, the role of second-neighbor hopping t2 which is important in
edge-sharing chain compounds. Large t2 drives an instability of the Wigner lattice via a soft domain-wall
exciton towards a charge-density wave with a modulation period distinct from that of the Wigner lattice.
Furthermore we calculate the temperature dependence of the dc conductivity and show that it can be described
by activated behavior combined with a T−� dependent mobility.
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I. INTRODUCTION

At very low density an electron gas is expected to crys-
tallize and to form a Wigner crystal, as in this limit the Cou-
lomb interaction among electrons dominates their kinetic
energy.1 In the 1970s Hubbard2 as well as Kondo and
Yamaji3 suggested, expanding the considerations by Wigner,
that the distribution of electrons in certain tetracyanoquin-
odimethane �TCNQ� charge transfer salts may be controlled
rather by the Coulomb interaction than by the kinetic energy
�� bandwidth�, such that the electrons form a generalized
Wigner lattice �WL� on the underlying TCNQ chain struc-
ture. This view suggests a strikingly different nature of
charge excitations namely domain walls with fractional
charge rather than particle-hole excitations as in usual metals
and semiconductors.2 This proposal, however, may be chal-
lenged on the grounds that the resulting periodicity of charge
modulation can alternatively be explained by a 4kF charge-
density wave �CDW� �Refs. 4–6� arising from an instability
of the Fermi surface even in models with short-range inter-
actions. In fact, there is only a gradual crossover between the
WL and the 4kF CDW, thus there is no clear distinction be-
tween the two on the basis of the charge modulation period
possible.7

In a recent study8 of a new class of charge-ordered com-
pounds Na1+xCuO2,9 which contain edge-sharing Cu-O
chains, it has been suggested that the magnetic and thermo-
dynamic properties of these compounds can only be ex-
plained in terms of WL formation. Edge-sharing chains con-
sist of CuO4 squares just like the Cu-O planes of high-Tc
cuprates, but they are differently linked. The edge-sharing
arrangement of CuO4 squares meets the WL criterion of
small bandwidth in an optimal way due to the almost 90°
Cu-O-Cu bonds �Fig. 1�. Unexpected complexity is added
because, apart from a small nearest-neighbor-hopping matrix
element t1, the second-neighbor hopping t2 has to be consid-
ered which turns out larger as a consequence of the structure.
While this unusual feature does not affect the classical WL
order imposed by the Coulomb interaction, it changes the

Fermi surface topology,10 and thereby allows us to distin-
guish the WL from the CDW on the basis of the modulation
period. The Na1+xCuO2 compounds thus provide a first ex-
ample where an unambiguous distinction between the gener-
alized WL and a Fermi surface related CDW is possible.

The electron interaction driven 4kF CDW has to be dis-
tinguished from the more familiar 2kF Peierls instability
which arises from a modulation of hopping matrix elements
due to the coupling to periodic lattice distortions, i.e., leading
to a CDW centered on bonds rather than on the ions.11 In
contrast the Wigner lattice is based not on quantum but on
classical energy considerations, namely which distribution of
localized electrons has the lowest Coulomb interaction. It is
quite remarkable though, that the periodicity of the WL co-
incides with that of the 4kF CDW which emerges from a
Fermi surface instability, i.e., from a pure quantum mechani-
cal effect of strongly correlated electrons in models with
nearest-neighbor hopping.

Strictly speaking, at finite hopping tl �l=1,2 , . . . � the gen-
eralized WL is a quantum solid.12,13 The kinetic energy
causes virtual transitions to neighbor sites and leads thereby
to a quantum mechanical smearing of the electron positions.
Hence electrons should be rather visualized as electron
clouds that form a WL as consequence of the long-range

FIG. 1. �Color online� Orbital structure of edge-sharing copper-
oxygen chains. The 90° Cu-O-Cu hopping t1 and the second-
neighbor Cu-O-O-Cu hopping path t2 are marked by arrows. Shad-
ing indicates the p-d covalent mixing, as well as the hole
distribution in the d9Lh Zhang-Rice singlet states in Na3Cu2O4 with
an alternating charge order �dark shading�.
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Coulomb interaction. This delocalization of the electron in
the WL is a pure quantum effect, i.e., controlled by the in-
terplay of kinetic and interaction energies. The quantum me-
chanical bluring of the electron position has considerable
effects on the physical properties of Wigner lattices, as dis-
cussed in Ref. 8 in the context of edge-sharing chains in
Na3Cu2O4 and Na8Cu5O10 compounds, where superex-
change interactions and thereby the magnetic properties are
strongly influenced by the quantum nature of the WL.

The aim of the present paper is to explore the charge
excitations of the one-dimensional �1D� WL, which are char-
acterized as domain-wall excitations. We calculated the opti-
cal conductivity and its temperature dependence, as it is
hoped that forthcoming experiments may provide further evi-
dence for the WL nature of the electron structure of the
Na1+xCuO2 edge-sharing chain compounds. We use here both
numerical, i.e., zero and finite-temperature diagonalization,
and analytical methods to arrive at a deeper understanding of
the nature of charge excitations in 1D Wigner lattices at
quarter filling. In particular, we find that the long-range �re-
pulsive� Coulomb interaction among electrons leads to exci-
ton states below the domain-wall continuum, which appear
as strong exciton absorptions in the optical conductivity in
the case of small hopping t1. Remarkably the second-
neighbor-hopping processes t2 are found to contribute
strongly to the exciton dispersion. These processes lift the
degeneracy of the exciton state and the lower branch gets
soft at momentum q=� /2 and leads to an exciton instability
at a critical value t2,c. The CDW state beyond t2,c has a
modulation period twice as large as that of the WL. Calcu-
lations of the static structure factor show that the charge
modulation in the CDW state is weak compared to the WL
state. Finally, we have calculated the temperature depen-
dence of the dc conductivity ��T� of the generalized Wigner
lattice. The data for ��T� determined from the low-frequency
absorption show a crossover from an activated behavior at
low temperature to a weak �poor metal-like� temperature de-
pendence above the melting temperature of the WL.

Doped edge-sharing chains are also building blocks of the
intensively studied system Sr14−xCaxCu24O41, the so-called
telephone number compounds.14–16 The composite structure
of these materials consists of both ladder and chain
structures.17 While originally the attention was directed to-
ward the electronic properties of the ladders, because of their
structural similarity to the high-Tc cuprates,18 more recently
the number of papers reporting information concerning the
chains is increasing. The magnetic properties of these com-
pounds, which depend strongly on the doping, are usually
attributed to the chains.19–21 Recently, a quintupling of the
chain unit cell in Sr14Cu24O41 due to a charge ordering below
�200 K was reported.22,23 An additional complexity of these
compounds is due to the exchange of holes between chains
and ladders,15 i.e., the doping concentration of edge-sharing
chains is difficult to infer precisely. Moreover, an incommen-
surate modulation results from a misfit between the unit cells
of ladders and chains. Work by van Smaalen24 and particu-
larly a neutron scattering study of Braden et al.25 illuminate
the subtle aspects of the interplay between modulations of
chains and ladders. It has also been argued that the misfit
between chains and ladders may modify the charge ordering

and hence the spin structure on the chains.26 Particularly re-
markable is a study by Isobe et al.,27 who succeeded in re-
solving the internal charge structure of the charge modula-
tion of the compound ��Sr0.029Ca0.971�2Cu2O3�54�Cu O2�77

with a chain unit cell containing 77 Cu sites. An inspection
shows that the charge pattern found in the structure analysis
compares favorably with that expected for a generalized
Wigner lattice. Recently also the modulation of the charge
density in the ladders of Sr14Cu24O41 has been reported by
Abbamonte et al.28

Wigner crystals are prime examples for strongly corre-
lated states in the sense that electrons do the utmost to avoid
each other in real space.29 In general, strong correlations
�i.e., large on-site interaction U� and the associated reduction
of the kinetic energy are favorable for charge localization. As
a consequence the long-range Coulomb interaction may be-
come relevant in strongly correlated systems, i.e., leading to
charge-ordered states and WL order in higher dimensions at
particular fillings. Examples are the manganites at quarter-
filling which reveal checker-board charge order30,31 and the
layered molecular crystals of the BEDT-TTF type.32–35 Also
charge stripes in high-Tc compounds at 1

8 doping36 reflect the
interplay of strong correlations and long-range Coulomb in-
teractions.

The outline of the paper is as follows: In Sec. II we de-
scribe the Hubbard-Wigner model for edge-sharing chain
systems and introduce the corresponding spinless fermion
Hamiltonian. Furthermore we analyze the resulting domain-
wall interactions for both Coulomb and truncated interac-
tions. In Sec. III we present diagonalization results for the
charge-excitation spectrum and analyze the emerging exci-
tonic states in the case of the model with Coulomb interac-
tion and nearest-neighbor hopping. Here we also provide an
analytical derivation both for the continuum and the exciton
states. The temperature dependence of the structure factor,
kinetic energy, and optical conductivity are calculated by
means of exact diagonalization �ED�. Section IV deals with
the significant changes of the excitonic states introduced by
second-neighbor hopping. These are analyzed with help of
the analytical solution. In particular, we show here that the
soft exciton states near q=� /2 are visible in the optical con-
ductivity at elevated temperature as midgap absorption. Fi-
nally the dc conductivity of 1D Wigner lattices is discussed
in Sec. V, while our conclusions are summarized in Sec. VI.

II. MODEL

A. Wigner lattices in doped edge-sharing chain compounds

As in the high-Tc cuprates Cu2+ is in a d9 configuration
with spin 1

2 , while Cu3+ is in a d9-ligand hole �d9Lh� singlet
state, where the additional hole resides largely at the O
neighbors of the Cu ion. This nonmagnetic configuration is
also known as Zhang-Rice singlet.37 In contrast to the high-
Tc superconductors the edge-sharing geometry with nearly
90° Cu-O-Cu bonds �Fig. 1� leads to strongly reduced hop-
ping matrix elements. This sets the stage for the long-range
Coulomb force as a predominant interaction
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HCoul = U�
i

ni,↑ni,↓ + �
i,l�1

Vlnini+l, �1�

where the on-site interaction U takes care of the strongly
correlated character of these systems and suppresses charge
fluctuations leading to Cu1+ �d10� configurations. In our
model we associate the d9Lh �d9 ,d10� ionization state with 0
�1,2� electrons, respectively, and ni,� ��= ↑ , ↓ � counts the
number of electrons with spin �, while ni=ni,↑+ni,↓. Thus the
concentration of electrons � is related to the concentration of
holes �=1−� �relative to the d9 configuration� used in the
high-Tc literature.38 The Coulomb interaction Vl is screened
by the polarization of neighboring chains and by core
electrons.2 We shall not try to explore the subtleties of
screening due to the embedding, and assume for the sake of
simplicity a generic Coulomb law Vl=

V
l , l=1,2 , . . ., and keep

the nearest-neighbor interaction V as a parameter.39 It is cru-
cial for the following that the interaction is long ranged and
convex, i.e., Vl�=Vl−1−2Vl+Vl+1�0.

For a commensurate doping concentration �=m /n the in-
teraction Vl selects a particular charge-ordering pattern.2 The
resulting charge order is immediately obvious for the filling
fractions �= 1

4 , 1
3 , and 1

2 �Figs. 2�a�–2�c��, which involve an
equidistant arrangement of the Cu2+ sites �arrows in Fig. 2�.
For a general ratio �=m /n this leads to complex structures
with unit cell size n. In case of �= 2

5 and 3
5 we encounter in

Figs. 2�d� and 2�e� the charge order observed for Sr14Cu24O41
�Refs. 22 and 23� and Na8Cu5O10,

8 respectively. Charge lo-
calization, however, is not perfect in Wigner insulators as
electrons still undergo virtual transitions to neighboring sites
�Fig. 2�f�� in order to retain partially their kinetic energy. The
energy of the lowest excitations and the impact of kinetic
energy depend strongly on �=m /n. For example, the energy
of the lowest excitation relative to the ground state Fig. 2�c�
is �V2� while the excitation for �= 3

5 shown in Fig. 2�f� is

�V5�, about an order of magnitude smaller. Hence quantum
charge fluctuations are more important in the latter case.8

To investigate the role of kinetic energy we explore the
dynamics of electrons starting from the one-dimensional
Hubbard-Wigner model HHW=HCoul+HKin,2 where

HKin = − �
i,l,�

tl�ci+l,�
† ci,� + ci,�

† ci+l,�� �2�

describes the hopping of an electron with spin � from site
i to site i+ l and vice versa; and ni,�=ci,�

† ci,�. Due to the
almost 90° Cu-O-Cu angle the hopping t1 between nearest-
neighbor Cu sites results mainly from direct d-d exchange,
while t2 originates from hopping via a Cu-O-O-Cu path40

�Fig. 1�, leading to the remarkable fact �t2 � � �t1�. We adopt
here as typical values t1�63 meV, t2�94 meV, derived
from ab initio band structure calculations for the Cu2+ edge-
sharing reference system Li2CuO2.41 The hopping integrals
are much smaller than our estimates8 for U�3.8 eV and
V�1.5 eV. Thus these parameters suggest that the edge-
sharing chain compounds are well inside the WL regime.

In particular �t2 � � �t1� implies that the second-neighbor
�antiferromagnetic� exchange integral J2 is large compared to
the nearest-neighbor interaction J1 and the interchain cou-
plings. In fact, this is consistent with the magnetic properties
of the Na3Cu2O4 and Na8Cu5O10 compounds8 and also with
recent neutron diffraction data of the compound NaCu2O2
which consists of �=1 edge-sharing chains.42 Magnetic ex-
citation spectra determined by Raman spectroscopy43 and a
high-field NMR study44 on NaCu2O2 single crystals confirm
these conclusions.

It is evident that the spatial variation of charges in the WL
at the same time implies a complementary arrangement for
the spins and thus leads to spatially modulated Heisenberg
spin chains with varying distances among the spins.8,45 This
new category of spin models shows very different magnetic
properties for different commensurabilities �=m /n, as actu-
ally observed in the Sr14−xCaxCu24O41 compounds20,21 and in
the Na1+xCuO2 systems. For example, Sr14Cu24O41 has the
commensurability �= 2

5 corresponding to the structure shown
in Fig. 2�d� and its ground state is determined by singlet
pairs.22,23,46,47 Thus its magnetic properties are quite distinct
from those of Na3Cu2O4 ��= 1

2
� and Na8Cu5O10 ��= 3

5
�.8

B. Spinless fermions and domain-wall interaction

Our study of the charge structure and dynamics will be
based on the spinless fermion version of the Hubbard-
Wigner Hamiltonian H=Ht+HC:

H = − �
i,l�1

tl�ci
†ci+l + ci+l

† ci� + �
i,l�1

Vlnini+l. �3�

The underlying assumption of spin-charge separation, i.e.,
the neglect of the effects of spin degrees of freedom on
charge correlations and excitations, can be rationalized when
starting from the 1D Hubbard model which is Bethe ansatz
soluble.48 That model has marginal spin-charge coupling49–52

and its charge excitations can be described by free spinless
fermions.53 The addition of the long-range Coulomb interac-
tion leads then to the model of interacting spinless fermions

FIG. 2. �Color online�Wigner charge order resulting from Cou-
lomb repulsion and the associated modulated Heisenberg spin struc-
ture for various concentrations �= 1

4 , 1
3 , 1

2 , 2
5 , and 3

5 �a�–�e�. The
spin-1

2 of Cu2+ �arrows� is responsible for magnetism, whereas Cu3+

�circle� is nonmagnetic. The spin arrangement is that expected for
ferromagnetic J1 and antiferromagnetic J2 exchange interactions.
The charge unit cells �shaded� contain 4, 3, 2, and 5 sites, respec-
tively. The structures �c� and �e� are realized in Na3Cu2O4 and
Na8Cu5O10, respectively. A fluctuation of spin position due to a
low-energy charge excitation is shown in �f� for �= 3

5 .
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which may be used to investigate the charge structure and
dynamics of WL’s. We note, however, that strictly speaking
in the 1D Hubbard-Wigner model there is some coupling
between charge and spin, i.e., resulting from the long-range
Coulomb interaction. For example, quantum charge fluctua-
tions influence exchange interactions and thereby the mag-
netic response of WL’s as discussed in Ref. 8. Such coupling
effects between spin and charge will be neglected here.

In the following we shall focus on the �= 1
2 case. The

ground state has perfect alternating charge order as shown in
Fig. 3�a0� for t1=0. At finite hopping t1 this ground state
remains stable, yet domain-wall pairs get mixed in due to
quantum fluctuations. An elementary t1 hopping process in-
volves the interchange of �x0�→ �0x� pairs in Fig. 3. The
charge excitations in Wigner lattices, caused, e.g., by optical
excitations, involve the creation of domain-wall �DW� pairs.
These DW’s can move as a consequence of t1 processes of
the kinetic energy. The role of t2 processes is distinct in the
�= 1

2 case; they are blocked in the perfect WL and contribute
only in the presence of DW pairs. We shall consider this
problem in a later section, and assume for the moment
t2=0.

The charge of a DW can be invoked from a Gedanken
experiment due to Hubbard.2 The excitation generated by
adding an extra electron with charge e as shown in Fig. 3�b0�
will dissociate into two equivalent DW’s with a fractional
charge e /2 separated by regions of perfect charge order. In
general, the domain-wall charge depends on the commensu-
rability �=m /n.

The creation of a domain-wall pair requires an energy
	V1. Domain walls can propagate freely, yet due to the long-
range interaction Vl they attract each other. For �= 1

2 the en-
ergy of two domain walls 
m at distance d=2m is deter-
mined by the recursion relation


m = 
m−1 + �
n=m

�

V2n� , m = 2,3, . . . , �4�

with 
1=�n=1
� V2n� . Here Vl�=Vl−1−2Vl+Vl+1 denotes the

discrete second derivative of the interaction. In the follow-
ing we shall assume the Coulomb interaction Vl=V / l,
and furtheron use V=1 as unit of energy. In this case

1=2 ln 2−1.

An excellent asymptotic expansion for the domain-wall
interaction �DWI� has been derived by Fratini et al.54 for the
Coulomb case:


m � 1
2 − 1/8m + 1/�4m�3 − ¯ . �5�

Remarkably this expression has an accuracy of two digits
even at m=1. It is interesting to note that the leading inter-
action term −1/8m in the asymptotic expansion can be inter-
preted in terms of an effective Coulomb interaction between
the fractional charges of DW’s q1,2= ±1/2. That is, the DW
interaction is given as q1q2 /d=−1/8m, where d=2m is the
distance between the DW centers. Hence the interaction be-
tween the domain walls 
m provides a manifestation of the
fractional charge of the domain walls.

It is evident that a truncated Coulomb interaction, i.e.,
Vl=0 for l� lmax, may not stabilize the Wigner lattice struc-
ture at general rational fillings.2,55,56 The required value for
lmax increases with the commensurability n, where �=m /n is
the filling fraction. In the case of the excitations truncation is
even worse. This problem is demonstrated in Fig. 4 which
displays the energy 
m of two domain walls as function of
distance d=2m for the most simple Wigner lattice �= 1

2 . In
the case of Coulomb interaction 
m is an increasing function
of m, i.e., the domain-wall interaction is attractive, and con-
verges against 
�= 1

2 . Remarkably truncation leads to two
different classes of behavior, repulsion at a short distance for
lmax=even and attraction for lmax=odd. Note that in the
former case
l→0 for large l, while for lmax=1 which is suf-
ficient to stabilize the Wigner lattice for �= 1

2 there is neither
attraction nor repulsion, i.e., DW pairs are not confined in
this case. Hence, calculations of excitation spectra based on

FIG. 3. �Color online� �a� Charge excitations in a Wigner lattice
move in the form of domain walls �DW’s�. Here we consider the
�=0.5 case where Cu2+ �Cu3+� are indicated by x �•�, respectively.
�b� The addition of an extra electron with charge e leads to a high-
energy state which decays into two DW’s with a fractional charge
e /2.

FIG. 4. �Color online� Interaction energy 
m of two DW’s at a
distance d=2m for a Wigner lattice with density �=0.5. The result
for the Coulomb interaction �solid line� and asymptotic expression
�circles� is compared with 
m obtained for the Coulomb interaction
truncated at lmax=1,2 , . . . ,6 �triangles and squares�.
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models with truncated interaction V1 ,V2 , . . . ,Vlmax
or models

with arbitraly chosen parameters V1 ,V2, etc. must be consid-
ered with care when they are compared to the Coulomb case.
A frequently studied model is the model with both nearest-
neighbor-hopping t1 and nearest-neighbor interaction
V1.5,57,58 The effects of longer-range interactions have been
studied by Poilblanc et al.,59 though for relatively weak in-
teractions, i.e., outside the WL regime.

In this work we shall confine ourselves mainly to the dis-
cussion of the long-range Coulomb interaction. For the ana-
lytical considerations we shall occasionally consider the
truncated models with lmax=1 and lmax=3.

III. RESULTS FOR NEAREST-NEIGHBOR HOPPING

A. Domain-wall continuum
and exciton

As shown above charge excitations in Wigner lattices
form domain walls �DW’s� separating regions of perfect
charge order. DW’s move as a consequence of the kinetic
energy operator Ht. For the sake of transparency we consider
first the model with nearest-neighbor-hopping motion t1. Nu-
merical results for the excitation spectra for the Coulomb
interaction are given in Fig. 5 for a quarter-filled ring �i.e.,
�= 1

2 � with N=26 sites. The figure shows the two degenerate
ground states at q=0 and �, the two domain-wall continuum
and part of the four DW continuum at high energy. The two
DW continuum is centered near E�0.45 V as expected from
the DW interaction 
m� 1

2 −1/8m+1/ �4m�3−¯ in the Cou-
lomb case. As a result of the Coulomb attraction between
DW pairs an excitonic state emerges below the two DW
continuum, which is expected to play a prominent role in the
optical absorption. With increasing hopping t1 the width

of the two DW spectrum �8t1 increases and the exciton
binding energy decreases, and eventually the exciton is ab-
sorbed by the continuum near q=0 and �. Yet due to the
dispersion of both the lower edge of the two DW continuum
and the exciton, the excitonic state survives in the vicinity of
q=� /2.

Next we explore the analytical structure of the DW con-
tinuum and then analyze the dispersion of the exciton in
more detail. We will address three different problems: �i� The
DW continuum in the case that all 
l are equal. This case
pertains to the model where only the nearest-neighbor �NN�
interaction V1 is kept. There is no exciton state in this case
and DW’s are not confined.56,60 �ii� Next we explore the so-
lution for the bound state emerging for 
1�
� and 
l=
�

for l�2. This case directly applies to the model where the
Coulomb interaction is truncated at lmax=3, but this solution
also provides an approximate description for the case with
the full Coulomb interaction, if one adopts appropriate val-
ues for 
1 and 
�. Finally �iii�, we analyze the special role of
the second-neighbor hopping t2 in the case �= 1

2 .
We begin with the motion of a DW pair as indicated in

Fig. 3�a� and denote the pair state by �n ,m	. Here n−m and
n+m denote the centers of the xx and 00 DW’s indicated by
vertical bars in Fig. 3, while n denotes the center of mass
coordinate of a DW pair. We shall consider periodic bound-
ary conditions, that is, even numbered rings of size N. Then
it is useful to introduce the auxilliary Bloch states

�q,m	 =
1


N
�

n

eiqn�n,m	; �6�

where for periodic boundary conditions momenta are defined
as q�=2�� /N and �=0,1 , . . . ,N−1. When applying the
translational operator Tl one obtains Tl �q,m	=e−iql �q,m	.
The DW interaction energy associated with these states is 
m
as discussed above:

HC�q,m	 = 
m�q,m	 . �7�

The action of the kinetic energy operator Ht on the local DW
states yields

Ht�n,m	 = t1���n − 1,m + 1	 + �n + 1,m + 1	��1 − �m+1,N/2�

+ ��n + 1,m − 1	 + �n − 1,m − 1	��1 − �m−1,0�� .

�8�

This can be expressed in terms of the auxilliary Bloch basis
Eq. �6� as

Ht�q,m	 = t1�q���1 − �m+1,N/2��q,m+1	 + �1 − �m−1,0��q,m−1	� ,

�9�

with t1�q�=2t1cos�q�. �i� In the case where all 
m have the
same value, which we denote 
�, the solution for the
domain-wall continuum is straightforward:

FIG. 5. Excitation spectrum for the quarter-filled chain with
N=26 sites and Coulomb interaction �V=1� for �a� t1 /V=0.02 and
�b� t1 /V=0.05 as obtained by exact diagonalization. The continuum
due to domain-wall pairs is centered at E�0.45 V and its width is
�8t1. At small t1 the bound state is well separated from the bottom
of the continuum, while for larger t1 �b� it merges with the con-
tinuum, but persists near q=� /2. Parts of a continuum due to an
excitation of four domain walls is visible at the top of the figure.
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��q,p	 =
2


N
�
m=1

N/2−1

sin�pm��q,m	 , �10�

where the N /2−1 pseudomomenta are determined by p�

=2�� /N and �=1,2 , . . . ,N /2−1. The corresponding ener-
gies of the DW continuum are

Eq,p = 
� + 2t1�cos�q + p� + cos�q − p�� . �11�

That is, they are given as linear combinations of single
domain-wall energies. The total width of the continuum is
8t1.

While the t1-V1 model with nearest-neighbor interaction
stabilizes the alternating charge-ordered ground state for �
=0.5, it does not lead to an attractive interaction between
domain walls. The excitation spectrum consists of the
domain-wall continuum. The absence of the domain-wall ex-
citon shows that domain walls are not confined in this
case.56,60

The simplest case which shows a bound state is the model
where the Coulomb interaction is truncated at lmax=3. The
resulting DWI 
m in this case is 
1= 2

3V and 
m=
�=V for
m�2, i.e., the DW continuum is centered around V. Next we
shall derive an analytical expression for the exciton energy.

The exciton solution can be obtained by an expansion of
the secular determinant

D = �
�1 t1�q� 0 0 . . . 0

t1�q� �2 t1�q� 0 . . . 0

0 t1�q� �2 t1�q� . . . 0

� � � � � �
0 . . . 0 t1�q� �2 t1�q�
0 . . . 0 0 t1�q� �1

� ,

�12�

where �l=
l−E and t1�q�=2t1cos�q�.

D = �1
2DM − 2�1t1�q�2DM−1 + t1�q�4DM−2, �13�

DM = �
�2 t1�q� . . . . . .

t1�q� �2 t1�q� . . .

� � � �
. . . . . . t1�q� �2

� , �14�

DM = �2DM−1 − t1�q�2DM−2, �15�

where D1=�2, D2=�2
2− t1�q�2, and D0=1. The last relation is

required so that the previous determinantal equation is ful-
filled for M �2. The equation may be solved by the polyno-
mial ansatz DM = pM, leading to

p = 1
2 ��2 ± 
�2

2 − 4t1�q�2� . �16�

The equation for the bound state �1p= t1�q�2 takes then the
form

�
1 − E��
2 − E ± 
�
2 − E�2 − 4t1�q�2� = 2t1�q�2. �17�

The physical solution, which is twofold degenerate because
of Eq. �13�, is

Eex�q� = 
1 −
t1�q�2


2 − 
1
, �18�

where the dispersion t1�q�=2t1cos�q�, which appears
squared, reflects the hopping of domain walls by two lattice
units. We also notice that the dispersion is weighted by the
DW binding potential 
2−
1. As this quantity is V /3 in the
model with a truncated interaction �lmax=3�, the dispersion
of the exciton �not shown� is smaller than in the model with
the Coulomb interaction.

It is instructive to compare the analytical results obtained
so far with the numerical data obtained for the Coulomb
interaction displayed in Fig. 5. We approximate 
m as fol-
lows 
1=2 ln 2−1 and 
m= 1

2 for m�2. The results are
shown in Fig. 6. Although the approximation used for the
DWI 
m is rather crude, there is quite a good agreement with
exact diagonalization.

B. Structure factor and melting
of Wigner lattice

Wigner lattice order gets weakened with increasing ki-
netic energy �t1. Yet in the model with only nearest-
neighbor hopping there is a gradual crossover to the CDW
with weaker charge order but the same modulation period,61

which is q=� at �= 1
2 . This is the 2kF CDW of spinless

fermions, and corresponds to the 4kF CDW �Refs. 5 and 6� if
the spin is included in the model. The crossover from the WL
to the CDW regime is reflected in the variation of the charge
gaps at q=��0� displayed in Fig. 7�a� as function of t1.
While the two gaps are almost equal in the WL regime at
small t1, for larger t1 the q=��=2kF� charge gap controls the
CDW state. In this figure one can also see that in the WL
regime the charge gaps calculated numerically for a N=26
site cluster are well described by the perturbative expression,

FIG. 6. �Color online� Analytical solution for the domain-wall
continuum Eq,p, Eq. �11�, of the quarter-filled chain with N=26 sites
and 
m= 1

2 for t1=0.02 and 0.05. Data points �circles� representing
the continuum are determined for the discrete momenta sets q� and
p�. Exciton dispersion Eex�q�, Eq. �18�, calculated for the model
with 
1=2 ln 2−1 and 
m= 1

2 for m�2 relevant for the case of
long-range interaction �filled circles�.
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Eq. �18�, for the exciton energy Eex using 
1=2 ln 2−1 and

2= 1

2 appropriate for the WL stabilized by Coulomb inter-
action. We note, that for the model with the nearest-neighbor
interaction V the CDW solution for �= 1

2 is expected to be
stable up to t1=0.5 V,58 at even higher values for t1 a metal-
lic state will be realized.59

Next we shall investigate the disappearance of WL order
due to thermal fluctuations. It is well known that one-
dimensional systems controlled by short-range interactions
do not exhibit long-range order at finite temperature. The
corresponding absence of a phase transition at finite tempera-
ture follows from the Mermin-Wagner theorem.62,63 How-
ever, there is a finite transition temperature even in 1D mod-
els if the decay of interactions is power-law-like and
sufficiently slow, as has been shown for Heisenberg and
Ising systems with ferromagnetic64 and antiferromagnetic65

interactions. The latter work by Erwin and Hellberg, which
deals with an interaction decaying as 1/R, is of direct rel-
evance for the WL case.

The melting of the generalized WL �Ref. 66� due to
domain-wall excitations is reflected in the structure factor
N�q�, whose temperature dependence we study here. The
T=0 charge structure factor

N�q� = �1/Ne
2��

i,j
expiq�i−j�ninj	 �19�

is normalized here with respect to the total electron number
of electrons Ne, such that N�q=��=1 for perfect CO, that is,
at low temperature and for small t1. The alternating charge
order is reflected in the peak of N�q� at q=� which starts to
decrease strongly for T�0.05 V. Yet even at much higher
temperatures N�q� reveals a maximum at q=� which indi-
cates the persistence of pronounced short-range charge cor-
relations. The results for N��� displayed in the inset in Fig. 8
indicate the melting of Wigner charge order67 at a tempera-

ture Tm�0.06 V, i.e., for the case of Coulomb interaction
and t1=0.02 V.

We note that Tm�0.06 V �V�1 eV� has the correct order
of magnitude as the charge-order transition Tm�455 K in
the compound Na3Cu2O4.8 Nevertheless we are far from any
quantitative comparison, as 3D effects could lead to a further
enhancement of Tm or to a reduction due to frustration effects
resulting, e.g., from the interaction with Na-ion potentials.

Before we move on to the calculation of the optical con-
ductivity, we briefly comment on the exact diagonalization
scheme used. In the WL regime the eigenstates are energeti-
cally ordered according to the number of domain-wall pairs
that are excited �c.f. Fig. 5�. This property of the Coulomb
interaction, i.e., that it removes the high degeneracy of the
usual Hubbard model, allows us to truncate the Hilbert space
by selecting configurations with a small number of domain
walls, and to perform a full diagonalization in the truncated
space defined by a cutoff energy. This procedure is expected
to work well in the WL regime, but it should become less
accurate in the CDW regime. As the CDW can be visualized
rather as a Fermi sea with a small gap due to the relevant 2kF
scattering processes, a truncated domain-wall basis will cer-
tainly not be appropriate or require an extremely large cutoff
energy such that again the full Hilbert space is covered. Fig-
ure 7�b� shows the convergency of the lowest excitation en-
ergies at q=0 and � as function of the cutoff energy. As can
be seen from the figure, this truncation works extremely well
even for t1=0.1 V, i.e., at the crossover to the CDW regime.
Thus most of our calculations for the bigger N=26 clusters
employ an energy cutoff 1.45. Moreover a basis of momen-
tum eigenstates is used to further reduce the size of the ma-
trices.

C. Optical conductivity

Optical conductivity experiments could provide important
information about the size of the charge gap, the presence or
absence of exciton features, and the shape and width of the
domain-wall continuum. Thus in combination with the theo-
retical spectra optical data may allow us to determine the
basic parameters of the Hubbard-Wigner model more pre-
cisely. As we are dealing with insulating systems it suffices
to focus on the finite frequency absorption ���� as given by

FIG. 7. �Color online� �a� The variation of the charge gap at
q=� as a function of t1 displays the crossover from the Wigner
lattice to the CDW regime in the case with the nearest-neighbor
hopping t1. Results are obtained for an N=26 site ring using an
energy cutoff 1.45 V. The exciton energy of WL �dashed curve�
according to Eq. �18�. �b� Dependence of the gap energies for large
t1=0.1 �0.25� on the cutoff energy.

FIG. 8. Structure factor N�q� versus q for a N=26 chain with
Coulomb interaction and t1=0.02 V for different temperatures. The
inset shows the temperature dependence of N�q=��.
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the Kubo equation in terms of the current-current correlation
function68

���� =
1 − e−�/T

N�
Im�

m,n

e−Em/T�n�jx�m	�2

� − �En − Em� + i0+ , �20�

where n� �m � � are eigenstates with energy En �Em�, respec-
tively. The current operator jx for the lattice model is defined
in the usual way as

jx = − �
i,l�1

�ltl�ci
†ci+l − ci+l

† ci� , �21�

where �l= la is the hopping length, and a the Cu-Cu dis-
tance along the chain. The conductivity will be given in
dimensionless form,69 �0����, with �0= �v /e2a2 where
v=abc is the cell volume per Cu site, and � /e2=4.1 k� the
von Klitzing constant.

In this section we consider nearest-neighbor-hopping
amplitudes only. Equation �20� can be evaluated in a straight-
forward way via exact diagonalization. Results for ���� at
T=0 are given in Fig. 9 for two different hopping matrix
elements t1/V � 0.02 and 0.05, which reveal the broad-
ening of the domain-wall continuum �8t1 and the disappear-
ance of the exciton peak at larger t1 in the continuum. At
t1=0.02 V the exciton at energy 0.38 V has a large weight
and the shape of the DW continuum is asymmetric and
peaked at the lower frequency edge. The strong asymmetry
of the continuum persists at larger t1, i.e., when the exciton is
no longer visible. We stress that this strong asymmetry of the
DW absorption is related to the domain-wall attraction in the
Coulomb case, whereas in the model with truncated interac-
tion �lmax=1� ����� turns out symmetric with respect to the
center of the DW absorption.

Figure 9 also provides a comparison of ���� with the
total density of states:

D��� = �1/N��
k

�
n

��� − Ek,n� . �22�

The latter quantity shows a part of the two-domain wall con-
tinuum, which reaches up to ��0.6 V, also the much larger
two particle-hole continuum involving four DW’s. The latter,
however, is not optically active. A comparison of D��� and
���� indicates a strong enhancement of the optical matrix
element towards the lower edge of the two DW continuum,
i.e., leading to the asymmetric shape of ����.

The weight of the lowest �exciton� excitation is compared
in Fig. 10 with the weight of the second lowest excitation. It
can be seen that the decay of exciton weight is rather fast
with growing t1 and parallel to the decrease of the exciton
binding energy. The inset of Fig. 10 provides a comparison
of the kinetic energy due to the quantum fluctuations and the
integral over the optical conductivity as function of t1. The
coincidence of the data reflects the optical sum rule70

2

�
�

0

�

d� ���� =
1

N
�
l�1

�l
2− Hkin

l 	 . �23�

In the general case where different hopping processes in the
kinetic energy Hkin

l , l=1,2 , . . ., reach over different distances
�a the optical sum rule has to be modified and is given by an
average over the individual kinetic energy contributions
weighted by the square of the hopping distances.71 In all the
cases considered thus far, the optical sum rule is fully ex-
hausted by the incoherent part of ����, thus there is no zero-
frequency Drude contribution. The increase of the total spec-
tral weight with t1 naturally follows from the corresponding
increase of kinetic energy. The quadratic dependence �t1

2 /V
at small t1 highlights that the kinetic energy is due to virtual
charge excitations with energy proportional to V.

FIG. 9. Optical conductivity �0���� at T=0 �solid line� and
density of states D��� of two- and four-DW excitations �dashed
line� for an N=26 chain with a Coulomb interaction for t1 /V
=0.02 �top� and 0.05 �bottom�, respectively. The spectra are shown
with a Lorentzian broadening �=0.03, while for the bound state in
���� �=10−4 was used. The strong increase of D��� at ��0.7
marks the onset of the four-DW continuum which does not contrib-
ute to ����.

FIG. 10. Relative optical spectral weights of a bound state �solid
line� and of the first continuum state �dashed� versus t1/V calculated
for an N�26 ring. The binding energy EBS �squares� is given for
small t1 only because of the difficulty to extract this quantity from a
discrete spectrum. The inset shows the kinetic energy �solid line�
and the result obtained via the sum rule �triangles�.
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Next we consider the thermal evolution of the optical con-
ductivity spectra displayed in Fig. 11 for the two cases
t1 /V=0.02 and 0.05. The spectra shown were obtained for an
N=26 site cluster and periodic boundary conditions. There
are two immediately obvious features: �i� The disappearance
of the prominent exciton absorption in the t1=0.02 V case at
high temperature, and �ii� the spectral weight transfer from
high-energy into a low-energy gapless absorption. Further-
more one also realizes a gradual decrease of the total sum
rule with increasing temperature.

The appearance of the low-energy absorption arises from
the thermal population of excited states, i.e., exciton and
continuum states, and subsequent transitions within the con-
tinuum. The evolution of the low-energy continuum dictates
the temperature dependence of the dc conductivity. We shall
come back to this point in Sec. VI.

IV. ROLE OF SECOND-NEIGHBOR HOPPING

Edge-sharing chain compounds have the peculiar property
that the magnitude of the second-neighbor-hopping matrix
element t2 is larger than the nearest-neighbor matrix element
t1. This has the important consequence that the Fermi surface
topology is changed, i.e., instead of two Fermi points there
can now be four Fermi points depending on the hole or elec-
tron concentration. Therefore we have here a qualitatively
new situation compared to the pure t1 case, where the modu-

lations of the CDW arising from the Fermi surface instability
and of the WL coincide. At sufficiently large values for t2,
i.e., relative to the Coulomb interaction strength V, we expect
the system to undergo a transition from the Wigner phase
into a CDW state with different modulation, i.e., now dic-
tated not by the classical Coulomb interaction but by “Fermi
surface nesting,” that is a charge modulation of quantum
mechanical origin.

For sufficiently large t2 there are three relevant scattering
processes Q1=2kF,1 and Q2=2kF,2 which are, in general, re-
lated to incommensurate modulations determined by the ratio
t2 / t1, and a commensurate modulation Q3=� /2 as shown in
Fig. 12. Whereas Q1 and Q2 lead to the opening of gaps at
two Fermi points, respectively, Q3 generates gaps at all four
Fermi points simultaneously. Our numerical results show that
the Q3 modulation is the dominant one, and leads to a further
doubling of the unit cell. It is remarkable that the modulation
Q3 coincides with that of the 2kF-Peierls instability at
quarter-filling, that is in the usual model with nearest-
neighbor hopping and spin. Here we shall not follow the
weak-coupling route further, but investigate the transition to
the CDW from the strong-coupling WL side.

It is immediately evident that in the perfect charge-
ordered state t2 processes are completely quenched, and only

FIG. 13. Excitation spectrum for N=26, t1=0.02 V and two
different second-neighbor-hopping matrix elements t2=0.05 and
0.10 V, showing the strong effect of t2 on the exciton dispersion
with a shift of the minimum to q=� /2.

FIG. 11. Optical conductivity at quarter-filling ��=0.5�:
�a� t1=0.02 V and �b� t1=0.05 V for different temperatures
T=0.01,0.10, and 0.20 V.

FIG. 12. �Color online� Free fermion dispersion Ek for t2 / t1

=2.5 with scattering processes Q1=2kF,1, Q2=2kF,2 and Q3=� /2
�for �= 1

2 � indicated by arrows.
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through the presence of charge fluctuations introduced via
nearest-neighbor hopping t1 the t2 processes are activated.
This is seen in the excitation spectra for the Coulomb chain
shown in Figs. 13. The exact diagonalization results show
even for t2=0.10 hardly any effect on the two-DW con-
tinuum. A small downward shift of the two-DW spectrum is
attributed to a broadening of the four DW continuum.

The exciton, however, is changed in a surprising way; it
disperses downward, in contrast to the t1 case studied before.
The numerical solution reveals two further aspects: �i� the
periodicity of the exciton dispersion indicates nearest-
neighbor hopping of DW’s, quite in contrast to the t1 motion
where DW’s hop over two sites; and �ii� the exciton disper-
sion does not depend on the sign of t2.

For further illustration we present in Fig. 14 exact diago-
nalization results for the excitation spectrum of the
model with an interaction truncated at lmax=3. The domain
wall interaction in this case is 
1= 2

3 V and 
m=
2=V for
m�2. The DW continuum is centered around V. The disper-
sion of the exciton in case �a� with t1=0.02 V and t2=0 is
strongly suppressed as compared to the case with long-range
Coulomb interaction �cf. Fig. 5�. As we shall see below, this
is due to the larger splitting 
2−
1 between the exciton and
the continuum as compared to the model with Coulomb in-
teraction.

At finite t2=0.05 �Fig. 14�b�� the degeneracy of the exci-
ton is lifted and one observes clearly two exciton branches,
one with downward and one with upward dispersion. To get
some deeper insight in the peculiar dispersion of the exciton
at finite t2, we turn now to the analytical analysis of the
excitonic state for the latter case, i.e., defined by the DW
potential 
1= 2

3 V and 
m=V for m�2.

A. Analytical study of the exciton state

The analytical calculations presented in Sec. III A can be
extended to the case with a finite next-nearest-neighbor-
hopping term. For �= 1

2 t2-hopping processes are completely
blocked in the ground state with a perfect charge order. A
nearest-neighbor DW pair, however, can move by one step to
the left or to the right as a result of a t2 process as indicated
in Fig. 15. For the analytical solution it is useful to adopt
symmetrized configurations as shown in Fig. 15.

There are only relevant matrix elements �t2 between
even and odd configurations in the m=1 sector that are en-
ergetically degenerate:

− q,1�Ht2
�q,1	+ = t2�q� , �24�

where t2�q�=2it2sin�q�. This matrix element connects the
even and odd sectors in the secular determinant:

D = �
� � 0 . . . . . . . . . 0

t1�q� �2 t1�q� 0 . . . . . . 0

0 t1�q� �1 t2�q� 0 . . . 0

0 . . . t2
*�q� �1 t1�q� 0 0

0 . . . 0 t1�q� �2 t1�q� 0

0 . . . 0 0 t1�q� �2 �

0 . . . 0 0 � � �

� . �25�

FIG. 14. �Color online� Excitation spectrum for an N=26 site
ring at electron concentration �=0.5 and Coulomb interaction trun-
cated at lmax=3. Numerical results �circles� for t1=0.02 V and two
different second-neighbor-hopping matrix elements: �a� t2=0 and
�b� 0.05 V. Analytical results for domain-wall exciton states are
shown as solid lines.

FIG. 15. �Color online� Sketch of second-neighbor t2 hopping
processes between energetically degenerate and symmetrized DW
configurations. Such processes occur only in the m=1 sector be-
tween symmetric and antisymmetric configurations �due to the Pauli
principle� and lead to a nearest-neighbor motion of the center of
mass of the DW pair. Signs attached to the right brackets indicate
even and odd linear combinations.
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The expansion of the secular determinant yields a modified
equation for the bound states

��1p − t1�q�2�2 − �t2�q��2p2 = 0. �26�

The t2 term leads to a splitting of the degenerate solutions
obtained in the t1 case into a lower and an upper branch:

Eex,l�q� = 
1 − �t2�q�� −
t1�q�2


2 − 
1 + �t2�q��
, �27�

Eex,u�q� = 
1 + �t2�q�� −
t1�q�2


2 − 
1 − �t2�q��
. �28�

The coupling t2 shifts the exciton minimum in the lower
branch to � /2. The exciton dispersion does not depend on
the relative sign of t2. At a threshold value t2,cr q=� /2 ex-
citons condense and lead to the new state controlled by the
kinetic energy. The upper branch is a physical solution only
as long as it does not touch the DW continuum.

In Fig. 14 we provide a comparison of the analytical so-
lutions for the exciton dispersions, Eqs. �27� and �28�, with
exact diagonalization data for an N=26 site cluster in the
case of the Coulomb interaction truncated at lmax=3. As can
be seen from Fig. 4 in this case 
1= 2

3V and 
m=
2=V for
m�2. The analytical exciton dispersions calculated from
Eqs. �27� and �28� provide a good description of the numeri-
cal values. The small deviations are mainly due to a slight
downward shift of the two-DW continuum in the numerical
calculation, that results from its interaction with the four-DW
continuum which is much broader in the t2=0.05 case. This
also implies a small downward shift of the DW exciton.

It is also instructive to compare Fig. 14�b� calculated for
the truncated interaction to Fig. 13�a� which was obtained
using the full Coulomb interaction. In the latter case only the
lower exciton branch can be seen and its dispersion is
slightly larger than in Fig. 14�b�, although the spectra have
been determined for the same hopping parameters. These
differences result from the different attraction of domain
walls 
2−
1 in the two cases, which enter in the third term
on the rhs of exciton dispersion in Eq. �27�.

The critical value t2,cr can be estimated from Eq. �27� by
setting Eex,l�q�=0 at q=� /2. For the case with long-range
Coulomb interaction �cf. Fig. 13� we use the parametri-
zation 
1 /V=2 ln 2−1 and 
m /V= 1

2 for m�2. This yields
t2,cr�0.18 V, i.e., somewhat larger than the numerical value
t2,cr=0.155 V obtained by an exact diagonalization of an
N=26 site cluster. One reason for the overestimate is obvious
from Fig. 13 which shows a broadening of the four DW
continuum at large t2, i.e., leading to a downward shift of the
two DW continuum and thereby to a smaller t2,cr.

B. Structure factor and exciton instability

In the previous discussion of the electronic structure we
have seen that the exciton will get soft at about t2=0.16 V
and hence the WL state should get unstable and a new
ground state with a momentum q�� /2 should appear. In the
following we analyze the change of the static charge struc-
ture factor N�q�. Figure 16 shows the dependence of N�q�,

Eq. �19�, on the size of t2 for fixed t1=0.02 V. The results are
obtained for an N=10 site cluster where we included the full
Hilbert space in order to show the complete break-down of
Wigner order at large t2.

It is remarkable that up to the value t2�0.14 the ground
state correlations remain unchanged with N�q� peaked at mo-
mentum �. This reflects the blocking of t2 hopping processes
in the state with an alternating charge order. Then in the
narrow range 0.15� t2�0.16 there is a sudden change of
N�q� indicating a level crossing. Beyond t2�0.16 the charge
correlations are determined by the new state with the maxi-
mum of N�q� near � /2. The broad shape of N�q� is reminis-
cent of that of a 1D Fermi gas, i.e., indicating that the CDW
modulations in this phase are rather weak. It has been
checked by a calculation of the charge correlation functions
in real space, that there are still significant charge modula-
tions in the system consistent with a q=� /2 CDW.

The excitation spectrum corresponding to the transition
from the WL to the � /2 CDW is shown in Fig. 17�a�. It
clearly reveals the quasidegeneracy of the WL ground
states at q=0��� and the soft exciton at q=� /2. At larger
values for t2 the state emerging from the exciton is the

FIG. 16. �Color online� Charge structure factor N�q� as obtained
by ED for a 10 site ring with Coulomb interaction �V=1� and
�=0.5 for t1=0.02 and different values for t2 �T=0.01 V�. Straight
lines are guides to the eyes; the+symbols in the data for t2=0.16
also indicate the allowed q points. The Wigner order is unstable
beyond the critical value t2

cr=0.155.

FIG. 17. Excitation spectrum for L=26, t1=0.02 V and two dif-
ferent second-neighbor-hopping matrix elements t2=0.15 and
0.20 V indicating the exciton instability of the Wigner lattice. While
for t2=0.15 the degenerate ground states are at q=0,�, the ground
state momenta for t2=0.2 are near q=� /2.
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new ground state of the system, as seen in Fig. 17�b�. We
note, that our program was developed for N=4n+2 site
rings �n=1,2 , . . . � that do not have � /2 as allowed momen-
tum, therefore there are two degenerate ground states at
q=� /2±2� /N.

C. Optical conductivity

The effect of second-neighbor hopping t2 on the optical
conductivity ���� is displayed in Figs. 18�a� and 18�b� for
the model with Coulomb interactions. As a consequence of
the blocking of t2 processes in the state with alternating
Wigner charge order at �= 1

2 the optical spectra are only
slightly modified at low temperature, and almost coincide
with those obtained for the model with only nearest-neighbor
hopping in Fig. 11. A remarkable change, however, is the
disappearance of the q=0 exciton, which was very pro-
nounced in the spectrum for t1=0.02 and t2=0 in Fig. 11�a�
at low temperature. This feature has disappeared after
switching on t2=0.05 in Fig. 18�a�. For these parameters
there is no bound state at q=0��� as can also be seen from

the corresponding energy level diagram in Fig. 13�a�.
As an optical experiment involves only vertical transitions

only charge excitations at q=0 and � are probed at low
temperature, i.e., the downward dispersing exciton is invis-
ible. This changes, however, when the exciton states get
populated by thermal excitations. As a consequence there are
marked changes in the spectra at higher temperature, which
can be traced back to the different dispersion of the exciton
state at finite t2. The pronounced structure near �=0.2 in Fig.
18�a� at T=0.1 V, which is already seen at T=0.05 V as a
weak in-gap excitation, stems from transitions between ther-
mally excited excitons near q=� /2 and final states at the
upper edge of the two DW continuum �cf. Fig. 13�a��. This
conclusion is based on a careful study of the size of the
corresponding matrix elements in the current-current corre-
lation function. In the spectra of Fig. 18�b� for a twice as
large t2 value this absorption has shifted to higher energies
���0.27 V� and appears now as a small structure on the
shoulder of the main peak, which is due to transitions into
the two DW continuum at q=0.

Thus the observation of an in-gap absorption in the opti-
cal conductivity at finite temperature can provide valuable
information about the position of the minimum of the exciton
dispersion in the middle of the Brillouin zone, which may
allow us to determine the value of t2 from experiment.

Finally we recall that the higher transitions into the upper
Hubbard band with energy �U are not contained in the spin-
less fermion model we study here. Yet they are contained in
the Hubbard-Wigner model. For t2� t1 and �= 1

2 these tran-
sitons are expected at energy U−V2 with intensity �t2

2. But
also in the case t2� t1 transitions into the upper Hubbard
band are expected due to charge fluctuations resulting from
t1 processes.

V. dc CONDUCTIVITY

A central experimental quantity to compare our finite tem-
perature results with is certainly the dc conductivity ��T�. In
Fig. 11, which displays the temperature dependence of ����,
we observe the emergence of a low-frequency continuum
whose intensity grows with increasing temperature. These
changes are accompanied by a spectral weight transfer from
a high to low energy. The low-energy excitations arise from
transitions within the two DW continuum. We note that at
higher temperatures, i.e., near the melting temperature of the
WL and above, also four DW excitations do contribute sub-
stantially to the low-frequency absorption. This yields a very
dense low-energy spectrum even for small systems. It is cer-
tainly suggestive that this low-frequency continuum contains
the information about the dc conductivity. Yet as we are deal-
ing with finite systems the case is not that simple as the
zero-frequency limit cannot be determined in a straightfor-
ward way. In fact, the analysis of the low-frequency part of
���� reveals a pseudogap �8t1 /N, which scales inversely
with the size of the system N.

Similar pseudogap behavior and finite size effects in ����
have also been observed recently by Prelovsek et al.72 in a
study of the 1D t-V model. In their careful study Prelovsek et
al. arrived at the conclusion that after finite size scaling the

FIG. 18. Optical conductivity at quarter-filling ��=0.5� for dif-
ferent temperatures: �a� t1=0.02, t2=0.05 �Lorentzian broadening
�=0.05 V�, and �b� t1=0.02, t2=0.10. The in-gap absorption ap-
pearing near ��0.19 V at finite temperatures in �a� is attributed
to a transition from the thermally excited exciton in the vicinity of
q=� to the domain-wall continuum. A similar feature appears in �b�
at ��0.27 V.
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results for the frequency dependence could be compatible
with a normal and featureless shape of ���� as found by a
frequency moment analysis.

Thus we proceed as follows: We assume that in the
thermodynamic limit the level spacing vanishes and the
low-frequency part of the spectrum can be expressed
by a Drude form for the real part of the conductivity
����=��T� / �1+ ����2�, where ��1/ t1 is determined by the
energy scale of the domain-wall continuum. The spectral
weight of the low-frequency part of ���� as determined by
exact diagonalization

I��0� = �
0

�0

����d� , �29�

with �0=4t1 is then used to determine the dc conductivity
��T�.

Results for the dc conductivity obtained from a 26 site
ring at doping �=0.5 are presented in Fig. 19 for two differ-
ent hopping matrix elements. The numerical data for
t1=0.02 and 0.05 V �t2=0� show similar behavior. The dc
conductivity reveals activated behavior below and basically
T-independent �poor metallic� behavior above the melting
temperature Tm of the WL. The conductivity for t1=0.02 V is
smaller, reflecting the t1

2 proportionality of the current-
current correlation function.

At a small hopping t1=0.02 V the numerical data for ��T�
is well described over five decades by a single activation
energy dependence ��T��c exp�−Ea /kT�, with Ea�0.30 V.
However, the sometimes used relation73,74

��T� � cT−�exp−Ea/kT, �30�

which involves in addition the temperature dependence of
the mobility ��T��T−�, improves the fit when approaching
the saturation �melting� regime at high temperature as shown
in Fig. 19 by dashed lines. Using this relation we obtained
for t1=0.02�0.05� V the activation energies Ea

�0.39�0.32� V, respectively, and ��2.4�1.95�. Thus the
mobility ��T� of the carriers �domain walls� decreases
strongly with increasing temperature, as one may have ex-
pected. The activation energies Ea determined from ��T� are
consistent with the energy gaps in the corresponding energy
level diagrams in Figs. 5�a� and 5�b�. Yet the activation en-
ergies Ea determined from ��T� are larger than expected
from the relation Ea=Eg /2 which applies for usual semicon-
ductors. Whether this discrepancy originates from the fact
that the charge carriers in the WL are domain walls with a
fractional charge and not usual electronlike and holelike qua-
siparticles remains unclear and deserves further study.

While the relation Eq. �30� provides a quite satisfactory
description of the numerical data over the full temperature
range, it is nevertheless far from perfect. As one can see, the
fit curve in Fig. 19�b� lies below �above� the numerical data
for temperatures above �below� the melting temperature Tm,
respectively. This deviation possibly reflects the strong
change of the structure factor near Tm �see inset of Fig. 8�.
Here our aim was to keep the number of parameters as small
as possible and therefore we have not tried to add such a
Ea�T� correction term that would involve Tm and further pa-
rameters.

Recent measurements of the dc conductivity of Na3Cu2O4
and Na8Cu5O10 compounds show the same trends: �i� an
Arrhenius behavior below, and �ii� a saturation of dc conduc-
tivity above the melting transition Tm�455�540� K,
respectively.8,75 Moreover, the experimental conductivities
show only a small discontinuity at the melting temperature
Tm. Although the absence of a discontinuity in the theoretical
curve can be attributed to the finite system, which is not
expected to display a phase transition, it is nevertheless re-
markable that also the experimental data only show a weak
discontinuity at the melting temperature Tm of the WL. The
measured dc conductivity of the compound Sr14Cu24O41 was
also found to be described by an Arrhenius law with an
activation energy Ea�0.12 eV. More recent studies found
a crossover between two exponential regimes, with
Ea�0.12 eV for the low T regime up to about 170 K but
different values 0.18 eV,16 0.22 eV,76and 0.27 eV �Ref. 77�
for the high-T regime. Up to 400 K no saturation was ob-
served for this compound. As the transport at high tempera-
tures is probably due to the chains and the ladders in these
compounds, a direct comparison with our results is ruled out.

VI. CONCLUSIONS

In summary, we have investigated the charge excitations
of a 1D generalized Wigner lattice, expected to be realized in
edge-sharing Cu-O chain systems and also in some organic
chain compounds, starting from the Hubbard-Wigner model
with long-range Coulomb interactions Vl=V / l among elec-

FIG. 19. �Color online� �a� Temperature dependence of the dc
conductivity for �=0.5 determined from the integrated low-
frequency spectral weight for t1=0.02 and 0.05 �t2=0�. �b� Arrhen-
ius plot revealing the activated behavior at low temperature. An
activated behavior for the carrier density in combination with a
temperature dependent mobility �T−�, Eq. �30�, provides a rather
good fit of the numerical data over the whole temperature range.
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trons. A central aim was to gain insight into the spectral
structure of the optical conductivity ���� and its temperature
dependence.

We have found the following:
�i� The conductivity ���� is determined by a highly asym-

metric spectrum due to two domain-wall excitations with an
energy gap Eg�V /2−4t1 and a width of �8t1. The asym-
metric form of this spectrum may serve as another fingerprint
to detect the WL and may also be employed to determine the
parameters of the model from experiment.

�ii� For t1�V excitons with a dispersion given by Eq. �18�
form and show up as strong absorption peaks in the optical
conductivity. The excitons are due to an attractive potential
between domain-wall pairs �V /8l, whose prefactor reflects
the fractional charge of the DW. The DW attraction results as
a consequence of the long-range �repulsive� Coulomb inter-
action between electrons. The appearance of excitonic states,
which arise from the effective attraction between the frac-
tionally charged DW’s, was, to our knowledge, not noted
before. In contrast, the frequently studied model with only
nearest-neighbor interactions has no bound state because of
the absence of attractive interactions between DW pairs.
However, in that case interchain interactions may provide an
alternative mechanism for confinement, as noted recently in
work by Bhaseen and Tsvelik.60

�iii� Edge-sharing chain compounds have the unusual
property that the magnitude of the second-neighbor-hopping
matrix element t2 is larger than the nearest-neighbor matrix
element t1. While t2 hopping processes are frustrated in the
classical WL state with alternating charge order, these pro-
cesses surprisingly contribute strongly to the exciton disper-
sion. They lift the degeneracy of the exciton state and the
lower branch, c.f. Eq. �27�, leads to an exciton instability at
about t2,c�0.155 V. The CDW state beyond t2,c has a modu-
lation period twice as large as that of the WL. The charge
modulation is weak in this CDW state as inferred from the
calculation of the static charge structure factor.

�iv� Interestingly the optical conductivity at a finite tem-
perature reveals an in-gap absorption that reflects the transi-

tions between the soft exciton near q=� /2 and the domain-
wall continuum. Thus this in-gap absorption may provide a
further identification of the WL state and also allow us for an
independent experimental determination of the matrix ele-
ment t2.

�v� Moreover, we have calculated the temperature depen-
dence of the dc conductivity of the generalized Wigner lat-
tice from the low-frequency absorption. The data for ��T�
show a crossover from activated behavior at low temperature
to a basically temperature independent �poor metal-like� con-
ductivity at high temperatures. It turns out that ��T� can be
described over the full temperature range by an activated
behavior characterized by an activation energy Ea and a tem-
perature dependent mobility �T−�. This implies a strong de-
crease of the mobility of domain walls with increasing tem-
perature.

Finally we note that doped edge-sharing compounds pro-
vide a unique opportunity to study the competition between
two entirely different states, the classical WL dictated by the
long-range Coulomb interaction and the CDW of quantum
mechanical origin, i.e., resulting from a Fermi surface insta-
bility. These materials highlight the importance of long-range
Coulomb interaction in strongly correlated systems, and pro-
vide a one-dimensional test ground for the study of charge
stripe formation. We have analyzed here the charge dynamics
and aspects of transport for a generalized 1D Wigner lattice
in its most simple realization, namely at quarter-filling
��= 1

2
�. Other commensurabilities are more complex and

show a hierachy of different charge excitations. Work along
these lines is in progress, as well as work on the effect of
spin-charge coupling particularly on the low-energy charge
response.
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