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We investigate the quantum nonlinear dynamics of a resonantly excited photonic quantum dot embedding a
quantum well in the strong exciton-photon coupling regime. Within a master equation approach, we study the
polariton blockade effect due to polariton-polariton interactions as a function of the photonic dot geometry,
spectral linewidths and energy detuning between quantum well exciton and confined photon mode. The second
order coherence function g�2��t , t�� and the photon antibunching are calculated for both continuous wave and
pulsed excitations.

DOI: 10.1103/PhysRevB.73.193306 PACS number�s�: 42.50.�p, 42.65.�k, 71.36.�c, 03.65.�w

Several recent developments in the field of quantum
information1 and quantum communication2 are based on
light beams with strongly nonclassical properties. Many
techniques have been investigated to obtain such beams, us-
ing, e.g., parametric down-conversion processes in bulk non-
linear crystals,1 colored centers in diamond3 or by taking
advantage of semiconductor electronic quantum nanodots.4–8

Quantum wells strongly coupled to planar microcavities
combine strong nonlinearities due to exciton-exciton interac-
tions with an efficient coupling to radiation. In particular,
their use as parametric amplifiers and oscillators working at
low pump intensities appears promising.9–14 Very recently,
lithographic techniques have been developed to create high
quality photonic dots able to confine the photon without
spoiling the strong-coupling with the quantum well exciton.
In this way, polaritons result confined in all three dimen-
sions, with a vacuum Rabi splitting as large as several
meVs.15,16

In this paper, we discuss the nonclassical properties of the
light emitted by a resonantly excited polariton quantum dot.
If the photonic confinement volume is small enough, the
presence of just one polariton can block the resonant injec-
tion of a second polariton, since the polariton-polariton in-
teraction shifts the resonance frequency by an amount of the
order of the linewidth or even larger. The emitted light is,
therefore, strongly anti-bunched. If a pulsed excitation beam
is used, the present system can be used as a single-photon
light emitter. In particular, the short radiative emission time
�of the order of a few ps� makes it attractive for high-speed
applications. The quantum polariton blockade effect here
considered is reminiscent of the one proposed for atomic
matter waves17 and for photons in cavities with a nonlinear
atomic medium.18,19

The quantum emission properties of the proposed system
are quantitatively studied by means of the master equation
for the coupled exciton and cavity photon fields including
losses. In particular, we have studied the behavior of the
second-order coherence function g�2� as a function of the
relevant physical parameters and we have identified the re-
gimes where the antibunching is most effective. These results
are then used to characterize the emission in the presence of
a pulsed source, which is shown to provide a train of single-
photon pulses.

We start our theoretical treatment by recalling the quan-

tum Hamiltonian model12–14 describing a quantum well ex-
citon strongly coupled to a planar microcavity photon mode,
namely

H =� dx �
i,j��X,C�

�̂i
†�x�hi,j

0 �− i � ��̂ j�x�

+
��

2
� dx�̂X

†�x��̂X
†�x��̂X�x��̂X�x�

−
��R

nsat
� dx�̂C

† �x��̂X
†�x��̂X�x��̂X�x� + h.c

+� dx�Fp�x,t�e−i�pt�̂C
† �x� + h.c, �1�

where the field operators �̂X,C describe excitons �X� and cav-
ity photons �C�. These operators depend on the in-plane po-
sition wavevector x, which is perpendicular to the growth
direction z. They satisfy Bose commutation rules

��̂i�x� ,�̂ j
†�x���=�2�x−x���i,j. The linear term, including the

exciton and planar microcavity photon kinetic energy �the
motion along z is quantized�, reads

h0�− i � � = �	�X�− i � � �R

�R �C�− i � � + VC�x�

 , �2�

where the exciton-photon coupling, responsible for the ap-
pearance of the polariton eigenmodes, is quantified by the
vacuum Rabi frequency �R. VC�x� describes the photonic dot
confining potential due to the lithographic patterning. Two
contributions are responsible for the polariton nonlinearities,
namely the exciton-exciton interaction �modeled through a
repulsive contact interaction potential with strength ��� and
the anharmonic exciton-photon coupling �depending on the
exciton oscillator strength saturation density nsat�. Finally,
Fp�x , t� describes the applied excitation field with frequency
�p. The photon field operator can be expanded in terms of

the confined modes in the photonic dot, namely �̂C�x�
=� j	C,j�x�âj, where 	C,j is the normalized wave function of
the jth mode of energy ��C,j

dot, and âj is the corresponding
annihilation operator. Since the exciton kinetic energy is neg-
ligible compared to the photonic one �i.e., the wavevector
dependence of �X is negligible compared to the one of �C�,
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it is convenient to use the same basis to expand the exciton

operator as �̂X�x�=� j	C,j�x�b̂j, where b̂j is the correspond-
ing bosonic exciton annihilation operator. In fact, it can be
easily seen from Eq. �2� that each photon mode is coupled
only to the exciton mode with the same spatial wave func-
tion, implying that the polariton eigenmodes have the same
spatial wave function as the photonic dot modes.

In the following, we will be interested in studying the
dynamics of the fundamental photonic mode confined in the
photonic dot strongly coupled to the exciton level. In the
case of a strong photonic confinement, the energy spacing
between confined photon modes can become much larger
than the mode spectral linewidth and the energy detuning
between the quantum well exciton resonance and the consid-
ered photon mode. In this limit and for quasi-resonant exci-
tation, we can safely simplify our quantum description by
retaining in the Hamiltonian only the fundamental photonic
dot mode of energy ��C

dot and the exciton mode having the
same spatial wave function 	C�x�. Thus, in the following, we
will consider the following effective Hamiltonian:

Hef f = ��Xb†b + ��C
dota†a + ��Rb†a + ��Rba†

+
��nl

2
b†b†bb − 
sat��Rb†b†ab − 
sat��Ra†b†bb

+ �F0�t�e−i�pta† + �F0
*�t�ei�pta , �3�

where a and b are the bosonic annihilation operators of
the considered photonic dot and exciton mode, respectively.
The parameters involved in the effective Hamiltonian
are the applied laser amplitude F0�t�=�dxFp�x , t�	C

*�x�,
while 
sat=

1
nsat

�dx�	C�x��4 and �nl=��dx�	C�x��4 are the
effective nonlinear coefficients. The saturation coefficient

sat will be neglected in the numerical solution because

sat��R

��nl/2
=

2�R

nsat�
�1 for typical III-V microcavity parameters.12

To give the dependance of the nonlinear coefficient �nl
on the photonic dot confinement, we have considered
two simple geometries with infinite confinement barriers.
In the case of a square dot, the normalized wave func-
tion is 	�x ,y�= 2

L sin� �
L x�sin� �

L y� where L is the lateral
size. In the cylindrical case, 	�r�= 1.087

R J0�2.405r /R� where
R is the radius of the cylinder and J0 the zeroth-order
Bessel function. The values of the geometric coeffic-
ients are �squaredx�	C�x��4=2.25/L2, and �cylinderdx�	C�x��4
=2.67/ �2R�2, showing the inverse proportionality be-
tween �nl and the lateral area of the photonic mode. In order
to study the quantum dynamics, it is convenient to work
in the rotating frame described by the unitary operator
R�t�=ei��pt�a†a+b†b��. The rotating frame Hamiltonian is:

H̃ef f = ��Xb†b + ��Ca†a + ��Rb†a + ��Rba†

+
��nl

2
b†b†bb + �F0�t�a† + �F0

*�t�a , �4�

where �C=�C
dot−�p and �X=�X−�p, respectively. To de-

scribe the quantum dynamics in presence of damping, we
have considered the master equation for the rotating frame
density matrix �̃�t�=R�t���t�R†�t�:

��̃

�t
=

i

�
��̃,H̃ef f� + �C�a�̃a† − 1/2�a†a�̃ + �̃a†a��

+ �X�b�̃b† − 1/2�b†b�̃ + �̃b†b�� , �5�

where �X and �C are the homogeneous broadening of the
exciton and photon modes. The master equation can be
solved by expanding the density matrix over a Fock basis,
namely

�̃�t� = �
nX� ,nC� ,nX,nC

�̃nX� ,nC� ,nX,nC
�t��nX� ,nC� �nX,nC� , �6�

where nX and nC are the number of excitons and photons,
respectively. In the following, we will be interested in the
two-time second-order coherence function,20 defined as:

gphot
�2� �t,t�� =

Gphot
�2� �t,t��

Nph�t�Nph�t��
=

Tr�aUt,t��a�̃�t��a†�a†�

Tr�a�̃�t�a†�Tr�a�̃�t��a†�

=
�m,n

m�n,m,n,m�t,t��

�m,n
m�̃n,m,n,m�t��m,n

m�̃n,m,n,m�t��
, " t � t�

��t,t�� = Ut,t�� �
n,m,n�,m�

�̃n�,m�,n,m�t���mm��n�,m� − 1

��n,m − 1�� , �7�

where Ut,t� is the evolution superoperator associated to the
master equation �5�.

As we have already discussed, we will consider the case
of an applied optical field with frequency �p close to the

frequency �LP
dot=

�C
dot+�X

2 −��R
2 +

��C
dot−�X�2

4 of the fundamental
confined polariton mode in the dot. In the case of a continu-
ous wave excitation, we give in Fig. 1 an example of the
dependence of the equal-time second-order coherence

FIG. 1. �Color online� Intra-cavity second-order coherence func-
tion g�2��0� vs pump detuning ��p−��LP

dot �meV� for three different
cavity-exciton detunings. Solid, dashed, dotted-dashed line: ���C

dot

−�X�=5, 0, −5 meV. Parameters: ��nl=0.4 meV, ��X=��C

=0.1 meV, ��R=2.5 meV and continuous wave excitation field
�F0=10−2 meV.
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gphot
�2� �0��gphot

�2� �t , t� on the laser excitation detuning �p−�LP
dot

for a given set of parameters. For a laser frequency red-
detuned or close to resonance with the fundamental polariton
resonance, gphot

�2� �0��1, implying sub-Poissonian statistics
and antibunching. This is the regime where the polariton
quantum blockade is working. Indeed, the photon injection is
inhibited when only a small number of polaritons are already
inside the dot due to the interaction-induced blueshift of the
polariton resonance. For large values of �nl /�, only one po-
lariton can be present in the photonic dot with a vanishing
probability of having two at the same time, implying
gphot

�2� �0��0. On the other-hand, for a blue-detuned laser, the
absorption resonance gets closer to the pump frequency.
Thus the photon injection is enhanced by the nonlinear effect
and gphot

�2� �0��1, implying bunching. In Fig. 1, there are three
curves corresponding to different detunings �=���C

dot−�X�.
Since the nonlinearity is due to the excitonic fraction of the
polaritonic mode, the photonic antibunching is more pro-
nounced for ��0 because the nonlinearity is due to the ex-
citonic component of the lower polariton mode that is quasi-
resonantly excited. Note that in the calculations reported here
we have limited ourselves to moderately positive detunings
�, when the photonic content remains still significant �larger
than 15%�. The model here presented would not be in fact
applicable for very large positive detunings when the energy
separation between the lower polariton mode and the bare
exciton level is comparable to the linewidth. In this regime,
our single-mode approximation is no longer valid and one
should consider also the localized exciton states induced by
the experimentally unavoidable disordered excitonic poten-
tial. By contrast, for negative or moderately positive detun-
ings �, there is a considerable spectral separation between
the lower polariton mode and the localized exciton states,
which are very weakly coupled to the photon states.21 Hence,
for resonant excitation of the lower polariton mode, the role
of disorder can be disregarded in first approximation. Even
for detuning as large as �=5 meV, the localized exciton
states are still spectrally separated from the lower polariton
by ELP−EX=1 meV, i.e., ten times the linewidth �.

As shown in Fig. 2, the minimum value of gphot
�2� �0� de-

pends critically on the ratio �nl /�, where the polariton mode
linewidth �= �XLP�2�X+ �CLP�2�C, �XLP�2 and �CLP�2 being, re-
spectively, the excitonic and photonic fractions of the lower

polariton mode. Here, for the sake of clarity, calculations
have been performed for �X=�C=�. The antibunching be-
havior �gphot

�2� �0��1� starts to be significant when �nl /��1.
In order to have �nl /�=1, with a polariton linewidth ��
=0.1 meV and a realistic nonlinear coefficient12,13 ��=1.5
�10−2 ��m�2 meV �corresponding to an exciton blueshift of
0.15 meV in presence of 109 cm−2 excitons�, a cylindrical
dot with diameter 2R=0.67 �m would be required. Reduc-
ing further the size allows one to enter the strong quantum
blockade regime �nl /��1. For example, using the same
nonlinear coefficient, a square dot with lateral size
L=0.2 �m gives �nl /�=8.4. In general, there is slight asym-
metry between the photonic and excitonic antibunching
�gphot

�2� �0��gexc
�2� �0�� even at zero detuning. This asymmetry

occurs because the nonlinearity is due to the exciton.
Given the current interest for single photon sources, it is

interesting to characterize the figures of merit of the present
system as a nonclassical source. In a transmission geometry,
the coherence properties of the in-cavity polariton field �e.g.,
the second-order one �7�� transfer to the emitted field.22 For
any application it is important to maximize the photon popu-
lation Nph, keeping the sub-Poissonian character strong: In
Fig. 3�a� we have plotted gphot

�2� �0� and the intra-cavity photon
population Nph as a function of the normalized incident in-
tensity �F0�2 /�2 of the cw laser. For �F0�2 /�2→0, gphot

�2� �0�

FIG. 3. �Color online� �a� Second-order co-
herence function gphot

�2� �0� �solid line� and intrac-
avity photon population �dotted line� inside the
dot as a function of pump power in the continu-
ous wave regime. �b� Second-order coherence
function gphot

�2� �t , t�� at a fixed t� as a function of
time for two different pump powers. Parameters:
�=���C

dot−�X�=5 meV, ��nl=1 meV, ��X

=��C=0.1 meV.

FIG. 2. �Color online� Second-order coherence function g�2��0�
for the photon �circles� and exciton �triangles� as a function of the
normalized nonlinear coefficient �nl /� for three different values of
�=���C

dot−�X�. Parameters: ��X=��C=0.1 meV and �LP
dot=�p.
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asymptotically converges to a minimum value, but also the
population Nph goes to 0. For increasing �F0�2 /�2, Nph in-
creases, but gphot

�2� �0� eventually grows up. For the parameters
here used, the crossover occurs for Nph�0.01. In Fig. 3�b�,
the dependence of gphot

�2� �t , t�� on the relative time t− t� is
shown for two excitation intensities. It is apparent that the
temporal width of the antibunching dip is directly related to
the inverse polariton linewidth 1/�, at least in the limit
�F0�2 /�2→0.

Since the polariton quantum blockade effect relies on the
resonant character of the excitation, one can wonder whether
the effect is robust even in the pulsed excitation regime. In
addition to the strong sub-Poissonian photon statistics, the
efficiency and the repetition rate are the relevant quantities in
the pulsed excitation case. We have solved the dynamics us-
ing a train of excitation pulses and we have found that by
using Fourier-limited pulses with spectral linewidth compa-
rable to the polariton one and a repetition rate ���, the
suppression of the two-photon probability approaches the cw
case. As an illustrative example, in Fig. 4�a� we show the
time-dependent second-order correlation function Gphot

�2� �t , t��.
The depletion of the central peak �which would not occur for
a source with poissonian statistics, such as an attenuated
laser beam� demonstrates the single-photon character of the
present source even in the pulsed regime. The quantity
�=�C�TNph�t�dt �where T is the time interval between
two consecutive pulses� represents the averaged number of
photons emitted per pulse. As shown in Fig. 4�b�, a repetition
rate �=� /10 is enough to avoid pulse overlap. The effective
quantum bit exchange rate of the present quantum source
would be r=��. With respect to the example in Fig. 4�b�, we
have ��0.01, implying a rate r as large as r�0.1 GHz.

In conclusion, the present work has predicted the rich
quantum nonlinear dynamics of a quantum well exciton tran-

sition strongly coupled to a photonic quantum dot mode,
showing the potential for the realization of a nonclassical
light source with controllable properties based on the polar-
iton quantum blockade effect.
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The normalized area is indicated for each peak. �b� Correspond-
ing intra-cavity photon population Nph�t�. Dotted line: Shape of
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