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In a heavily doped semiconductor with weak spin-orbital interaction the Dyakonov-Perel spin relaxation rate
is known to be proportional to the Drude conductivity. We argue that in the case of weak spin-orbital interac-
tion this proportionality goes beyond the Drude mechanism: At low temperatures it stays valid through the
metal-insulator transition and in the range of exponentially small hopping conductivity.
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Spin relaxation processes in semiconductors continue to
attract attention in connection with various spintronics
applications.1–4 In crystals lacking a center of inversion, for
example, in GaAs, spin of a free electron experiences pre-
cession with the Larmor frequency �k, which is cubic in
terms of components of the wave vector k. Scattering of the
electron randomly changes direction of its wave vector k
and, therefore, the direction of �k leading to the angular
diffusion of spin magnetization S. This results in the
Dyakonov-Perel mechanism of spin relaxation,5 which was
predicted 35 years ago and now is widely used to interpret
spin relaxation data in doped semiconductors.1–4 The spin
relaxation time, �s, is determined5 by

�s
−1 = �

0

�

��k�0��k�t��dt = �2� . �1�

Here � is the effective Larmor frequency averaged over the
electron energy distribution, ��k�0��k�t�� is the correlator
of Larmor frequencies for an electron at time difference t and
� is the relaxation time of the third order moment of the
distribution function, which we assume to be close to the
electron momentum relaxation time. Equation �1� is valid
only for ���1. The Drude conductivity �=ne2� /m, where
n is the concentration of electrons, e is the charge of an
electron and m is its effective mass. This gives

�s
−1 = A� , �2�

where A��2m /ne2 is the dimensionless coefficient.
The goal of this paper is to show that for a small enough

spin-orbit interaction Eq. �2� is valid beyond the limits of
validity of the Drude mechanism of conduction. Let us imag-
ine that at a low temperature T we vary the concentration of
donors N in the semiconductor from N�Nc to N�Nc, where
Nc is the critical concentration of the metal-insulator transi-
tion. Then at N�Nc we deal with the Drude conductivity and
Eq. �2� is valid. In the critical range of the metal-insulator
transition where N�Nc, but N−Nc�Nc the conductivity de-
creases as e2 /�	�N�, where the correlation length 	�N�
=a�Nc / �N−Nc��
 and a is the donor Bohr radius. This gives

� 	
e2

�a
��N − Nc�/Nc�
. �3�

We argue below that for such “critical metal” Eq. �2� is still
valid. At low temperatures one can define a narrow range

�N�Nc, around Nc, where at 
N−Nc
��N metallic conduc-
tivity crosses over to the variable range hopping conductivity
�see calculation of �N below�. Coulomb interaction of elec-
trons leads to the variable range hopping following the
Efros-Shklovskii �ES� law6

��T� = �0 exp�− �T0/T�1/2� , �4�

where T0=Ce2 /�N�	�N�, C is the numerical coefficient,
	�N�=a�Nc / �Nc−N��
 is the localization length and �N�
=�Nc / �Nc−N��� is the dielectric constant enhanced near the
transition with respect of its clean crystal value . We argue
below that Eq. �2� is valid for the ES conductivity both near
the transition or in the lightly doped semiconductor, where
N�Nc /2, 	=a and �N�=.

Let us start from the metallic side of the transition, where
the conductivity of the critical metal is given by Eq. �3�. The
reason of the conductivity reduction near the metal-insulator
transition is the interference leading to the non-Gaussian dif-
fusion. �One can say that electron dwells on some close loop
trajectories.� Still one can define electron trajectories, wave
vectors and velocities v=�k /m at each trajectory �the domi-
nating quadratic part of the electron spectrum is isotropic�.
Then the conductivity is proportional to the diffusion coeffi-
cient

D = �
0

�

�v�0�v�t��dt , �5�

where �v�0�v�t�� is the correlator of electron velocities. On
the other hand, one can write a scaling estimate

�s
−1 = �

0

�

��k�0��k�t��dt 	 �2� 	 D
�2

�v2�
. �6�

This proves Eq. �2� for the critical metal case.
Let us now consider the Dyakonov-Perel mechanism of

spin relaxation for the hopping conductivity. Any hopping
transport can be considered as a result of fast tunnel hops
from one localized state to another alternating with exponen-
tially long waiting periods in each localized state. While
waiting an electron has k=v=0 and, therefore, is not relaxing
its spin via the Dyakonov-Perel mechanism. On the other
hand, an electron tunneling between two localized states has
the real trajectory and the real displacement, which it
traverses in imaginary time and, therefore, it has the imagi-
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nary k and v. Therefore, its spin experiences precession in
the course of tunneling. Its Larmor frequency ��k3 is
imaginary, too. But because time is imaginary the angle of
rotation in the course of the hop is real. This real angle is
proportional to the real displacement of the electron and the
direction of rotation is related to the direction of the hop.

The fraction of time during which the electron hops or, in
other word, tunnels is proportional to exp�−�T0 /T�1/2�. This
is why the hopping conductivity has this small exponential
factor. But �s

−1 should have the same small factor because as
we explained relaxation happens only during hops. It is clear,
therefore, Eq. �2� should be valid for the ES law, at least in
the exponential sense.

One can improve these arguments using the language of
redefined correlators ��k

*�0��k
*�t�� and �v*�0�v*�t��. In this

correlators �k
*�t� and v*�t� are the rotation angle during a

hop and the hop displacement divided by the waiting time,
respectfully. These correlators now decay on exponentially
large times because all the waiting times are included in their
definition. In the hopping conductivity regime the first cor-
relator is responsible for the spin relaxation rate �s

−1, while
the second one calculated for a long enough time history of
an electron is related to the diffusion coefficient and the con-
ductivity. These correlators are obviously proportional to
each other, what again leads to Eq. �2�. Note that our ap-
proach to spin relaxation in a lightly doped semiconductor is
completely different from the one suggested by Kavokin7

and based on the role of the anisotropic exchange between
electrons localized on different donors. While we are talking
about Dyakonov-Perel relaxation related to a single electron
diffusion in space, Kavokin relies on rotation of spin of a
localized electron in the collective field of other localized
electrons.

Let us make a comment about the range of concentrations,
where crossover between Eqs. �3� and �4� takes place, while
staying away from any discussion of the mechanism of con-
ductivity in this range. At low temperature the relative width
of this range is small, �N /Nc�1. Indeed, one can estimate
�N equating T0�N� to T and identifying �N with Nc−N. This
gives �N /Nc= �T / �e2 /a��1/�
+��. It is known from
experiments6 that 
+��2. As we argued above Eq. �2� is
valid on both sides of the crossover range �N. This means
that Eq. �2� is valid in the crossover range as well.

Above we have concentrated on the three-dimensional
case. In two dimensions validity of Eq. �2� for the hopping
conductivity can be demonstrated even more transparently.
Let us consider the two-dimensional electron gas �2DEG�
without structural inversion asymmetry in the �001�-plane of
GaAs crystal and assume that initially electron spins are po-
larized along z-axis perpendicular to 2DEG plane. Then at
times smaller than �s the spin magnetization S evolves fol-
lowing to the equation

dSx/dt = �ySz, dSy/dt = − �xSz, �7�

where

�x = �ky�kx
2 − kz

2�, �y = − �kx�ky
2 − kz

2� . �8�

For a narrow quantum well the momentum components
kx

2 ,ky
2 are much smaller than kz

2 and, therefore, can be ne-
glected in the right sides of Eqs. �8�.8 Then one can easily
calculate the change of the spin magnetization �S during the
time �t��s. This gives

�S/Sz = ��m/��v�t , �9�

i.e., the angle of rotation of the spin magnetization is propor-
tional to the electron displacement in the plane of quantum
well. This leads directly to Eq. �2�, both for the case of
metallic conductivity and for the hopping transport. While in
the latter both v and t are imaginary quantities, the angle of
rotation of the spin magnetization and the electron displace-
ment are real and as we see the initial rotational diffusion of
S and the diffusion in real space are related as tightly as for
the metallic conduction.

This means that in the range of the ES variable range
hopping both in three and two dimensions the Dyakonov-
Perel spin relaxation rate is very small and exponentially
decreases with temperature.

�s
−1 � exp�− �T0/T�1/2� . �10�

As a function of donor concentration N the rate has to expo-
nentially decrease with the growth of T0, while N is still in
the critical range of transition Nc−N�Nc. At N�Nc /2 the
temperature T0 saturates at T0=Ce2 /a and �s

−1 saturates at a
very small level exponentially dependent on T.

Of course, other mechanisms of spin relaxation can take
over at weak doping and at low temperatures,1–3 but because
the Dyakonov-Perel relaxation typically is the dominating
mechanism this crossover may happen only at very small
relaxation rates.

Let us make a comment about the measurement of �s in
the hopping regime. In a typical experiment polarized elec-
trons are created in the conduction band and may experience
few scattering events before being captured by donors with
characteristic capture time �c. Thus, they may loose a frac-
tion of their polarization by with DP spin relaxation time of
free electrons � f. If �c�� f they get captured before loosing
spin in the conduction band. Then �s calculated above de-
scribes relaxation of practically all the polarization. In the
opposite case, when �c�� f only a small fraction of polariza-
tion of the order of � f /�c relaxes via hopping, while majority
of the polarization relaxes faster.

In a pump-probe experiments1 this means that hopping
relaxation dominates only at times larger than � f ln �c /� f.
Thus, in this case, hopping �s describes the tail of the spin
relaxation. On the other hand, in continuous wave excitation
experiments spin relaxation also happens first in the conduc-
tion band and then via hopping on donors. For �c�� f a stan-
dard way2 to measure �s directly leads to the hopping spin
relaxation time. On the other hand, measuring hopping spin
relaxation time by this method at �c�� f is difficult and one
needs more delicate methods like a direct optical readout of
the donor spins.

In n-type GaAs the dependence of low temperature spin
relaxation on the doping level was recently studied.2 It was
interpreted2 with the help of the mechanism of anisotropic
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exchange �immediately below the metal insulator transition�
and by the hyperfine interaction with nuclei �at very small
doping�. These data look as if there is no substantial range of
doping, where hopping Dyakonov-Perel relaxation domi-
nates and �s

−1 decreases with the concentration of donors pro-
portionally to the hopping conductivity. This could be a re-
sult of the masking effect of spin loss during energy
relaxation in the conduction band discussed above. If this is

true, a pump-probe experiment should reveal the DP hopping
relaxation in the long time tail of relaxation.
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