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Optical data is encoded with information on the microscopic interaction between charge carriers. For an
electron-phonon system, the Eliashberg equations apply and a Kubo formula can be used to get the infrared
conductivity. The task of extracting the electron-phonon spectral density �2F��� from data is rather compli-
cated and, thus, simplified but approximate expressions for the conductivity have often been used. We test the
accuracy of such simplifications and also discuss the advantages and disadvantages of various numerical
methods needed in the inversion process. Normal and superconducting states are considered as well as boson
exchange mechanisms which might be applicable to the high-Tc oxides.
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I. INTRODUCTION

The interaction Hamiltonian between electrons and
phonons involves a complicated matrix element or coupling
function gk,k�,� which describes the scattering of an electron
initially in the state �k� to any final state �k�� through the
exchange of a phonon ���k�−k�. Here � is a phonon branch
index and the momentum transfer k�−k can fall outside the
first Brillouin zone and so phonon Umklapp processes enter.
In a real metal the Bloch states of the band structure can be
complicated and this is reflected in the electronic state la-
beled by �k�. Fortunately, many important properties of an
electron-phonon system require for their understanding only
a Fermi surface to Fermi surface average of the coupling,
namely the function1

�2F��� =
1

N��� �
k,k�

B��k� − k����k − �����k� − �� ,

where � is the chemical potential, �k the electron energy,
N��� the electron density of states, and B��k�−k� is the pho-
non spectral function. For example, in the Eliashberg
formulation2 of superconductivity based on Migdal’s theo-
rem for electron-phonon vertex corrections, it is �2F��� that
enters. For the infrared conductivity another, somewhat dif-
ferent weighting of gk,k�,� comes in and the resulting func-
tion of � is usually called the transport spectral density de-
noted as �tr

2 F���.3,4 Here we will not deal directly with these
differences. An important goal of experiments in conven-
tional superconductors has been to determine the electron-
phonon spectral function �2F���.2,3 This has been success-
fully accomplished for a large number of conventional
materials using tunneling data and the inversion technique of
McMillan and Rowell.5 In a few cases the infrared optical
conductivity6,7 was also used and excellent agreement with
tunneling results was found.

Extensions to the consideration of the A15 compounds
revealed that additional features of the band structure such as
the energy dependence of the electronic density of states
N��� can also be important.8,9 More recently the optical data
in the alkali doped C60 compounds has been inverted10 and

found to be consistent with its superconductivity. When ex-
perimentally determined electron-phonon spectral functions
are compared with first principles band structure calculations
extended to include electron-phonon interaction good agree-
ment is obtained.2,7

In dealing with the high-Tc oxides several complications
immediately arise. First, their superconductivity is not gen-
erally believed to be due to the electron-phonon interaction.
A consensus exists that the gap has d-wave rather than
s-wave symmetry and comes out as a result of strong corre-
lation effects. A natural explanation for the d-wave gap is
found in the antiferromagnetic interaction certainly present
in the cuprates. A possible model is the nearly antiferromag-
netic Fermi liquid model �NAFFL� of Pines and
co-workers.11,12 It needs to be pointed out, however, that
there is no a priori reason why the electron-phonon interac-
tion itself could not lead to a d-wave gap and there exists
recent work on this possibility.13–19 In any case, when
d-wave symmetry is involved, the spectral function acting in
the gap channel Eq. �B1a� need not be the same as the one
that determines the renormalizations in the � channel Eq.
�B1b�. At Tc in the normal state it is only the latter spectral
density that enters. There exists considerable literature on
extensions of Eliashberg theory to include a d-wave gap
based on model spectral densities for the electron-boson in-
teraction that may be involved.20 Of course, there is no guar-
antee that the final theory of strongly correlated systems that
is needed to describe the oxides will fall within the class of
boson exchange models. Nevertheless, such an approach has
proven valuable in providing insight into the physics of the
oxides as we will also see in this paper.

In recent literature, tunneling spectroscopy21–23 as well as
angular resolved photoemission24–28 has been used to ana-
lyze data in terms of boson structure. Here we wish to con-
centrate on optical data.29–32 Optimally doped YBa2Cu3O6.95
�YBCO6.95� was first considered within a complete Eliash-
berg formalism generalized to include d-wave pairing by
Carbotte et al.29 �CSB�. A model form for the electron-boson
spectral function coming possibly from the exchange of spin
fluctuations and denoted by I2���� is assumed with two fit-
ting parameters, the coupling I2 and the spin fluctuation en-
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ergy �sf in the model of Millis et al.33 �MMP� which are
varied to get the best fit to the normal state infrared data at or
close to T=Tc. For the superconducting state the same form
of I2���� is assumed to also determine the gap channel but
its magnitude is different and is fit to get the measured value
of Tc. In addition, it is found that the data in the supercon-
ducting state indicates the formation of an optical resonance
in I2���� not present at Tc which increases in amplitude as T
is reduced and is positioned at 41 meV. Similar optical reso-
nances were later found in the superconducting state of other
cuprates although not in all.34 In some the resonance seems
to persist even in the normal state.31,35 While the work de-
scribed above involves a least squares fit of an assumed form
for I2���� to the optical scattering rate data, other inversion
techniques36 have been considered, but so far these are based
on approximate analytic formulas for the relationship be-
tween the optical scattering rate and the electron-boson spec-
tral density rather than the full Eliashberg formulation of
Carbotte and co-workers.1,20,29,30

Such approximate formulas were given by Allen3 for an
electron-phonon system and are based on ordinary second
order perturbation theory at zero temperature. Allen consid-
ered the normal as well as the superconducting state with
s-wave symmetry. A generalization to finite temperature was
provided by Shulga et al.37 who only considered the normal
state but started directly from an Eliashberg formalism and
the Kubo formula for the conductivity. A generalization to
include as well a pseudogap was recently provided by
Sharapov and Carbotte.38 Finally, Carbotte and
Schachinger39 generalized the original work of Allen to a
superconductor with d-wave gap symmetry.

The advantage of these simplified but approximate equa-
tions is that they relate directly through an integral the opti-
cal scattering rate to the desired spectral function I2���� and
various numerical techniques such as singular value
decomposition36,39 can be used to numerically invert the
equation. Of course, the alternate method of assuming some
characteristic functional form for I2���� and least squares fit
a few parameters to the data can also be employed based on
the simplified equations described above instead of employ-
ing the full Eliashberg equations. For instance, the new equa-
tions of Sharapov and Carbotte38 have already been used in
this way by Hwang et al.40 to analyze data in underdoped
Ortho-II YBCO6.5.

The aim of this paper is to understand better how limita-
tions in the accuracy of the simplified formulas can impact
on the resulting form of I2���� and to explore as well the
advantages and limitations of numerical inversion techniques
such as singular value decomposition �SVD� and maximum
entropy method �MaxEnt� as well as least squares fit.

The paper is organized as follows. In Sec. II the formal
background is discussed. Section II A concentrates on the
three major methods of inversion, namely the second deriva-
tive method, deconvolution methods based on approximate
relations, and the least squares fit method. Section II B dis-
cusses approximate formulas for the normal and supercon-
ducting state which allow one to calculate the optical scat-
tering rate 	op

−1��� from a given spectral density �2F��� using
a convolution integral. Section III discusses numerically the

caveats and merits of the various methods of inversion by
studying normal metals as well as high-Tc cuprates. Com-
puter generated and experimental 	op

−1��� data for the normal
and superconducting state are used as input for the inversion.
Finally, conclusions are drawn in Sec. IV. Two appendixes
have been added. Appendix A gives an overview of the
maximum entropy method in terms of Bayesian probability
theory. Appendix B presents all important equations which
allow one to calculate the optical scattering rate within the
framework of the full Eliashberg theory.

II. FORMALISM

A. Methods of inversion

In order to understand the mechanism of superconductiv-
ity it is important to have detailed knowledge of the spectral
function �2F��� and as tunneling, the established source of
information on �2F���,5 was initially not a successful tool in
the high-Tc superconductors, the infrared optical conductiv-
ity, 
op���, became increasingly important, particularly in
the form of the optical scattering rate

	op
−1��� =

�p
2

4�
Re�
op

−1���� �1�

of extended Drude theory. Here, �p is the plasma frequency.
There are, in principle, three methods to extract the infor-

mation on �2F��� from the optical scattering rate �inver-
sion�. An essential requirement for a solution obtained with
any of these methods is that the result should match the data
points as well as possible. In order to assess the quality of the
fit we need to know how the experimental data points ti
�	ex

−1��i� scatter around the “true” values ti
0�	op

−1��i�, that is,
we need to know in terms of Bayesian probability theory the
likelihood p�t � t0 ,I�. It describes the distribution of N data
points t= 	ti � i=1, . . . ,N
 given the “exact” values t0= 	ti

0 � i
=1, . . . ,N
, which are usually expressed in terms of the pa-
rameters of the physical model. The symbol I designates all
additionally available background information comprising
the experimental setup as well as the physical model em-
ployed.

The likelihood is determined by the experimental setup
and we have to keep in mind that the experimental signal
contains at least three contributions41

	ex
−1��� = 	op

−1��� + B��� ± ��� , �2�

with B��� usually a slowly varying background signal which
is typical of the experimental setup and ���, the noise in the
data.

Unfortunately, we do not have any knowledge concerning
the functional form of the likelihood for the experimental
data sets considered in this study. Therefore, we make the
assumption of an uncorrelated normal distribution with a
standard deviation 
:

p�t�t0,I� = �2�
2�−N/2 exp�−
1

2
�2� . �3�

Here �2 is the misfit
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�2 = �
i

ri
2 �4�

which is expressed in terms of the residuals

ri =
ti − ti

0



. �5�

They measure the deviation of the data points ti from the true
values ti

0 �or the best estimates thereof� in units of the error
bar 
.

For lack of further information, we argue that the likeli-
hood �3� is a reasonable choice and we note that it is, in fact,
the most uninformative probability distribution given only
the mean value and the variance and no further
information.41 We want to stress that curve fitting with a
minimization of the misfit �2 is also implicitly based on the
assumption of a Gaussian likelihood.

The problem of obtaining �2F��� from 	ex
−1��� is ex-

tremely ill conditioned. This implies that a direct solution
will be totally dominated by noise and, therefore, be com-
pletely meaningless. For this reason, all methods discussed
here involve a nuisance or regularization parameter that can
be tuned in order to suppress noise contributions. Apart from
ad hoc settings, a sensible choice is to adjust the regulariza-
tion parameter such that �2=N is obtained. �See Appendix
A.�

The first method of inversion is based on the
relationship10

W��� =
1

2�

d2

d�2 ��	op
−1���� �6�

which is approximately equal to �2F��� in the normal state
at zero temperature. Application of this formula to experi-
mental data will result in numerical difficulties because we
have to keep in mind that the experimental signal 	ex

−1���
consists, according to Eq. �2�, of at least three contributions.
Two of these, namely B��� and ��� can obscure completely
the looked for spectral function �2F��� when the second
derivative of 	ex

−1��� is calculated.
On first sight, Eq. �6� would require that 	ex

−1��� must be
ambiguously smoothed “by hand”36 which is certainly not
true. First of all, it is much better to “smooth” the function
�	ex

−1��� which is monotonically increasing, much less struc-
tured, and equal to zero at �=0. The application of standard
data processing techniques like fast Fourier transform �FFT�
smoothing or FFT low pass filters on this function allows one
to remove quite reliably the noise contribution ���. For
instance, the upper frequency threshold applied to the FFT
low pass filter will play the role of a nuisance �or renormal-
ization� parameter in this particular case. If there is further
knowledge about the background function B��� application
of Eq. �6� is much safer than it looks on first sight. We will
discuss caveats and merits of this second derivative method
later on using computer generated results which ensure
B���=0 and which allow a controlled noise contribution
���.

The second method of inversion is based on the deconvo-
lution of the approximate relation

	op
−1��;T� = 

0

�

d�K��,�;T��2F��� , �7�

where T denotes the temperature. The kernel K�� ,� ;T� is
determined from theory. The caveat of this method is that the
solutions of Eq. �7� for �2F��� are not unique because, gen-
erally, the deconvolution of Eq. �7� constitutes an ill-posed
problem.

There are two approaches to solve this deconvolution
problem and both are based on a discretization of Eq. �7� of
the form

	op
−1��i;T� = �

j=1

N2

�� jK��i,� j;T��2F�� j� , �8�

with i=1, . . . ,N1 and �� j =� j+1−� j. The first approach is
straight forward and is called singular value decomposition42

�SVD� which is based on the vector form of Eq. �8�, namely

t = Ka , �9�

with the vector t= 	ti=	op,ex
−1 ��i ;T� � i=1, . . . ,N1
, the matrix

K= 	Kij =�� jK��i ,� j ;T� � i=1, . . .N1 , j=1, . . .N2
, and the
vector a= 	aj =�2F�� j� � j=1, . . . ,N2
. Using SVD, the matrix
K of dimension N1�N2 is transformed into the matrix prod-
uct USVT, with U and V being unitary matrices of dimension
N1�N2 and N2�N2, respectively. The matrix S=diag	sj � j
=1, . . . ,N2
 with sj the singular values �svs�. Finally, VT de-
notes the transposed matrix V. If the vector t and the matrix
K are known the vector a and, thus, �2F��� can be deter-
mined by “inverting” Eq. �9�: a=VS�UTt with S�
=diag	1/sj � j=1, . . . ,N2
. However, noise contained in the
data t will be dramatically magnified by the smallest svs,
rendering the result meaningless. For this reason, all contri-
butions by svs below a certain threshold have to be discarded
by replacing the corresponding diagonal elements 1 /si in the
matrix S� by zeros. This threshold plays the role of the nui-
sance parameter in the SVD method. Dordevic et al.36 stud-
ied this approach extensively and discussed in particular the
number of svs necessary to get a smooth spectral function
�2F��� together with a reasonable reconstruction of the in-
put data. In principle the problem of “smoothing by hand” is
moved from the input to the output of the process. The ca-
veat of this approach is the fact that it does not ensure that
the resulting spectral function �2F��� be positive definite.
Most of the time, �2F��� will contain negative parts which
cannot be removed even by applying further regularization
schemes.36 Such negative parts are unphysical.

The second approach to the deconvolution problem is the
so-called maximum entropy method �MaxEnt�. Originally,
Jaynes43 suggested the maximum entropy principle for the
assignment of probability distributions: If only some testable
information such as the mean value is given, one should
select that probability distribution 	pi
 which maximizes the
Shannon entropy41 S=−�i=1

N pi log�pi� subject to all known
constraints. In the case, where only the mean and the vari-
ance are known, the normal distribution is the “most unin-
formative” probability distribution �pdf�. Although the true
pdf may be completely different, a normal distribution can be
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a sensible choice for lack of further background information.
The MaxEnt principle has been generalized to the infer-

ence of strictly positive functions such as the spectral func-
tion �2F��� within the Bayesian probability theory. This
fully probabilistic description allows for an explicit treatment
of the ambiguity inherent in badly conditioned problems and
is discussed in some detail in Appendix A. In our particular
case the generalized Shannon-Jaynes entropy �A3� is appli-
cable with the default model vector m chosen to be constant.
Most of the time this constant is chosen in such a way that
the spectral function �2F��� develops a certain high energy
behavior.

The third method of inversion uses model spectral func-
tions which depend on a few parameters which are then de-
termined using a least squares fit to experiment based either
on approximate formulas of the form �7� or the full Eliash-
berg theory. Very often preliminary results derived with the
help of the second derivative method from experiment �or
using one of the other above mentioned methods� can be
utilized to minimize the number of parameters to be fitted.
Results from other experiments, for instance inelastic neu-
tron scattering, etc., can easily be incorporated. Nevertheless,
in general this method will also result in nonunique solutions
for �2F���.

B. Approximate formulas

For the normal state at zero temperature Allen3 provided a
simplified form of the kernel of Eq. �7�, namely

K��,�;T = 0� =
2�

�
�� − ����� − �� , �10�

where ��x� is the step function. This formula is based on a
second order perturbation theory approach based on the
weak electron-phonon coupling in normal metals and it is
valid only in the clean limit, i.e.: no impurities. To overcome
the zero temperature restriction Shulga et al.37 started from a
full Eliashberg description of the electron-phonon formalism
and applied a series of approximations to reduce the full
results to the approximate form

K��,�;T� =
�

�
�2� coth� �

2T
� − �� + ��coth�� + �

2T
� + ��

− ��coth�� − �

2T
�� , �11�

which properly reduces to Eq. �10� for T=0. When applied to
invert data one has to keep in mind that this kernel becomes
singular for �=0.

The work of Shulga et al. was generalized recently by
Sharapov and Carbotte38 to treat the possibility of a
pseudogap opening up in the fully dressed density of states

Ñ���. They obtain

K��,�;T� =
�

�


−�

�

d�� Ñ�� − ��
N�0�

+
Ñ�� − ��

N�0�
��n��;T�

+ f�� − �;T���f�� − �;T� − f�� + �;T�� ,

�12�

which properly reduces to the result �11� of Shulga et al.37

when Ñ��� is taken to be constant and equal to N�0�. Here
n�� ;T� and f�� ;T� are the Bose and Fermi distributions,
respectively. The zero temperature limit of Eq. �12� was ob-
tained by Mitrović and Fiorucci8 based on Allen’s second
order perturbation theory approach.

Allen also provided a kernel similar to Eq. �10� which
applies approximately in the superconducting state at zero
temperature. In this case the kernel is of the form

K��,�;T = 0� =
2�

�
�� − ����� + 2�0

− ��E��1 −
4�0

2

�� − ��2� . �13�

It ensures that 	op
−1��� is zero for 0���2�0. Here, E�x� is

the complete elliptic integral of the second kind and �0 is the
energy gap at T=0. It is valid in the clean limit only. To
derive Eq. �13� Allen treated the superconducting transition
within the framework of BCS theory, i.e.: Eq. �13� is only
valid for the s-wave symmetry of the superconducting order
parameter. Moreover, �0 is an external parameter to Eq. �13�
and its value has to be determined by other means. Treating
the superconducting transition within the framework of
Eliashberg theory will certainly go beyond the possibilities
of Eq. �13� and this will have to be kept in mind when Eq.
�13� is applied to invert the superconducting state optical
data of real s-wave superconductors which are well known to
be exceptionally well described the by Eliashberg theory.2

A consensus exists that in the high-Tc cuprates the super-
conducting order parameter is of d-wave rather than s-wave
symmetry. Here we follow Carbotte and Schachinger39 and
simulate �in a first approximation� the effect of d-wave in the
Allen formula �13� for s-wave by simply averaging over a
distribution of gaps having d-wave symmetry. The result is
that Eq. �13� needs to be averaged over the polar angle � of
the two dimensional CuO2 Brillouin zone. This results in the
kernel

K��,�;T = 0� =
2�

�
��� − ����� + 2�0���

− ��E��1 −
4�0

2���
�� − ��2��

�

, �14�

with �¯�� denoting the �-average which can be limited to
the interval �� �0,� /4� for symmetry reasons. Furthermore,
�0���=�0 cos�2�� reflecting the d-wave symmetry of the
superconducting order parameter. Equation �14� ensures that
the optical scattering rate is finite in the superconducting
state for ��0. This is in contrast to what is observed in
s-wave superconductors.
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III. NUMERICAL RESULTS

A. Normal metals

We will study in quite some detail various inversion tech-
niques using, as a first material, lead. The electron-phonon
spectral density �2F��� was derived from tunneling data by
McMillan and Rowell.5 This spectrum, which is represented
in the top frame of Fig. 1 by a gray solid line, has two
distinctive peaks which are separated from each other by
about 4 meV. The Debye energy �D=11.2 meV. The optical
data for lead was obtained by Joyce and Richards44 and later
by Farnworth and Timusk.6 The extracted �2Ftr��� was
found to be in remarkably good agreement with earlier tun-
neling data and with the results of direct band structure cal-
culations of �2F��� by Tomlinson and Carbotte.7 In this sub-
section only computer generated optical scattering rate data
based on the various kernels discussed in Sec. II B and on
complete Eliashberg equations �Appendix B� will be used to
study the various inversion techniques. This provides us with

data free of a background signal B��� and with controlled
noise ���.

In a first step zero temperature, normal state 	op
−1��� data

are computer generated using kernel �10�. We calculate the
function W��� �dotted line, upper frame Fig. 1� using the
second derivative method and the agreement with the input
spectrum �gray solid line� is almost perfect without the need
of smoothing by hand. �Only the second peak shows oscilla-
tions.� Inversion of the input data using the SVD method
results in the curve SVD��� �dashed line, upper frame Fig.
1�. The svs threshold was set to 10−3, i.e.: 87 svs have been
used. A few wiggles remain in the valley between the two
peaks and we see oscillations at energies �10 meV which
also go negative. Data beyond the Debye energy are irrel-
evant.

For the application of the MaxEnt method we added un-
correlated Gaussian noise of the standard deviation 
=10−3

to ensure a controlled error distribution for the computer
generated 	op

−1��� data. �This, in principle, biases the com-
parison in favor of the second derivative and SVD method.�
The curve ME��� �solid line, upper frame Fig. 1� presents
the result of the MaxEnt inversion in which we used opti-
mized preblur �blur-width b=0.05, see Eq. �A4�� and the
default model was set to mj =0.001. ME��� underestimates
slightly the second peak but otherwise shows perfect agree-
ment with the input spectrum. We also see an additional fea-
ture beyond the Debye energy which is irrelevant because it
reflects the default model. The bottom frame of Fig. 1 dem-
onstrates the quality of the data reconstruction achieved by
the MaxEnt method. The crosses symbolize the normalized
noise ��� /
 which was added to the optical scattering rate
and the solid line corresponds to the residual �5�. As we only
added noise to the computer generated 	op

−1���, r��� should
track the normalized noise ��� /
, as it does.

As zero temperature is not a realistic case and we proceed
to study normal state, finite temperature results. There are
two options to computer generate 	op

−1��� data: �a� kernel �11�
is applied, or �b� the Eliashberg theory �see Appendix B� is
used. The superconducting order parameter is zero in the
normal state and the renormalization formula �21� takes on a
closed form. Figure 2 presents our results for the temperature
dependence of the optical scattering rate in lead for four
different temperatures, namely 0.3, 1, 10, and 50 K. The re-
sults according to the Eliashberg theory are presented by
solid lines, while the dotted lines correspond to the results of
kernel �11�. There are small but distinct differences between
the two sets of data.

Figure 3 presents the spectra W���, SVD���, and ME���
which result from the application of the first two methods of
inversion discussed in Sec. II A. As input we used the finite
temperature normal state optical scattering rate for lead gen-
erated using kernel �11� �dashed lines of Fig. 2�. The top
frame presents as a result of the second derivative method,
the function W��� as defined in Eq. �6�. At the lowest tem-
perature, T=0.3 K the input �2F��� �grey solid line� is per-
fectly reproduced �solid line�, while at T=1 K �dashed line�
the high energy peak is already underestimated. At T=10 K
�dotted line� the method is no longer able to resolve the two
peak structure, and at T=50 K �dash-dotted line� the method

FIG. 1. Top frame: Inversion of zero temperature, normal state
optical scattering rate data 	op

−1��� of lead computer generated using
the kernel �10�. The gray solid line indicates the �2F��� employed
to generate the data. The dotted line corresponds to the function
W��� according to Eq. �6�, SVD��� �the dashed line� shows the
result of an SVD inversion, and ME��� �the solid line� presents the
result of a MaxEnt inversion. Bottom frame: The crosses corre-
spond to the normalized uncorrelated Gaussian noise ��� /
 which
was added to the input data for the MaxEnt inversion and r���
�solid line� gives the residual of the MaxEnt data reconstruction.
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fails completely. Nevertheless, it has to be emphasized that
no smoothing had to be applied to the input data as no arti-
ficial noise was added.

The center frame of Fig. 3 presents the results SVD��� of
a singular value decomposition of Eq. �9� using kernel �11�.
The svs threshold was set to 10−3. At T=0.3 K and 1 K we
obtain reasonable agreement with the �2F���. For energies
�9 meV the inversion shows oscillations and SVD��� even
becomes negative which is unphysical. We also see oscilla-
tions at low energies and between the two peaks. At T
=10 K the SVD method still resolves a hint of a two peak
structure in contrast to the second derivative method. Finally,
at T=50 K the method fails.

The bottom frame of Fig. 3 presents the results ME��� of
the MaxEnt deconvolution of Eq. �8�. Uncorrelated Gaussian
noise of 
=10−3 was added to the computer generated data.
For the inversion optimized preblur �see Appendix A� was
applied with b=0.4 for T=0.3 K, b=0.46 for 1 K, b=0.89
for T=10 K, and b=1.91 for T=50 K. The default model
was set to mj =0.01. The T=0.3 K inversion �solid line� gives
almost perfect agreement with the model �2F��� spectral
function. At T=1 K the high energy peak is underestimated
but reproduced at the appropriate energy. At T=10 K, the
two peak structure is still well resolved, only the second peak
is underestimated and shifted to lower energies. The result is
certainly much better than that of the other two methods.
Finally, at T=50 K MaxEnt is no longer able to resolve the
two peak structure. Nevertheless, it is quite interesting to
note that the area under the dash-dotted curve is 3.95 meV
which is very close to the area 4.03 meV meV under the
original �2F��� spectral function.

Figure 2 demonstrated that 	op
−1��� data computer gener-

ated from full normal state Eliashberg theory differs from the
approximate results of kernel �11�. It can also be assumed
that metals will more likely follow the predictions of the full
Eliashberg theory rather than the approximate model formu-
las. It is therefore interesting to investigate how the inversion

on the basis of the approximate kernel �11� performs when
	op

−1��� data computer generated within the full Eliashberg
theory are used for inversion. The result is presented in Fig.
4 which is organized the same way as Fig. 3. The top frame
demonstrates the application of the second derivative for-
mula which should not have any problems because this
method is not based on approximate models formulas. Nev-
ertheless, W��� is only in reasonable agreement with the
original �2F��� at low temperatures. The low energy peak is
overestimated and shifted towards higher energies, the valley
between the peaks is too low, and the second peak is posi-
tioned at the correct energy but its height is over/
underestimated. At T=10 K the two peak structure is no
longer resolved and at T=50 K the inversion fails. The cen-
tral frame of Fig. 4 presents the function SVD��� as a result
of an SVD inversion. The svs threshold was set at 10−2. At
low temperatures, the peak positions are at the proper ener-
gies, nevertheless the low energy peak is overestimated, the
valley between the peaks underestimated, and the high en-
ergy peak is too wide. At T=10 K a two peak structure is
resolved but both peaks are placed at the wrong energies. At
T=50 K the method fails altogether. It is typical for this

FIG. 2. Temperature dependence of the normal state optical
scattering rate 	op

−1��� of lead. The solid lines correspond to results
derived using the Eliashberg theory and the dotted lines correspond
to data generated using the kernel �11�. Temperatures are 0.3, 1, 10,
and 50 K.

FIG. 3. Inversion of finite temperature, normal state 	op
−1��� data

computer generated using kernel �11�. The solid lines correspond to
the temperature T=0.3 K, dashed lines to 1 K, dotted lines to 10 K,
and dash-dotted lines to 50 K. The gray solid line represents the
�2F��� spectral function applied to calculate the optical scattering
rate data. Top frame: Second derivative method. Center frame: SVD
method. Bottom frame: MaxEnt method.
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method to show oscillations at energies �9 meV which re-
sult in unphysical negative contributions even at energies
below �D.

Before applying the MaxEnt inversion uncorrelated
Gaussian noise of 
=0.1 was added to the input data. For the
temperature 0.3 K and 1 K the preblur parameter was opti-
mized to 0.54 at higher temperatures no preblur was applied.
The default model was set to 0.01. At low temperatures Max-
Ent overestimates the low energy peak and/or makes it
broader. The valley between the peaks is too low, the second
peak is resolved reasonably well and is at the proper position
but underestimated in height. At higher temperatures the two
peak structure is no longer resolved �T=10 K, dotted line
and T=50 K, dash-dotted line�. Nevertheless, the data recon-
struction is within the error bars and this proves that we face
in this case a deconvolution problem which is particularly ill
conditioned.

All this demonstrates quite clearly that the application of
methods of inversion based on approximate models to ex-
perimental data �represented here by computer generated
	op

−1��� data using full Eliashberg theory� can quite easily
result in deconvoluted spectra �2F��� which will be close
but not necessarily equal to the real electron-phonon spec-
trum which governs the interaction. In particular, the devia-
tions from the gray solid lines in the central and bottom

frame of Fig. 4 represent the deviations from the “real”
�2F��� which are required by the approximate kernels to
reproduce the input optical scattering rate data as well as
possible.

We now move on to a discussion of superconducting state
data. The top frame of Fig. 5 presents the results for the
superconducting state optical scattering rate 	op

−1��� in Pb at
T=0.05Tc with Tc=7.2 K. The solid line was obtained on
evaluation of the full Eqs. �B1� and �B2� taken for s-wave
symmetry of the superconducting order parameter and a
Coulomb pseudopotential �*=0.1438. The dashed line is for
comparison and was obtained from kernel �13� using the
electron-phonon spectral density �2F��� shown by a gray
solid line in the bottom frame of this figure. The approximate
kernel �13� is evaluated with �0=1.39 meV, the gap edge
predicted by the full Eliashberg calculation.

FIG. 4. The same as Fig. 3 but now the Eliashberg theory gen-
erated normal state, finite temperature 	op

−1��� data �solid lines in
Fig. 2� are used as input.

FIG. 5. Top frame: The computer generated superconducting
state optical scattering rate 	op

−1��� for Pb at T=0.05Tc with Tc

=7.2 K. The solid line is based on the full Eqs. �B1� while the
dashed line is obtained using the simplified kernel �13�. Bottom
frame: The gray solid line symbolizes the �2F��� of Pb. The solid
line is the result of the inversion of 	op

−1��� data computer generated
using kernel �13� �dashed line in the top frame of this figure� using
the MaxEnt method while the dashed line corresponds to an SVD
inversion. The dash-dotted and dotted lines present equivalent re-
sults now for full Eliashberg data �solid line in the top frame of this
figure�.
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The bottom frame of Fig. 5 presents the result of SVD as
well as MaxEnt inversions based on the approximate kernel
�13�. The dashed line corresponds to the SVD inversion �the
svs threshold was set at 10−2� of the optical scattering rate
generated using kernel �13� �dashed line in the top frame of
Fig. 5� and �0=1.39 meV. As expected, the agreement is
almost perfect. The dotted line, on the other hand, shows the
result of an SVD inversion of full Eliashberg data �solid line
in the top frame�. Here, the lower, transverse peak centered
around �4 meV is broader and the area under the peak is
larger. The same holds for the upper, longitudinal phonon
peak but the differences are now less pronounced. Beyond
�9 meV the dotted line becomes negative giving unphysical
results. These differences are due to the use of the approxi-
mate kernel �13� in the inversion process.

The MaxEnt inversion was performed by attaching error
bars of 
=10−2 to the data and by adding uncorrelated
Gaussian noise of the same 
. Furthermore, no preblur was
applied and the default model was set to 0.1. The solid line is
the MaxEnt inversion of the data computer generated with
the help of kernel �13� �dashed line in the top frame of Fig.
5�. Again we achieve perfect agreement. At energies
�10.5 meV the function ME��� levels off at the value 0.1
demonstrating the influence of the chosen default model. The
dash-dotted curve, on the other hand, is based on full Eliash-
berg theory generated input data �solid line in the top frame
of this figure�. Both peaks are now overestimated in their
height and width and are shifted towards higher energies.
Nevertheless, ME��� never becomes negative which proves
that there exists a positive definite solution for the deconvo-
lution problem of Eq. �7�. As experimental data are more
likely to be close to full Eliashberg theory results, the decon-
volution of Eq. �7� on the basis of kernel �13� will result in
an electron-phonon spectral density �2F��� which will not
agree in all details with the real spectral density despite the
fact that the input data will be excellently reproduced. The
only possible check for the validity of the deconvoluted
electron-phonon spectral density SVD��� or ME��� is using
it to calculate the optical scattering rate based on full Eliash-
berg theory and compare it with the data. Such a comparison
will then result in necessary readjustments of the deconvo-
luted spectrum.

B. High-Tc cuprates

In contrast to the normal metal lead, the high-Tc cuprates
are not likely to be electron-phonon systems, they are known
to be highly correlated systems. There is a class of models
used to describe such systems which we will refer to as bo-
son exchange models. They have many common elements
with the electron-phonon case. In particular, there exists a
well developed literature on the nearly antiferromagnetic
Fermi liquid model �NAFFL� introduced by Pines and
collaborators.11,12 The exchange bosons are antiferromag-
netic spin fluctuations as described by Millis et al.33 �MMP�.
Within this model the Eliashberg equations are retained in a
zeroth order approximation neglecting possible vertex cor-
rections which go beyond Migdal’s theorem. The electron-
phonon spectral density �2F��� is replaced by the imaginary

part of the spin susceptibility multiplied by the square of a
coupling of the spin fluctuations to the charge carriers. In
general, this interaction is anisotropic and not pinned to the
Fermi surface.45 Nevertheless, as a first approximation, one
can work with a simple interaction spectral function I2����
which replaces the �2F��� of Eliashberg theory. Carbotte
et al.29 found that in optimally doped, twinned YBCO single
crystals the measured normal state optical scattering rate
	ex

−1���, reported by Basov et al.,46 can be well described by
a single MMP form:

I2���� = I2 �/�SF

1 + ��/�SF�2 . �15�

The two parameters, the square of the coupling constant I
and the characteristic spin fluctuation energy �SF were deter-
mined from a least squares fit to the data in the energy inter-
val 0���250 meV. The values I2=0.83 and �SF
=20 meV have been reported by CSB.

Based on the results for lead we cannot necessarily expect
inversions of 	op

−1��� measured around T=100 K or even
higher will be feasible. To investigate this, normal state
	op

−1��� data are computer generated at various temperatures,
namely T=1, 10, 50, and 100 K using either kernel �11� or
full Eliashberg theory with an I2���� determined by Eq. �15�
and with the above values for the parameters I2 and �SF. The
results of the inversion based on the approximate kernel �11�
are discussed in Fig. 6 with 	op

−1��� data generated using ker-
nel �11� and, in Fig. 7 with 	op

−1��� generated by the full
Eliashberg theory.

The top frame of Fig. 6 presents results for W��� from the
second derivative method. At the two lowest temperatures,
namely T=1 K �solid line� and 10 K �dashed line� the I2����
spectrum �gray solid line� is almost perfectly reproduced. At
higher temperatures, namely at T=50 K �dotted line� and
100 K �dash-dotted line� the inverted spectrum develops a
less pronounced peak which is also shifted towards higher
energies. In the tail ���100 meV� noise develops in the
inverted spectrum. Nevertheless, in contrast to lead with its
narrow two peak structure the simple MMP form can easily
be inverted from optical scattering rate data even at tempera-
tures around 100 K.

The center frame of Fig. 6 presents the results SVD��� of
a singular value decomposition. The svs threshold was set at
10−3 for T=1 K and 10 K and was increased to 10−2 for T
=50 K and 100 K. The inverted spectrum agrees reasonably
well with the original spectrum at low energies, �
�75 meV. At higher energies significant oscillations occur.
We also note for T=100 K a typical splitting of the peak at
20 meV into two peaks. This is an indication of a particularly
ill conditioned inversion problem. This phenomenon can be
observed for rather narrow and fast rising peaks.41

The bottom frame of Fig. 6 presents the results ME��� of
a MaxEnt deconvolution. The error bars on the data were
determined by 
=0.15 and uncorrelated Gaussian noise of
the same 
 was added. No preblur was applied. The default
model was set to 0.05. This ensures that the spectrum ME���
agrees at high energies with I2����. The agreement with the
original I2���� spectral function �gray solid line� is excellent
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up to temperatures of 50 K. At 100 K the peak at 20 meV is
not as well resolved and shows a tendency towards a split
peak similar to the SVD inversion at the same temperature.
Otherwise, the agreement is still rather good.

The results presented in Fig. 7 are very similar to the ones
shown in Fig. 6 with the difference that SVD and MaxEnt
�error bars were determined by 
=0.2, uncorrelated Gauss-
ian noise of the same 
 was added, no preblur� now overes-
timate the peak at 20 meV. The SVD result for 100 K �dash-
dotted line in the center frame of Fig. 7� develops a slight
tendency for a split peak at 20 meV. All this is the result of
the minor differences between the optical scattering rates cal-
culated from kernel �11�, the full Eliashberg theory and the
top frame of Fig. 8 demonstrates how little these differences
are.

We proceed to a study of the MaxEnt inversion of experi-
mental data and make use of the T=95 K normal state opti-
cal scattering rate measured by Basov et al.46 on an opti-
mally doped, twinned YBCO6.95 single crystal. Figure 8
presents the result of a MaxEnt inversion. We assume the
experimental data 	ex

−1��� to be contaminated by a substantial
uncorrelated Gaussian noise of 
=2.5. The inversion is per-
formed on the basis of kernel �11� and the resulting spectral
function ME��� is shown as a solid line in the middle frame

of Fig. 8. ME��� then replaces �2F��� in Eq. �7� which is
used to calculate the reconstructed optical scattering rate
shown by a solid line in the top frame of Fig. 8. It reproduces
excellently the experimental data �gray solid diamonds�. For
comparison, the top frame of this figure contains two more
results, namely 	op

−1��� calculated from full Eliashberg theory
�dashed line� using the I2���� reported by CSB, namely I2

=0.83 and �SF=20 meV �gray solid line in the center frame
of Fig. 8�. The dotted line, on the other hand, corresponds to
	op

−1��� calculated from Eq. �7� using kernel �11� and the
same I2����. Obviously, the two results are very close with
the dotted line slightly above the dashed one at low energies.
The opposite holds for high energies. This is in agreement
with the result found for lead �see Fig. 2�.

Finally, the bottom frame of Fig. 8 shows the residual
r��� which is a measure for the quality of the data recon-
struction. Apart from the low energy region the reconstruc-
tion is within the assumed standard deviation �indicated by
the two straight lines at 1 and −1� of 
=2.5. The result is to
be compared with the r��� shown in the bottom frame of
Fig. 1 which results from the reconstruction of computer
generated data with additional uncorrelated Gaussian noise.
The r��� in the bottom frame of Fig. 8 is a rather smooth
function which contains for energies �70 meV very little
stochastic elements which could be identified as noise. The

FIG. 6. The same as Fig. 3 with the �2F��� replaced by the
I2���� defined by Eq. �15� with I2=0.83 and �SF=20 meV. The
solid lines corresponds to T=1 K, the dashed lines to 10 K, the
dotted lines to 50 K, and the dash-dotted lines to 100 K.

FIG. 7. The same as Fig. 6 but now Eliashberg theory generated
optical scattering rates have been used as input for the inversion.
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various data points appear to be a rather correlated effect
which could either be attributed to an additional background
function B��� �see Eq. �2�� or to a real signal. Nevertheless,
what is important here is the fact that the inverted ME��� has
a nonzero contribution even at energies �150 meV thus es-
tablishing a high energy background in I2���� as predicted
by CSB. Finally, as both spectral functions presented in the
central frame of Fig. 8 reconstruct the experimental data
�solid gray diamonds in the top frame of Fig. 8� equally well,
they can be used as valid spectral functions because of the
nonuniqueness of the deconvolution problem. Further calcu-
lations and comparison with experiments other than optical
conductivity may then help to discriminate between these
two spectra. It is interesting to point out that the area under
I2���� �42 meV� is approximately reproduced by the area
under the spectrum ME��� �41.4 meV� which could be used
to explain the oscillations in ME��� as a result of the en-
hanced main peak at 20 meV.

Tu et al.30 measured the optical scattering rate of opti-
mally doped Bi2Sr2CaCu2O8+� �Bi2212� single crystals at

various temperatures. They derived, using data analysis dif-
ferent from the methods discussed here, that even in the nor-
mal state at 100 K a resonance peak is seen in the function
W��� while it is rather featureless at 295 K. Schachinger and
Carbotte35 also analyzed these data using a combination of
the second derivative method and least squares fits to the
data. In particular, they found that the T=295 K data are well
described by an MMP form �15� in the energy region 0��
�250 meV. The least squares fit determined the parameters
I2=0.655 and �SF=82 meV using full Eliashberg theory in
the fitting procedure.

As MaxEnt turned out to be a rather powerful inversion
technique we revisit the Bi2212 data analysis. We assume the
experimental data of Tu et al. to contain uncorrelated Gauss-
ian noise of 
=2.0 for T=100 K and 
=3.0 for T=200 K
and 295 K. The preblur parameter was set to 5 for T
=100 K and to 10 for the other two temperatures. The de-
fault model was set to 0.1. The inversion is based on the
application of the approximate kernel �11�. Figure 9 dis-
cusses the results of our calculations. The top frame presents
the data reconstruction and the bottom frame the inverted
spectral function ME��� in comparison to I2���� spectral
functions suggested by Schachinger and Carbotte.35 It is
quite clear that the data reconstruction �black solid lines in
the top frame of Fig. 9� is in excellent agreement with the
original data �gray solid symbols� at all temperatures. The
black dotted lines correspond to 	op

−1��� data generated from
full Eliashberg theory using the I2���� spectral functions
presented in the bottom frame of Fig. 9 by gray lines, namely
solid for 100 K, dashed for 200 K, and dotted for 295 K.
The full Eliashberg results follow the data rather nicely in the
energy range 0���250 meV and then deviate systemati-
cally to smaller values for energies �250 meV. Thus, the
MMP form alone is not sufficient to explain the energy de-
pendence of 	ex

−1��� in the whole energy range 0��
�400 meV.

Comparing the spectral functions ME��� to the I2����
spectra demonstrates rather good agreement at low energies
for T=100 K �black dotted line, gray solid line�. Both spec-
tra show a pronounced peak at 43 meV and they even agree
in the height and width of the peak which is rather fortuitous.
At T=200 K �black dashed line, gray dashed line� both spec-
tra develop a less pronounced peak with the peak in ME���
shifted away from 43 meV to higher energies. Such a shift
towards higher energies with increasing temperatures has al-
ready been observed in the analysis of computer generated
	op

−1��� data for YBCO6.95, Fig. 6, and this peak in the ME���
could very well correspond to a 43 meV peak in the real
spectrum. Finally, at T=295 K �black solid line, gray dotted
line� both spectra agree in showing a rather flat MMP-like
structure peaked around 82 meV with no indication of a
resonance peak. This analysis corroborates the results re-
ported by Tu et al.30 and by Schachinger and Carbotte.35

It is quite important to notice that all ME��� spectra de-
velop a second structure of comparable height around
�260 meV for all temperatures. Such a structure is missing
in the I2���� spectra. This additional structure is required for
a faithful reconstruction of the experimental 	ex

−1��� data at
higher energies. To include one more check we repeated the

FIG. 8. Top frame: Experimental normal state optical scattering
rate 	ex

−1��� at T=95 K for an optimally doped, twinned YBCO6.95

single crystal as reported by Basov et al.46 �solid gray diamonds�.
The black solid line corresponds to the MaxEnt reconstruction
based on kernel �11� using the spectral function ME��� shown in
the middle frame of this figure �black solid line�. The dashed line
presents 	op

−1��� of a full Eliashberg calculation based on the spec-
tral function I2���� shown by a gray solid line in the middle frame
of this figure and the dotted line corresponds to 	op

−1��� computer
generated using kernel �11� and the same I2����. Bottom frame:
The residual r��� according to Eq. �14� of the MaxEnt data
reconstruction.
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inversion of the T=200 K 	ex
−1��� data using MaxEnt but

now without preblur and with the default model set to the
I2���� spectrum for 200 K �gray dashed line in the bottom
frame of Fig. 9�. The result is presented by the black dash-
dotted line in the bottom frame of Fig. 9. In this case the
optical resonance can be found at 43 meV in contrast to the
calculation with the constant default model �black dashed
line� but it is now significantly enhanced. Even the kink in
the I2���� spectrum at about 60 meV is reproduced in
ME���. What is important, though, is the fact that the addi-
tional high energy structure around 260 meV appears again
with approximately the same strength as in all other results.
Thus, it seems to be a real and new feature not captured by a
simple MMP form and this proves that the charge carrier-
exchange boson spectral function I2���� in the cuprates has
nonzero contributions up to at least 400 meV, a property

which cannot be explained by a pure phonon mechanism.
It is interesting to note in closing that, for instance,

ME��� for T=295 K can be described using a simple model,
namely the original MMP form which is replaced for �
�170 meV by a second MMP form peaked at �SF
=260 meV. A least squares fit to 	ex

−1�� ,T=295 K� using full
Eliashberg theory provides an I2=0.55 for this second MMP
form and agreement with the data is achieved over the whole
energy range 0���400 meV. This is a second, indepen-
dent proof of the existence of this additional high energy
structure in I2���� for optimally doped Bi2212.

In Fig. 10 the residual r��� of our analysis of the Bi2212
data is presented. The top frame is for 100 K, the middle
frame for 200 K, and the bottom frame for 295 K. The re-
sidual clearly shows a stochastic component which is much
smaller than the assumed values for 
 in the energy region
100���350 meV. It can be identified as a noise contribu-
tion. There is obviously, another slowly oscillating contribu-
tion to r��� which is almost identical in its frequency depen-
dence at 100 and 200 K but it doubles its period at 295 K.
This contribution is very likely to be a background signal
B��� generated by the experimental equipment.

We proceed to investigate the inversion of the supercon-
ducting state 	op

−1��� data for YBCO6.95. We use for computer

FIG. 9. Top frame: Experimental optical scattering rate data30

	ex
−1��� of Bi2212 �gray solid symbols� reconstructed using the Max-

Ent method �black solid line� for various temperatures, namely T
=100 K, 200 K, and 295 K. The dotted lines correspond to data
generated by full Eliashberg theory using the I2���� spectra re-
ported by Schachinger and Carbotte.35 Bottom frame: The spectral
function ME��� �black solid line for 295 K, black dashed, black
dash-dotted for 200 K, and black dotted for 100 K� as a result of
the MaxEnt inversion of the experimental data �gray solid symbols
in the top frame of this figure�. The gray lines �solid for 295 K,
dotted for 200 K, and dashed for 100 K� show the I2���� spectra
reported by Schachinger and Carbotte.35 The black dash-dotted line
presents results of a MaxEnt inversion of the 200 K data �solid gray
triangles in the top frame� using the I2���� �gray dotted line� as the
default model.

FIG. 10. The residual r��� of the data reconstruction presented
in the top frame of Fig. 9. The top frame is for T=100 K, the
middle frame for 200 K, and the bottom frame for 295 K.
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generated 	op
−1��� data the spectral function I2���� reported

by CSB for T=10 K. It was derived from the experimental
superconducting state 	op

−1��� data reported by Basov et al.46

at T=10 K for an optimally doped, twinned YBCO6.95 single
crystal. This I2���� is based on the normal state I2���� for
YBCO6.95 which is an MMP form �15� with I2=0.83 and
�SF=20 meV �gray squares in Figs. 6 and 7�. Superimposed
is a pronounced peak at �=41 meV which was found by
applying the second order derivative method to the experi-
mental data. The final form, shown using gray solid lines in
the middle and bottom frame of Fig. 11, was established by a
fit of full Eliashberg 	op

−1��� results to the experiment. This
spectrum which extends to 400 meV was applied by Schach-
inger et al.47 within full Eliashberg formalism. The authors
demonstrated that it was possible to reproduce numerous su-
perconducting state properties of optimally doped YBCO6.95
in their temperature and energy dependence within experi-
mental errors. The need for I2���� to extend to several hun-
dred meV has also been reviewed by Basov and Timusk.48

The top frame of Fig. 11 presents computer generated
superconducting state 	op

−1��� data at T=10 K as a function of
energy. The solid line gives the result of a full Eliashberg
calculation using the solutions of Eqs. �B1� and �B2� on the
basis of the spectral function I2���� just described. Eliash-
berg theory also provides a value for the zero temperature
gap amplitude �0=22.03 meV. The dashed line presents the
optical scattering rate as calculated using kernel �14�, the
above value for �0, and the same spectral function I2����.
The two results differ substantially in the energy region 70
���200 meV.

The results of an SVD inversion are shown in the middle
frame of Fig. 11. The solid line presents the spectral function
SVD��� found from inverting the full Eliashberg results �the
solid line in the top frame of this figure� on the basis of
kernel �14� using �0=22.03 meV as an external parameter.
The dashed line corresponds to the inversion of the scattering
rate generated by kernel �14� using the same value for �0
�the dashed line in the top frame of this figure�. In both cases
the svs threshold was set to 10−2. The agreement of both
spectra SVD��� with the original I2���� �gray solid line� is
rather poor keeping in mind that the inversion is based on
computer generated data.

The bottom frame of Fig. 11 is organized as the middle
frame of this figure. It presents spectra ME��� as a result of
a MaxEnt inversion. For the inversion of 	op

−1��� represented
by the dashed line in the top frame of this figure an error bar
of 
=0.01 was assumed and no noise was added to the data.
The inversion was performed using historical MaxEnt with
�2=N1 as the convergence criterion. The resulting spectral
function ME��� is represented by a dashed line. The agree-
ment with the spectrum I2���� �solid gray line� employed to
generate 	op

−1��� is perfect as was to be expected. The inver-
sion of full Eliashberg theory generated 	op

−1��� data �solid
line in the top frame of this figure� based on the same I2����
is less successful as the resulting spectrum ME��� �solid
line� demonstrates. For the inversion an error of 
=0.7 was
attached to the 	op

−1��� data but we did not add noise. Further-
more, �0 had to be reduced to 21 meV in order to keep the
peak in ME��� at 41 meV. The peak height is now grossly
underestimated and the spectrum ME��� no longer repro-
duces the normal state background spectrum. Such a result
was expected because of the pronounced differences particu-
larly in this energy region between the full Eliashberg theory
generated data and the data generated using kernel �14�.

We proceed and study the application of the MaxEnt in-
version based on kernel �14� using experimental supercon-
ducting state 	op

−1��� data. The top frame of Fig. 12 presents
the original data by Basov et al.46 reported for an optimally
doped, twinned YBCO6.95 single crystal at T=10 K �solid
gray diamonds�. The inversion of this data is performed us-
ing historical MaxEnt based on kernel �14� with �2=N1 as
the criterion of convergence. An error bar of 
=3.5 was
attached to the data and the default model was set to 0.05.
The resulting spectrum ME��� is presented as a black solid
line in the bottom frame of Fig. 12. This spectrum was found
using �0=21 meV. This allowed one to place the main peak
in ME��� at 41 meV. It is obvious that the inverted spectrum
ME��� differs substantially from the I2���� spectrum �gray

FIG. 11. Top frame: The computer generated superconducting
state optical scattering rate 	op

−1��� at T=10 K calculated from full
Eliashberg theory �solid line� or from kernel �14� �dashed line� us-
ing the I2���� spectrum shown as the gray solid lines in the middle
and bottom frame of this figure. Middle frame: The gray solid line
corresponds to the spectral function I2���� reported by CSB for
superconducting YBCO6.95 at T=10 K. The solid line shows the
spectral function SVD��� as a result of an SVD inversion of the full
Eliashberg result �solid line in the top frame of this figure�. The
dashed line shows the same but now the scattering rate generated by
kernel �14� is used as input. Bottom frame: The same as the middle
frame. ME��� is the result of a MaxEnt inversion.
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solid line� reported by CSB. It shows peak splitting of the
resonance peak at 41 meV and the low energy peak ��
�5 meV� in ME��� is caused by an attempt to use MaxEnt
to extrapolate to very small energies which are not supported
by the 	ex

−1��� data. Nevertheless, the data reconstruction
�black solid line in the upper frame of Fig. 12� is excellent.
We added for comparison �dashed line in the upper frame of
Fig. 12� the optical scattering rate as generated by full
Eliashberg theory using I2����. The agreement with the data
does not seem to be good enough to justify the particular
shape of I2���� discussed above. Nevertheless, one has to
keep in mind that all of the calculations presented here are
performed without including impurities, i.e.: in the pure case
limit. Adding impurities improves the agreement between
full Eliashberg theory and experiment substantially.35

As a last example we present the reconstruction of experi-
mental superconducting state 	ex

−1��� data reported by Tu
et al.30 for an optimally doped Bi2212 single crystal at T
=6 K. The results are presented in Fig. 13 which is organized
the same way as Fig. 12. For the MaxEnt data reconstruction

an error bar determined by 
=3.0 was attached to the data.
Historical MaxEnt with �2=N1 as the criterion for conver-
gence was applied. The default model was set to 0.2. The
inversion is based on kernel �14� and the spectrum I2����
reported by Schachinger and Carbotte35 for T=6 K is shown
as a gray solid line in the bottom frame of Fig. 13 for com-
parison. It contains a peak at 43 meV and an MMP form �15�
as the background with I2=0.655 and �SF=82 meV. In this
case the agreement between the inverted spectrum ME���
�solid line in the bottom frame of Fig. 13� and I2���� is
much better in comparison to YBCO6.95. This confirms the
analysis of Schachinger and Carbotte35 as well as a previous
analysis of Bi2212 data by Schachinger and Carbotte34 based
on data published by Puchkov et al.49 We added one more
result to the top frame of Fig. 13 presented by a dash-dotted
line. It corresponds to the result of a full Eliashberg calcula-
tion based on the ME��� spectrum �down scaled by a factor
of 0.95� instead of I2����. The agreement with the experi-
ment is now very good. In particular, the “overshoot” right
after the main rise in the optical scattering rate48 is better
resolved than in the original Eliashberg calculation �dashed

FIG. 12. Top frame: The superconducting state optical scattering
rate 	ex

−1��� at T=10 K for an optimally doped, twinned YBCO6.95

single crystal. The solid gray diamonds present the original data by
Basov et al.46 The solid line shows the MaxEnt reconstruction of
the input data while the dashed line shows the result of a full
Eliashberg theory calculation based on the spectrum I2���� re-
ported by CSB for T=10 K. Bottom frame: The gray solid line
presents the I2���� spectrum suggested by CSB for superconduct-
ing YBCO6.95 at T=10 K. The solid line shows the spectrum
ME��� as a result of the inversion of the experimental data by
Basov et al.46 represented by solid gray diamonds in the top frame
of this figure.

FIG. 13. The same as Fig. 12 but now for a superconducting
optimally doped Bi2212 single crystal at T=6 K. The data have
been reported by Tu et al.30 The additional dash-dotted line in the
top frame describes the result of a full Eliashberg calculation based
on the ME��� spectrum which was down scaled by a factor 0.95.

INVERSION TECHNIQUES FOR OPTICAL¼ PHYSICAL REVIEW B 73, 184507 �2006�

184507-13



line�. Thus, the existence of this overshoot is an indication
that a dip exists in the I2���� spectrum immediately follow-
ing the resonance peak. This dip will, of course, not be as
pronounced as it appears in ME��� because the major part of
it stems from the differences between the approximate kernel
�14� and full Eliashberg theory. If the ME��� spectrum is,
furthermore, employed to calculate the zero temperature gap
amplitude �0 within full Eliashberg theory a value of
32 meV is found, in excellent agreement with the experi-
mental results.21,22 We also note that the optical scattering
rate 	ex

−1��� in the top frame of Fig. 12 �gray solid diamonds�
develops a moderate overshoot following the main rise
around 80���110 meV. Thus, also in this case not all of
the dip which follows the resonance peak in the ME��� spec-
trum can be attributed to the differences in the approximate
kernel �14� and full Eliashberg theory.

C. The least squares fit method

It has been pointed out in the previous Sec. III B that the
least squares fit method has already been applied rather suc-
cessfully to invert I2���� spectra from experiment using full
Eliashberg theory together with additional information gath-
ered by other means. This method is rather clumsy to handle
and time consuming as one cannot develop a closed algo-
rithm which allows one to fit parameters directly given some
standard deviation 
 which plays the role of the nuisance
parameter. Therefore, we want to study the least squares fit
method based on the approximate kernel �14� for the super-
conducting state of a d-wave superconductor. The 	op

−1���
data are generated from full Eliashberg theory for the super-
conducting state at T=10 K using for I2���� an MMP form
�15� with I2=0.83 and �SF=20 meV �gray solid line in the
bottom frame of Fig. 14�. The zero temperature gap �0
=22.03 meV. The least squares fit method is now applied to
determine I2 and �SF of an MMP form by a least squares fit
to 	op

−1��� in the energy region 0���250 meV. The error
bar attached to the input data is given by 
=2.0. �This par-
ticular value of the standard deviation appears to be a real-
istic value for the reconstruction of experimental data as was
demonstrated in the previous subsection.� No noise was
added. A consistent data reconstruction was achieved with
the parameters I2=1.03 and �SF=14 meV. This becomes ap-
parent from Fig. 14 in which the results of the least squares
method are illustrated. The solid line in the top frame of this
figure shows the residual r���, Eq. �5�, which is on average
well within the assumed 
. This insures a correct data recon-
struction. The bottom frame of this figure compares the least
squares fit spectrum �solid line� to the original I2���� indi-
cated by a gray solid line. It is interesting to compare the
areas under these two spectra, they are 41.5 meV and
42 meV, respectively, a difference of about 1%. The param-
eter � which is two times the first inverse moment of I2����
is also a good parameter to compare. We get �=2.48 and
3.09, respectively.

Figure 14 contains additional information. We use the
MaxEnt method to generate an “educated guess” for a later
least squares fit to data based on full Eliashberg theory. If we
use �0=24.03 meV and assume 
=1.75 historical MaxEnt

reproduces the input data almost equally well as our least
squares fit �see the dashed line in the top frame of Fig. 14.�.
The resulting spectrum ME��� �the dashed line in the bottom
frame of Fig. 14� has its peak at a slightly higher energy
��24 meV� as compared to the original I2���� but other-
wise, the input spectrum is reproduced rather well, albeit not
by an MMP form. The area under this spectrum is 40 meV
and �=3.22, again close to the result of the least squares fit
“inversion.” We also include, for comparison, the result of a
MaxEnt deconvolution with the emphasis on optimal data
reconstruction. We reduce the error bar on the input data to

=0.05 and use �0 as a parameter to be adjusted in order to
achieve this goal. An almost perfect reproduction is possible
if �0 is reduced to 15 meV. This becomes apparent from the

FIG. 14. Top frame: The residual r���. The solid line corre-
sponds to a least squares fit of an MMP form to computer generated
optical scattering rate data generated by full Eliashberg theory, �0

=22.03 meV and 
=2.0 was assumed. The dashed line corresponds
to a MaxEnt analysis of the same data for 
=1.75 keeping �0 fixed
and the dotted line is for 
=0.05 and �0=15 meV. The main part of
the various r��� curves is within ±1 indicating perfect data recon-
struction within the assumed error. Bottom frame: The spectrum
I2���� �gray solid line� is the input spectrum for the full Eliashberg
calculation. The solid line gives the inverted spectrum as a result of
a least squares fit to the data, the dashed line the result of a MaxEnt
inversion both with �0=24.03 meV. Finally, the dotted line shows
the spectrum ME��� which resulted from an optimal data reproduc-
tion using MaxEnt but now �0=15 meV.
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residual r��� shown as a dotted line in the top frame of Fig.
14. The resulting spectrum ME��� is presented by a dotted
line in the bottom frame. The peak is now shifted to much
higher energies, it is wider, and is greater in height as com-
pared to the original I2����. The area under the spectrum is
40.2 meV and �=1.92. This demonstrates clearly the ap-
proximate nature of kernel �14� and that a value for �0 found
from optimum data reproduction is not physically significant.
Instead, one has to treat �0 as an external parameter to the
inversion process which is to be determined by other means
like, for instance, scanning tunneling microscopy.21,22

While the various methods of inversion described in this
section lead to significant differences in the value of � ob-
tained, the area under the spectral density varies very little.
The differences in � can be traced mainly to variations in the
position of the main fluctuation peak and, therefore, it is
recommended that independent information on the position
of this peak be used, for example from neutron scattering.

As a result of this study one can say that given additional
information, like the value of the zero temperature gap am-
plitude, both methods, least squares fit and MaxEnt, result in
comparable spectra, nevertheless, they differ qualitatively
and quantitatively from the real spectrum I2����. This em-
phasizes the role of additional information beyond the opti-
cal data for a successful data analysis.

IV. CONCLUSION

There exists a well established formalism that relates the
electron-phonon spectral density �2F��� to the infrared con-
ductivity. It applies to the superconducting as well as normal
state and involves the Eliashberg equations plus a Kubo for-
mula which gives the optical conductivity 
op��� from
Green’s functions. While such a formalism is not as well
justified in the case of other boson exchange mechanisms
such as spin fluctuations, it has, nevertheless, been useful to
apply it as a first approximation with appropriate essential
modifications such as d-wave gap symmetry. The resulting
equations are, however, rather complicated and simplified,
lowest order perturbation theory expressions for the relation-
ship between spectral density I2���� and optical conductivity
have played an important role particularly if a main aim is to
extract qualitative rather than quantitative information on the
size and main features of the I2���� for a given set of optical
data. If, however, accurate quantitative information is desired
a full Eliashberg formulation cannot be avoided. In this paper
we provided comparison between numerical results for the
optical scattering rate 	op

−1��� based on the exact equations
and results generated from several often used approximate
relations between conductivity and spectral density including
a recent generalization which applies to a superconductor at
T=0 with d-wave symmetry.

Another important issue discussed in detail is the accu-
racy, advantages, and limitations of various numerical meth-
ods which are needed to invert data even within the limita-
tions of approximate formulas for the optical scattering rate.
These equations relate the optical scattering rate measured in
infrared experiments to the desired spectral density I2����
through a convolution integral involving a known, specified

kernel K�� ,� ;T� multiplied by I2����. A second derivative
technique of the optical scattering rate, often used, is also
considered.

In the normal state at low temperatures the second deriva-
tive technique applied to computer generated optical scatter-
ing rates based on Eliashberg theory reproduces well the
spectral function �2F��� of Pb. There is a slight overesti-
mate of the longitudinal and transverse phonon peaks as well
as a small shift to higher energy. The region between the
peaks is slightly underestimated and unphysical tails occur
beyond the Debye energy but these are to be ignored. If the
same data is inverted using either SVD or MaxEnt, the
agreement between the spectral function of Pb and the de-
convoluted spectral functions remains good even though
both inversion methods are based on an approximate lowest
order perturbation theory expression for the relation between
the spectral function and scattering rate while the 	op

−1��� data
is based on Eliashberg relations. It is noted, however, that
MaxEnt does somewhat better than SVD which introduces
additional oscillations into the resulting spectral density not
present in the �2F��� of Pb. As the temperature is increased
in the normal state all three methods begin to fail and at T
=50 K the two peak structure of the Pb �2F��� can no
longer be resolved.

For the cuprates in their normal state an often used spec-
tral function I2���� is the MMP form of the NAFFL model.
This function is characterized by a spin fluctuation frequency
�SF and a coupling constant between spin susceptibility and
the charge carriers. The MMP form has a peak at �=�SF but
is rather smooth and extends to energies of order 100 meV.
For such a relatively unstructured spectrum, even at 100 K,
the deconvoluted spectral function is much closer to the
original MMP form than was the case for Pb. For the SVD
inversion, however, there is a spurious splitting of the peak at
�=�SF �for small �SF� and some additional oscillations oc-
cur. These oscillations are also seen in the case of the Max-
Ent inversion but they are less prominent and quite small. Of
the two inversion methods considered above, MaxEnt is to
be preferred because it has the advantage that few assump-
tions, namely a default model and error bars attached to the
data, will result in a deconvoluted spectrum which allows
excellent data reconstruction. This spectrum can also be ex-
pected to contain, at least qualitatively, all the main features
of the real spectrum.

As a result of all this, an inversion of normal state 	ex
−1���

data, even at high temperatures, can lead to useful quantita-
tive results if the boson exchange spectral function is ex-
pected to be rather smooth with little structure. The applica-
tion of methods based on the approximate kernel �11� is to be
favored because there are only little differences between this
kernel and full Eliashberg theory.

For the low temperature superconducting state use of the
Eliashberg equations for the calculation of the optical scat-
tering rate 	op

−1��� along with a numerical inversion based on
approximate lowest order perturbation theory simplified for-
mulas leads to larger quantitative differences between the
�2F��� spectrum of lead and the deconvoluted spectrum
than were noted for the normal state of lead. Nevertheless,
both SVD and MaxEnt methods yield very useful, qualitative
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and even semiquantitative information on the shape and size
of �2F��� with the MaxEnt method, again, to be preferred.

Inversion of experimental data on the optical scattering
rate �as opposed to computer generated data� already exists
in the literature in a few cases and these are based on full
Eliashberg solutions and the Kubo formula. These inver-
sions, however, proceed through a least squares fit of the
scattering rates assuming a specific mathematical form for
I2���� characterized by a few parameters, namely an MMP
form with a low frequency cutoff plus a resonance peak at a
specified frequency. Such fits have had considerable success
when applied to a normal and superconducting state in opti-
mally doped cuprates. Attempts have been made since addi-
tional complications arise due to the emergence of the
pseudogap. As yet no consensus exists as to the origin of this
pseudogap and, thus, modeling its effect remains controver-
sial.

Even though, as noted above, the SVD and MaxEnt meth-
ods are limited due to inaccuracies in the approximate sec-
ond order perturbation form used to relate the optical scat-
tering rate to spectral density �instead of the complete
Eliashberg analysis�, we have used MaxEnt inversions to
confirm the previously obtained least squares fits. All of the
qualitative features of the resulting I2���� function, namely,
coupling to an optical resonance at low energy and to a back-
ground extending even beyond 400 meV are confirmed and
additional features have been unveiled. This demonstrates
the usefulness of such techniques which make no a priori
assumption on the shape or size of the underlying spectral
density. To get the best results the value of the zero tempera-
ture gap amplitude �0 �obtained in some other way� should
be used rather than varied arbitrarily to get a best fit. The
numerical spectra for I2���� could be used as a first step in a
more complicated inversion process which would involve
further refinements along the lines of the least squares fit
procedure described above. Other constraints such as known
properties of the superconducting state could be added as
well in the fit. It is not clear, however, that this is necessary
and worthwhile for the oxides where the mechanism is not
the electron-phonon interaction and additional complications
such as a breakdown of the Migdal theorem may arise.
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APPENDIX A: THE MAXIMUM ENTROPY METHOD FOR
DATA ANALYSIS

The direct inversion of Eq. �8� constitutes an ill-posed
problem. Therefore, there are many different “solutions”
�varying orders of magnitude� that fit the data within the

error bars. The most general solution to this problem is the
calculation of the posterior probability distribution �pdf�
p�a � t ,I� of possible solutions a given the data t and all
additionally available background information I, i.e.: the
matrix K which is defined by the underlying theoretical
model, the background function B���, the noise contribution
���, etc. The Bayesian probability theory41 provides the
consistent framework for such a fully probabilistic descrip-
tion. Bayes’ theorem provides the relation

p�a�t,I� =
p�t�a,I�p�a�I�

p�t�I�
, �A1�

which relates the posterior p�a � t ,I� to the likelihood pdf
p�t �a ,I� and the prior pdf p�a �I�. Finally, the denominator
p�t �I� ensures proper normalization of the posterior. The
likelihood comprises the model definition and the error sta-
tistics of the data. Its knowledge is an essential prerequisite
for any data analysis. The prior, on the other hand, should
incorporate all available information of the problem at hand.
In the particular case discussed here, the only known con-
straint is the positivity of the function values aj ��2F�� j�.

Skilling50 showed that the most uninformative prior in
this case is the maximum entropy prior:

p�a��,I� = exp��S���
j=1

N2

�aj�−1

. �A2�

Here, � is a renormalization �nuisance� parameter and S is
the generalized Shannon-Jaynes entropy41

S = �
j=1

N2 �aj − mj − aj log
aj

mj
� . �A3�

It measures the distance of the candidate vector a from the
so-called default model vector m= 	mj � j=1, . . . ,N2
, which
represents the most probable solution prior to the observation
of any data. In case of insufficient background information it
should be chosen constant, i.e.: mj �const, " j. Nevertheless,
it is adamant to check its influence on the solution, as certain
features of the solution might not be supported by the data
but instead just reflect the initial assumption of the default
model.

The regularization parameter � determines the relative in-
fluence of the prior compared to the likelihood. In the limit
�→� one obtains a→m as the most probable solution; for
�→0, on the other hand, one gets the maximum likelihood
solution which will be meaningless for ill-conditioned prob-
lems. Within conventional approaches, regularization param-
eters such as � are often fixed by hand. Apart from ad hoc
settings, a sensible choice is to adjust the regularization pa-
rameter such that the expectation value of the misfit �2 is
reproduced.51 In case of an N-dimensional uncorrelated nor-
mal distribution the misfit is described by the �2-distribution
with N degrees of freedom and has mean ��2�=N and vari-
ance var��2�=2N. Historically, the criterion �2=N was em-
ployed first in order to fix the parameter � �historical Max-
Ent�. However, one has to keep in mind that the solution
might change dramatically if the regularization parameter �
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is tuned such that �2 varies between N−�2N��2�N
+�2N.

In principle, the regularization parameter � can be deter-
mined consistently within Bayesian probability theory by
computing the most probable value � which maximizes the
probability p�� � t ,I� given the data t. �This is the classical
MaxEnt of Ref. 52.� Unfortunately, the calculation of
p�� � t ,I� involves high dimensional integrals which can only
be evaluated using rather crude simplifications. The approxi-
mation usually applied52 tends to overfit the data as p�� � t ,I�
is systematically overestimated for small � which results in a
too small �̂ value at which p�� � t ,I� has its maximum as a
function of �. Von der Linden53 suggested a different ap-
proximation scheme that partly corrects these deficiencies
and yields results similar to the historic criterion.

For some data sets analyzed in the study, we found that all
methods to determine the value of � suffered from oscilla-
tions �“ringing”� due to overfitting. This has been observed
for other applications as well.54,55 To a certain extent, this
ringing is intrinsic to the MaxEnt prior which explicitly
treats all points of the reconstruction a as uncorrelated.

In order to enforce smoothness of the solution Skilling56

suggested the introduction of a “hidden image” h which is
blurred by a Gaussian

aj = �
k

Bjkhk, Bjk =
1

�2�b2
exp�−

�xj − xk�2

2b2 � . �A4�

Here, the xj designate the abscissas of aj and hj. The vector a
enters the likelihood, while h is used to compute the entropy
S. The blur-width b is an additional hyperparameter that can
be determined simultaneously with � by locating the maxi-
mum of p�b ,� � t ,I� given the data t in the spirit of Ref. 56.

Various choices of the blur-width b can be regarded as
distinct models which have a different number of degrees of
freedom �similar to fit functions involving different numbers
of parameters�. For b→0 all positive discrete representations
a can be realized as a→h, while in the limit b→� only
constant functions ai�const. can be represented, i.e.: the
model has only one effective degree of freedom.

The optimal blur-width b is determined by the interplay of
the likelihood and Occam’s razor41,55 which penalizes the
complexity of the model employed and is implicit in the
calculation of p�b ,� � t ,I�. The “penalty factor” is the ratio
of the width of the likelihood and the prior distributions.
Thus, a simpler model may be more favorable because a
larger fraction of the parameter space is likely to be realized
according to data although a more complex model fits the
data better.

Unless stated otherwise, we have determined the optimal
blur-width b for the MaxEnt reconstructions presented in
Sec. III as outlined above. For the computation of p�b � t ,I�
we chose a flat prior p�b �I� on the interval bmin�b�bmax

with bmin�x2−x1 and bmax�xN−x1.
The MaxEnt method obviously allows for an explicit

treatment of ambiguous solutions and it allows prior knowl-
edge to be taken into account consistently by introducing a
suitable prior pdf. A direct inversion, like the SVD method,
which may be badly conditioned or may involve uncon-

trolled approximations, is avoided. Finally, it is possible to
obtain error estimates. Nevertheless, it has to be pointed out
that “fuzzy“ constraints such as smoothness of the output of
the inversion process make a definition of the prior pdf rather
complicated.57

APPENDIX B: ELIASHBERG EQUATIONS

The generalized, clean limit Eliashberg equations which
play an important role in this study are

�̃�� + i0+;�� = �Tg�
m=0

�

cos�2������ − i�m� + ���

+ i�m��h�i�m� + i�g
−�

�

dz cos�2��I2��z�

��n�z� + f�z − ���h�i�m → � − z + i0+� ,

�B1a�

and, in the renormalization channel,

�̃�� + i0+� = � + i�T�
m=0

�

���� − i�m� − ��� + i�m��g�i�m�

+ i�
−�

�

dzI2��z��n�z� + f�z − ���g�i�m → � − z

+ i0+� . �B1b�

Here

h�i�m� =� �̃�i�m;��cos�2��
��̃2�i�m� + �̃2�i�m;��

�
�

,

g�i�m� =� �̃�i�m�
��̃2�i�m� + �̃2�i�m;��

�
�

,

and the parameter g allows for a possible difference in spec-

tral density between �̃ and �̃ channels. It is fixed to get the
measured value of the critical temperature. In the above

�̃�i�m ;�� is the pairing energy evaluated at the fermionic
Matsubara frequencies �m=�T�2m−1� ,m=0, ±1, ±2, . . .;
f�z� and n�z� are the Fermi and Bose distribution, respec-
tively. The renormalized Matsubara frequencies are �̃�i�m�.
The analytic continuation to real frequencies � of the above

is �̃��+ i0+;�� and �̃��+ i0+�. The brackets �¯�� are the
angular average over �, and ����=�−�

� d��2F��� / ��−�
+ i0+�. Equations �B1� are a set of nonlinear coupled equa-

tions for the renormalized pairing potential �̃��+ i0+;�� and
the normalized frequencies �̃��+ i0+� with the gap ���
+ i0+;��= �̃��+ i0+;�� /Z���, where the renormalization func-
tion Z��� was introduced in the usual way as �̃��+ i0+�
=�Z���. To get the s-wave version of these equations g is set
equal to one and all cos�2�� factors are to be omitted with no
average over the polar angle �. A Coulomb pseudopotential
�* must also be introduced in Eq. �B1a�.
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The optical conductivity follows from knowledge of �̃

and �̃. The formula to be evaluated is


op�T,�� =
�p

2

4�

i

��0

�

d� tanh���

2
��J��,�� − J�− �,����

�

.

�B2�

The function J�� ,�� is given by

2J��,�� =
1 − N��;��N�� + �;�� − P��;��P�� + �;��

E��;�� + E�� + �;��

+
1 + N*��;��N�� + �;�� + P*��;��P�� + �;��

E*��;�� − E�� + �;��
,

�B3�

with E�� ;��=��̃2��+ i0+�− �̃2��+ i0+;��, N�� ;��= �̃��
+ i0+� /E�� ;��, and P�� ;��= �̃��+ i0+;�� /E�� ;��. Finally,
the star refers to the complex conjugate.
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