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We propose a model for charge-density waves in ring-shaped crystals, which depicts frustration between
intra- and interchain couplings coming from cylindrical bending. It is then mapped to a three-dimensional
uniformly frustrated XY model with one-dimensional anisotropy in connectivity. The nonequilibrium relaxation
dynamics is investigated by Monte Carlo simulations to find a phase transition which is quite different from
that of usual whisker crystal. We also find that the low-temperature state is a three-dimensional phase vortex
lattice with a two-dimensional phase coherence in a cylindrical shell and the system shows power-law relax-
ation in the ordered phase.
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I. INTRODUCTION

Transition-metal chalcogenides such as NbSe3 and TaS3
are known as quasi-one-dimensional materials. Lowering
temperature, they take a phase transition to the charge-
density wave �CDW� phase where both the atom positions
and electronic charge density are modulated in twice the
Fermi wave number.1 Recently, Tanda and Tsuneta et al.
have succeeded to synthesize various types of single crystals
in closed loop shapes, e.g., simple ring, Möbius ring, and
figure-of-eight, of these materials by the chemical vapor
transportation method.2,3 X-ray diffraction measurement
shows that they have the same crystalline structure with
usual whisker crystals and the temperature dependence of
conductivity indicates a CDW transition at the temperature
slightly lower than the critical temperature of whisker
crystals.4 The influence of the crystal geometry or topology
on the property is an interesting problem.

Recently, Shimatake and Toda investigated nonequilib-
rium relaxation dynamics of NbSe3 by using ultrafast laser.5

They measured both ring and whisker crystals with compa-
rable dimensions and found a significant difference between
them in the low-temperature CDW phase. The relaxation
time for the initial rapid decay shows divergent behavior at
the transition temperature for a whisker crystal but not for a
ring crystal. This suggests that the phase transition disap-
pears or the type of phase transition changes for ring crystals.
In this paper, we propose a simple model for CDWs in ring
crystals and analyze the nonequilibrium relaxation dynamics
by the Monte Carlo method to understand the reason for such
a difference.

II. MODEL FOR CDW IN RING CRYSTAL

At first, we introduce a phase field model for CDW in a
ring crystal. The crystal axes are named a, b, and c axes as
illustrated in Fig. 1. The quasi-one-dimensional chains run
along the b axis. The position in a sample is expressed as
r= �xa ,xb ,xc�= �r ,r� ,xc� by using cylindrical coordinates.
The modulated part of the charge density can be expressed as
��r , t�=�0 cos�Q�r�xb+��r , t�� in each chain. Here, Q�r� is

the mean wave number of a chain at radius r and ��r , t� is the
phase fluctuation variable. Periodic boundary condition
along a chain yields Q�r�2�r=2�Nw�r�, where Nw�r� is a
number of waves in a chain. Q�r� possibly deviates from the
natural wave number of CDW, Q0=2kF, to synchronize the
charge-density modulations between neighboring chains.
Such commensuration between the chains neighboring on the
radial direction results in strain. The stress grows with the
thickness and is released by making some imperfection, such
as a jump of Nw, by every several chains. We consider that
the characteristic relaxation dynamics of a ring crystal is due
to such conflict between two requirements for the natural
wavelength inside each chain and for period matching be-
tween neighboring chains.

Here we suppose bundles of looped chains in which no
defect exists and then Nw�r� is constant. The mean wave
number decreases with radius as Q�r�=Nw /r in each bundle.
The wave number is larger than the natural one for inner
edges and smaller for outer edges. The Coulomb interaction
V� at the boundary of two neighboring bundles is propor-
tional to the product of charge densities as

Va �� dxb cos�Q↓xb + �↓�xb��cos�Q↑xb + �↑�xb��

=
1

2
� dxb�cos��↓�xb� − �↑�xb� − �Qxb�

+ cos��↓�xb� + �↑�xb� + �Q↓ + Q↑�xb�� . �1�

The down- �↓� and up- �↑� arrows indicate quantities of the
inner and outer bundles, respectively. �Q�r��Q↑−Q↓ is a

FIG. 1. Schematic diagram of ring crystal and mapping onto
cuboid.
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gap of wave number at the boundary between the two neigh-
boring bundles. In this expression, we keep track of the first
term only and neglect the second term because it oscillates
much faster than ��xb� changes.

Knowing the above interaction form between the phases
�↑ and �↓, let us consider a discrete version of the phase
Hamiltonian. We map the ring crystal onto a simple cubic
lattice with size N=La�L��Lc �see Fig. 1�. Note that the
space is divided uniformly in � instead of xb=r�. The lattice
spacings are taken as a mesoscopic scale, much larger than
the CDW wavelength. Adding intrachain distortion energy
and interbundle energy on the c axis to Eq. �1�, the Hamil-
tonian is written as

H = − 	
�=a,b,c

	
i

J� cos��i − �i+�̂ − Ai,i+�̂� . �2�

Here, i labels the lattice points of a simple cubic lattice and �̂
is the unit lattice vector on the � axis. What is important is
that there is an additional term,

Ai,i+�̂ � �Qxb	�a = �Nw�	�a = 2�fib	�a, �3�

which comes from the ring geometry. �Nw=r�Q is a gap of
a number of waves and f =�Nw /L� is a filling factor that
denotes the mean density of vortices. Aij causes a frustration
between the couplings along a and b axes and yields a con-
stant number of phase vortex lines directed to the c axis even
without thermal excitation. The vorticity is given by the loop
integration of �� along each plaquette. By omitting Aij, we
obtain a usual XY model, which is applicable to CDWs in
whisker crystals.

The Hamiltonian Eq. �2� is equivalent to the uniformly
frustrated XY model, which is proposed for the supercon-
ductors under magnetic field parallel to the c axis,6–8 where
Aij is translated to a vector potential in the Landau gauge.
The anisotropy is, however, quite different. While the high-
Tc superconductor has strong coupling inside each CuO2
plane and weak one interplanes, CDW materials has quasi-
one-dimensional property. The anisotropy in coupling con-
stants is taken as Jb=
Ja=
Jc ,
�1 in the present model.
Since the distance between lattice points neighboring on the
b axis is proportional to r, coupling constants and filling
factor should depend on the radius r, but we ignore this r
dependence as a first approximation.

At first, we investigate the ground state of this Hamil-
tonian. By simulated annealing, we obtained an energy mini-
mal state for sufficiently large 
. This state has �Nw phase
vortex lines between every neighboring bc plane, which are
straight and parallel to the c axis. These vortex lines form a
two-dimensional lattice in the ab plane with the unit lattice
vectors �±a0 ,b0 /2f ,0�. Order parameter rv, which is related
to the Bragg peak height of a vortex lattice, can be defined as
follows:

rv = Sv�qv�/N, qv = �2�/2a0,2�f/b0,0� ,

Sv�q� = N−1
�vc�q��2� ,

vc�q� = 	
j

�vj · ĉ�exp�iq · rj� . �4�

Here �vj · ĉ� is the vorticity defined at the center of a
plaquette j which is perpendicular to the c axis. Owing to the
strong coupling along the b axis, the phase is almost uniform
along the direction but gently modulated with a period b0 / f .
This state looks quite different from the solitonic solution in
the isotropic case where distortion is localized around the
vortex. Simple variational calculation supposing the periods
2a0 and b0 / f along a and b axes, respectively, yields an
energy minimal solution expressed as

�i = �− 1�ia�

4
−

2
−1

�2�f�2 cos�2�fib�� + O�
−2� , �5�

which agrees well with the simulated annealing result. Note
that there are many energetically degenerated states which
are obtained by the transformation �i→�i+2�nia /La �n
= ±1, ±2, . . . �. This transformation does not change the po-
sitions of vortices.

III. NONEQUILIBRIUM RELAXATION ANALYSIS OF
PHASE TRANSITION

Next we investigate the relaxation dynamics from an or-
dered state to an equilibrium state at finite temperature, i.e., a
rapid heating process. At the same time, the phase transition
is also analyzed by the nonequilibrium relaxation method.9

In order to obtain an initial state, we set the phases as Eq. �5�
and make the system relax at zero temperature in diffusive
dynamics. After that, METROPOLIS dynamics at finite tem-
perature is started. Filling factor f is fixed to 1/16 in this
work. The same calculation is done for several anisotropy
parameters, 
=10, 16, 24, 32, and 64. The Monte Carlo flip
is repeated up to 65 000 steps per each site at maximum.
This step is identified as time, t. Average is taken over 8–16
samples for each temperature. The sample size used is La
�L��Lc=64�512�64 and periodic boundary condition is
imposed for all directions. For this system size, the finite-size
effect is not crucial within the observation time.

The order parameter rv equals f2 in the initial state and
decreases to the equilibrium value which is zero when T
�Tc and finite when TTc. To find the critical point, we
calculate the local exponent,9

��t� = − d ln rv�t�/d ln t . �6�

In Fig. 2, ��t� is plotted with respect to 1/ t. In the limit of
t→�, ��t� goes to infinity for T�Tc and to zero for TTc.
Just at the critical temperature, ��t� converges to a certain
finite exponent �c which characterizes the critical power-law
decay.

For T�Tc, rv decays as a power function of t for short
time scale and makes a crossover to exponential decay. We
can perform dynamical scaling as

rv�t� = ��T�−�cS̃v�t/��T�� . �7�

Here ��T� is a relaxation time, which diverges at the critical
temperature Tc as
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��T� � �T/Tc − 1�−z�. �8�

We initially obtain �c and ��T�’s by scaling to Eq. �7�. Then
fitting of ��T�’s to Eq. �8� yields Tc and z�. The scaling result
for 
=32 is shown in Fig. 3. The results for several 
’s are
summarized in Table I. Tc is proportional to �JbJc�1/2, which
measures the effective elasticity of vortex lines confined be-
tween two bc planes. The exponent �c seems not universal
among different 
’s. It shows, however, a sign for saturation
to the anisotropic limit value �0.25 as 
 becomes large. z� is
less dependent of 
 even for small 
.

For small 
, dynamical scaling does not work well in the
very vicinity of the critical temperature, where the functional
form of relaxation changes with temperature. In Fig. 4, the
local exponent for 
=10 is plotted with 1/ t. If the relaxation
form is a simple exponential one in the long-time limit, ��t�
would be asymptotically proportional to t. Figure 4 shows,
however, ��t�� t�, where � is larger than unity and increases
up to 2 as approaching the critical temperature. Such a bad
scaling region in temperature, however, becomes narrower as

 increases.

IV. RELAXATION DYNAMICS IN THE ORDERED PHASE

Next, we investigate the relaxation function in the low-
temperature phase. In order to eliminate the influence of the

finite equilibrium value, the time derivative of the order pa-
rameter is calculated. The relaxation of rv does not look like
an exponential function in the time range of the present
simulations. We do not find an apparent reduction of relax-
ation time when leaving from the critical point unlike in the
high-temperature phase. Although the functional form of rv
is unclear, the power-law behavior is observed to be suitable
for some other quantities, e.g., total energy of the system and
the order parameter of phase periodicity r�

b. Here

r�
b � S��q�

b�/N . �9�

Here S��q� is a Fourier transformation of phase correlation
function defined as

S��q� = N−1	
i,j

cos��i − �j�exp�iq · �ri − rj�� , �10�

which has peaks at q�
a��2� /a0 ,0 ,0� and q�

b

��0,2�f /b0 ,0�. Note that this order parameter is finite at
t=0 only because the initial state is chosen as Eq. �5� and
other metastable states have peaks in different wave-number
vectors. The time evolution of r�

b and tdr�
b /dt is shown in Fig.

5. For TTc, r�
b seems to decay to a finite value in the limit

of t→�. This indicates that not only the vortex but also the
phase has true long-range periodic order in three dimensions.

FIG. 3. Scaling plot for 
=32. The temperatures for used data
are 6.9, 7.0, 7.1, 7.2, 7.5, 8.0, 8.5, 9.0, 10.0, 11.0, 12.0, and
14.0Ja /kB. The inset shows critical behavior of the relaxation time.

FIG. 4. The local exponent for a relatively small anisotropic
parameter 
=10.

FIG. 2. The local exponent of the order parameter rv for various
temperatures, as a function of 1/ t. The temperature of each curve is
shown in the figure in the unit of Ja /kB �Tc=6.87Ja /kB�. The de-
rivative is calculated after local fitting to a fourth-order polynomial.
The anisotropy parameter 
 equals 32. The horizontal line shows �c

obtained by dynamical scaling.

TABLE I. Critical temperature in the unit of �JbJc�1/2 /kB and
exponents for several anisotropy parameters. LE means the critical
temperature is estimated from the long-time behavior of local ex-
ponent and DS means dynamical scaling.


 Tc �LE� Tc �DS� � �DS� z� �DS�

10 1.159�2� 1.13 0.06 2.2

16 1.190�5� 1.17 0.16 2.1

24 1.208�6� 1.18 0.22 2.2

32 1.214�5� 1.20 0.24 2.2

64 1.206�6� 1.18 0.25 2.6
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We confirm that this finite value does not come from the
finite-size effect. The time derivative shows power-law relax-
ation with t. The decay exponent becomes larger with T.

V. DISCUSSION

A. Dimensionality of periodic order

So far, it has been shown that the quasi-one-dimensional
frustrated XY model takes a vortex lattice melting transition.
The dynamical scaling analysis strongly suggests that it is a
standard second-order transition. Then rv and r�

b work as or-
der parameters of vortex and phase itself.

By equilibrium simulations, we find that the helicity
modulus, which measures the thermodynamic stiffness of
phase against the perturbation, �i→�i+�i���→0�,6 is zero
along the a axis for all temperatures while those along b and
c axes are finite below Tc. This means that the �quasi�-long-
range phase coherence is established only in the ab plane.

The reason why the two-dimensional phase coherence ap-
pears in a quasi-one-dimensional system is considered as fol-
lows: Even with Ja=Jc��Jb�, the a and c axes are not
equivalent since the former conflicts with the b axis and the
latter does not. The fast growth of the order along the b axis
suppresses the order along the a axis; two-dimensional-like
order then appears.

Power-law behavior and two-dimensional order remind us
of the Kosterlitz-Thouless �KT� phase10 with quasi-long-
range order. If so, it is strange that r�

b is finite in the long-time
limit as shown in the previous section. Furthermore, finite r�

b

seems directly inconsistent with the fact that the helicity

modulus for the a axis is zero. Of course we cannot eliminate
the possibility that r�

b decreases to zero in the time scale
much longer than the present observation time, but there can
be another explanation, as follows. When the two-
dimensional true long-range order is established, the center
of mass of its phase is individually pinned in every bc- plane
due to the break of ergodicity. As a result, the phase fluctua-
tion along the a axis is suppressed even though there is no
restoring force. Thus finite rv, which is due to the initial
condition, survives even though long-range order exists only
in two dimensions. In contrast, vorticity is a gauge invariant
quantity and really has three-dimensional long-range order.
If this is true, there would be another mechanism for the
power decay which differs from the KT scenario, on which
r�

b goes to zero. Indeed, power divergence of relaxation time
at Tc is inconsistent with the exponential divergence for the
KT transition.9

B. Comparison with in-plane isotropic case

Here we compare the present result with high-Tc super-
conductors. The case of the magnetic field perpendicular to
the CuO2 plane is given by Ja=Jb�Jc in the present nota-
tion. This is isotropic in the frustrated ab plane. It is believed
that there is a first-order transition8 into the low-temperature
phase where phase coherence exists only along the c axis.7

The limit 
→1 in the present model is also expected to show
the same transition, although the discontinuous property is
quite small in the case in which Jc is as large as Ja ,Jb.7 There
is a possibility that bad scaling behavior near Tc for smaller

 as mentioned at the last of Sec. III is due to the crossover
to a first-order transition.

Power-law relaxation is also observed in the isotropic
frustration model.6 This is apparently unrelated to the KT
order. We consider that the power-law behaviors of the iso-
tropic and anisotropic models are a common property of the
partially ordered states of frustrated systems, although di-
mensionality of phase ordering is different.

C. Comparison with the quasi-two-dimensional case

The case of a magnetic field parallel to the CuO2 plane
can be expressed by the present model with 
�1, although
the CuO2 plane is normal to the b axis, not to the c axis.13

This is just the opposite anisotropy to the present study and
the system is divided into isolated planes without frustration
in the strong anisotropy limit. This case, however, has many
common properties with the present case of 
�1 in spite of
the difference in quasi-two- and one-dimensional properties,
e.g., two-dimensional phase coherence parallel to the c axis
and the same structure of vortex lattices.11,12 Additionally the
phase transitions change from first order to second order as
anisotropy becomes stronger in both cases. This similarity
comes from the fact that qualititative behavior is not affected
by the strength of the coupling along the c axis, which is not
concerned with the frustration of the system. It is essential
that both of these opposite anisotropies, 
�1 and 
�1,
break the balance of frustration in the ab plane in the same
way.

FIG. 5. Time evolution of phase structure factor r�
b �top� and

time derivative of r�
b multiplied by t �bottom�. The derivative is

obtained by local fitting to a fourth-order cubic polynomial. The
line of slope −0.22 means the relaxation at the critical temperature.
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The vortex lattice order in the quasi-two-dimensional sys-
tem is considered to be of quasi-long-range.12 It is also re-
ported that the two-layer system �this is purely two dimen-
sional� has two types of KT phases,14,15 the vortex phase and
the Meissner phase. It is, however, not clear whether the
interlayer coupling in three-dimensional system could be ir-
relevant for small but finite 
. We consider that true long-
range order assisted by three-dimensional vortex lattice order
is worth reexamining in the quasi-two-dimensional case as
well as the present case.

D. Experiment

Finally, let us mention about the relation to the experi-
ments of a CDW in a ring crystal.5 The present work based
on the anisotropic frustrated XY model found a phase transi-
tion to the ordered state where phase vortex lines along the c
axis form a lattice and two-dimensional phase coherence is
established in each cylindrical shell perpendicular to the ra-
dius direction. Thus it suggests that the ring geometry makes
the CDW phase transition quite different from that of a whis-
ker crystal. The latter is described by the XY model without
frustration, which shows a simple ferromagnetic transition.

In the low-temperature phase of a ring crystal, the relaxation
of phase fluctuation, which is closely connected to electric
polarization and reflectivity, shows a power-law relaxation
without characteristic time scale, so that small apparent re-
laxation time, which does not show singular behavior, would
be estimated if one supposes an exponential decay as for
whisker crystals.

There remain some future works. In this work, the rapid
heating process is studied because of its self-averaging prop-
erty instead of rapid cooling process. The latter is challeng-
ing because it can be compared directly with the laser pump-
ing experiment and contains the process to untwist entangled
flux lines. The present model drops some features of the
system, e.g., radius dependence of the model parameters,
which causes distribution of local critical temperature and
relaxation time �the transition can then be blurred� and a
pinning effect of lattice defects in atomic crystal.
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