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Breathing Fermi surface model for noncollinear magnetization:
A generalization of the Gilbert equation
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The breathing Fermi surface model which has been developed to describe the dissipative magnetization
dynamics of collinear magnetization configurations is generalized to the case of noncollinear configurations.
The theory is valid for small relative cantings of the atomic magnetic moments, and it is based on a phenom-
enological expansion of the ab initio density functional electron theory in atomic-sphere approximation for the
spin direction. An equation of motion is obtained which looks like a Gilbert equation, with the important
difference that Gilbert’s damping constant is replaced by a damping matrix �= R��MR�� which in general is
different for the different atomic sites R and which depends on the momentary magnetization configuration
�MR� of the whole system, i.e., it is a strongly nonlocal equation.
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I. INTRODUCTION

In the past few years there has been an intensive research
activity to achieve a basic understanding of the ultrafast
magnetization processes in magnetic materials, both experi-
mentally and theoretically �for reviews, see Ref. 1�. Among
the various theoretical tools there are micromagnetic simula-
tions for the dynamics of the magnetization field M�r , t�
which are mainly based on Gilbert’s phenomenologically de-
rived equation of motion2

Ṁ�r,t� = − �M�r,t� � Heff�r,t� +
1

M�r,t�
M�r,t� � �Ṁ�r,t� .

�1�

Here the first term describes a precessional dynamics where
� is the gyromagnetic ratio, Heff is the effective field which
is composed3 of the exchange field, the magnetic anisotropy
field, the magnetic stray field, and the external field. The
second term is Gilbert’s damping term with the damping
constant �. Gilbert’s equation is the simplest conceivable
equation of motion for M�r , t�, and the question arises of
course whether it is also a sufficiently general equation to
describe magnetization dynamics in real magnets.

A physically intuitive microscopic approach to obtain an
equation of motion for the atomic moments MR�t� at the
atomic sites R is the breathing Fermi surface model.4–6 It can
be applied directly to magnetic 3d transition metals because
it treats the electronic s, p, and d states on equal footing, and
it can be combined with the highly accurate ab initio density
functional electron theory.5,6 So far it has been developed to
describe magnetization damping in homogeneously magne-
tized systems. It thereby has been shown that even in this
simple situation the original Gilbert equation does not hold
but the damping scalar in Eq. �1� must be replaced by a
damping matrix �= �M� which depends on the momentary
magnetization M�t�.

In the present paper we extend the breathing Fermi sur-
face model to noncollinear magnetization configurations.
The motivation for this is twofold. First, in many physically

and technologically interesting situations noncollinear con-
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figurations are involved �e.g., domain walls, magnetic vorti-
ces, inhomogeneous magnetization reversals, etc.�. Second,
within the breathing Fermi surface model the damping is
related to the change of the shape of the Fermi surface origi-
nating from the temporal modification of the magnetic con-
figuration. For a homogeneous magnet such a change arises
exclusively from the spin-orbit coupling which in 3d metals
is rather weak. For noncollinear situations the change arises
in addition from the change of the exchange interactions
which are much stronger than the spin-orbit couplings. We
thus expect that the damping in noncollinear systems is
stronger than the one in homogeneous systems.

II. BASIC THEORY

For a complete quantum-mechanical description of the
dissipative magnetization dynamics one had to start from the
time-dependent wave equation for electrons and nuclei, in-
cluding spin-orbit coupling. Instead, we want to describe the
situation approximately by an effective single-electron
theory which involves only electrons and which describes
the transfer of energy and angular momentum from the elec-
trons to the nuclei via electronic scattering processes. �It
should be noted that �when dipolar effects are neglected� this
transfer is only possible for a system with spin-orbit cou-
pling.� In such a theory the expectation values of observables
are determined by the matrix elements of the respective op-
erators formed with the single-electron spinor wave func-
tions � jk�r , t� and by the occupation numbers njk�t� describ-
ing the occupation of the states �jk� at time t. For instance,
the spin magnetization density is given by

m�r,t� = − �B�
jk

s,s�

njk�t�� jks
* �r,t��̂ss�� jks��r,t� , �2�

where �B is Bohr’s magneton and where � jks is the s com-
ponent of the spinor � jk with band index j and wave vector
k.

In principle, the � jk�r , t� should be determined from the
time-dependent single-electron wave equation. For a very
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slow magnetization dynamics we can assume,7,8 however,
that the electronic system is at any instant in its ground state
with respect to the momentary magnetic configuration
�eR�t�� given by the orientations eR�t� of the atomic magnetic
moments,

MR�t� = MReR�t� , �3�

at all sites R, and that the magnitudes MR are totally deter-
mined by this magnetic configuration. We thus may write

� jk�r,t� = � jk�r;�eR�t��� , �4�

� jk�t� = � jk��eR�t��� , �5�

where the � jk are the single-electron energies, and

njk�t� = f„� jk��eR�t���… � f jk, �6�

with the Fermi-Dirac equilibrium occupation numbers f jk.
All these quantities depend on the magnetic configuration
�eR�t�� because of the spin-orbit coupling �which is the only
source of theses dependencies for collinear magnetization
configurations� and because of the exchange interactions �in
the case of noncollinear systems�. When changing �eR� in
time, the � jk, � jk, njk, the Fermi energy �F��eR�t���, and the
Fermi surface will continuously attain a slightly different
form �“breathing Fermi surface”�. This so-called adiabatic
approximation thereby assumes implicitly that the electronic
system adjusts itself instantly to the new configuration
�eR�t�� because the scattering processes of the electrons �at
lattice defects or phonons� which are required for a redistri-
bution of the occupation numbers appear on a time scale
very much smaller than the characteristic time scale for the
dynamics of the eR�t�. Within this adiabatic approximation
there is just a precessional dynamics of the magnetic mo-
ments without damping,9

ėR = TR��eR��� , �7�

where

TR��eR��� = −
2�B

�

dE��eR���

deR
� eR �8�

is the torque acting on the magnetic moment at site R, and E
is the total energy which is a functional of the configuration
�eR��.

The breathing Fermi surface model takes into account the
fact that in reality the electronic scattering processes require
a nonzero time. It is designed to describe a slightly nonadia-
batic situation. Thereby it assumes that for the calculation of
the expectation values of observables we can still use the
adiabatic wave functions and eigenvalues, and that the devia-
tion from the strictly adiabatic situation can be accounted for
by inserting nonadiabatic occupation numbers njk which lag
behind the f jk and which are calculated from a relaxation
ansatz

dnjk�t�
dt

= −
1

� jk
�njk�t� − f jk�t�� . �9�

Here the � jk are relaxation times which in general will de-

pend on the electronic state �jk�. For the case that � jk is
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much smaller than the characteristic time scale for the dy-
namics of the orientations eR, the approximate solution of
Eq. �9� is given by4–6

njk�t� = f jk�t� − � jk
df jk�t�

dt
. �10�

The scattering of the electrons at impurities or lattice vibra-
tions thereby is responsible for the transfer of energy and
angular momentum from the electrons to the lattice �via spin-
orbit coupling� and hence for the damping. With these as-
sumptions a nonadiabatic total energy is defined, and the
equation of motion is determined via Eqs. �7� and �8� with E
replaced by Enonad.

For the calculation of Enonad, a phenomenological exten-
sion of the ab initio density functional electron theory is
used.5,6 In the strictly adiabatic limit, this theory yields
two equivalent expressions for the total energy E�n , �eR�t���
for a given configuration �eR�t��, where n
= (	�r , �eR�t��� ;m�r , �eR�t���) with the electronic density 	,

E = Ekin + EHartree + Exc + Epot, �11�

and

E = �
jk

njk� jk + Edc, �12�

where Ekin, EHartree, Exc, Epot, and Edc denote the kinetic en-
ergy, the Hartree energy, the exchange correlation energy, the
potential energy, and the double counting term, respectively.
Because of the variational property of E�n , �eR�� only those
terms in Eq. �11� or Eq. �12� contribute to the derivative
�E /�eR �and hence to the torque TR� which depend explicitly
�and not just implicitly via n� on the orientations eR.

A. Collinear situation—the conventional breathing Fermi
surface model

For homogeneously magnetized systems with spin-orbit
coupling the double counting term Edc in Eq. �12� depends
only implicitly on the orientations of the magnetization via n,
and therefore the torque TR=T results exclusively from the
first term in Eq. �12� where the � jk �and hence also the njk�
depend on the orientation of the magnetization in the crystal
because of the spin-orbit coupling. Neglecting the depen-
dence of the magnitude M of the magnetic moment M=Me
on e, as well as the dependence of � jk on �jk� the theory
yields5,6 the following equation of motion:

Ṁ = − �M � Haniso +
1

M
M � ��= �M� · Ṁ� �13�

with �=−2�B /�. This equation looks very much like the
Gilbert equation �1�, with the only but very important differ-
ence that the constant damping scalar � of the Gilbert equa-
tion is replaced by a matrix which depends on the orientation
of M,

�lm

�
= −

�

M
�
jk

�f jk

�� jk
	 �� jk

�el
	

M
	 �� jk

�em
	

M
, �14�
and the vector
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Haniso = −
1

M
�
jk

f jk
�� jk

�e
�15�

is the anisotropy field. In Refs. 5 and 6 the quantities �� jk /�e
are calculated by the ab initio density functional electron
theory, using the transverse torque operator,10 and the prop-
erties of the damping matrix �= are discussed. It turns out that
for nanostructured materials like monolayers or monatomic
wires the damping is identically zero for some orientations of
M, and this represents an additional option for optimizing
the magnetization reversal process in these nanostructures.

B. Noncollinear situation—the modified breathing Fermi
surface model

In this section we extend the breathing Fermi surface
model to the case of noncollinear magnetization configura-
tions. As described in the introduction, within this model the
Fermi surface changes when changing the magnetization
configuration. For noncollinear systems the change of the
Fermi surface in general is dominated by the interatomic
exchange interactions which are much stronger than the spin-
orbit interactions. The electronic system adjusts itself to a
new magnetization configuration and hence to a new Fermi
surface by scattering processes which require time and which
transfer energy and angular momentum from the electrons to
the lattice via spin-orbit coupling. Therefore, both for the
homogeneous and for the noncollinear situation it is finally
the spin-orbit coupling which is responsible for the damping,
i.e., the exchange interactions on their own would not be able
to generate damping. The difference between the two situa-
tions concerns only the “driving force” for damping, i.e., the
change of the Fermi surface which is in general stronger for
the noncollinear case. In the present section we therefore will
neglect the spin-orbit coupling when calculating the change
of the single-electron energies with configuration. The spin-
orbit coupling is included implicitly in the theory via the
relaxation time ansatz for the occupation numbers njk.

To describe this situation, we will apply the so-called
atomic-sphere approximation �ASA� for the spin
direction.11,12 To do this, the system is subdivided into space-
filling atomic spheres of volume 
R at the atomic sites R,
and local spin quantization axes �SQAs� described by unit
vectors eR

SQA �with respect to which the Pauli spin matrices in
the spheres are defined� are assigned to each atomic sphere.
Then the local-spin-density approximation13 �LSDA� for the
exchange-correlation energy Exc,

Exc
LSDA = �

R




R

	�r��xc�	�r�, �m�r���d3r , �16�

where �xc is the LSDA exchange-correlation energy per elec-
tron and �m�r�� denotes the modulus of the magnetization
density, is approximated by

Exc
ASA = �

R




R

	�r��xc�	�r�,eR
SQA · m�r��d3r . �17�

The introduction of the spin ASA breaks the rotational in-

variance of the original LSDA exchange-correlation func-
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tional �16�, because now the exchange-correlation field
Bxc

ASA=−�Exc
ASA/�m�r� is parallel to eR

SQA in each atomic
sphere and favors an orientation eR of the atomic magnetic
moment MR close to eR

SQA for the case that the eR
SQA are

noncollinear �for a collinear system we have eR�eR
SQA�. On

the other hand, the kinetic energy Ekin favors a collinear
magnetization density, and the competition between Exc and
Ekin results in misalignment angles �R between the eR

SQA

and the eR obtained for a density functional calculation in
spin ASA. Because the Bxc

ASA are often large, the hope is that
the �R are often small and that the directions eR are to a
good approximation given by the eR

SQA. If this holds, then we
can generate the noncollinear configurations �eR� by pre-
scribing the respective orientations �eR

SQA�. It has been shown
in Ref. 14 that this approximate constraining scheme for the
directions eR of the atomic magnetic moments may fail badly
for the case of strong relative cantings of neighboring atomic
moments. For small cantings, e. g., for a frozen-magnon con-
figuration with a small cone-opening angle  and wave vec-
tor q the misalignment angles scale like12 �R /
���q� / �Bxc�� where Bxc� is an appropriately averaged
exchange-correlation field and ��q� is the frequency of the
magnon. For Fe with large �Bxc�� this yields �R /�10%
whereas for Ni values of up to 46% were found for large q.

In the following we confine ourselves to situations where
the above described constraining scheme for the atomic mo-
ment directions �eR� via the prescription of the �eR

ASA� for the
exchange-correlation energy works reasonably well, and a
necessary precondition for this is that we consider situations
with small relative cantings of the atomic moments.14 For a
calculation of the derivatives �E /�eR��E /�eR

SQA it is then
convenient to start from Eq. �11�, because the only term
which depends explicitly on the orientations of the SQAs is
Exc=Exc

ASA, Eq. �17�. The kinetic energy Ekin does not depend
explicitly on the eR

SQA because we neglect the spin-orbit cou-
pling, and EHartree depends only implicitly via 	 on the eR

SQA.
Taking again into account the variational property of E, the
torque TR then is given by15

TR =
�EASA

�eR
� eR �18�

with

�EASA

�eR
= Hex,R =

1

2




R

m��r��Vxc,↑�r� − Vxc,↓�r��d3r .

�19�

To derive Eq. �19�, a spin-density matrix 	ss� is defined with
respect to the local SQA �which represents the local z axis�
by

	ss��r,t� = �
jk

njk�t�� jks
* �r,t�� jks��r,t� , �20�

with 	=	↑↑+	↓↓. The exchange-correlation potentials Vxc,↑

and Vxc,↓ then are given by
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Vxc,↑�r� =
��	�xc�

�	↑↑
, Vxc,↓�r� =

��	�xc�
�	↓↓

. �21�

The vector m��r� is the component of the magnetization
vector perpendicular to the SQA, with

m�,x�r� = 	↓↑�r� + 	↑↓�r�, m�,y�r� = − i	↓↑�r� + i	↑↓�r� .

�22�

Altogether, we see that the torque TR is a functional of the
spin-density matrix, and in the strictly adiabatic limit we
must insert the adiabatic occupation numbers njk�t� given by
Eq. �6�, yielding TR=TR�	ss�

ad �r��.
To describe the slightly nonadiabatic situation, we again

use a phenomenological extension of the ab initio density
functional electron theory in the spirit of the breathing Fermi
surface model. To do this we replace the torque TR�	ss�

ad �r��
by the torque TR

nonad�TR�	ss�
nonad�r�� where the nonadiabatic

spin-density matrix is calculated from Eq. �20� by inserting
the adiabatic wave functions � jks given by Eq. �4� but replac-
ing the adiabatic occupation numbers by the nonadiabatic
occupation numbers given by Eq. �10�. Evaluating TR

nonad

around f jk up to first order in � jk and writing �f jk /�t in the
form

�f jk

�t
=

�f jk

�� jk

�� jk

�eR
ėR �23�

and assuming again that � jk=� for all states �jk� we find

TR
nonad = TR + TR

diss �24�

with

TR
diss = eR � �= RėR �25�

and with the damping matrix

�pq,R

�
= �

jk

�Hex,R,p

�njk

�f jk

�� jk

�� jk��eR���

�eR,q
. �26�

Because our theory holds only for small relative spin cant-
ings �because we have used the spin ASA for constraining
the moment directions� we can neglect again the dependence
of the magnitudes MR of the magnetic moments MR
=MReR on the magnetic configuration �eR��, and then the
equation of motion for the atomic moments MR is

ṀR = − �MR � Hex,R +
1

MR
MR � ��= R��MR�� · ṀR� .

�27�

This equation has the same structure as the corresponding
equation �13� for the case of a homogeneous magnetization,
with the homogeneous variable M of �13� replaced by the
site-resolved atomic moment MR and with the anisotropy
field Haniso of �15� replaced by the site-resolved exchange
field Hex,R=�EASA/�eR according to Eq. �19�.

III. DISCUSSION AND CONCLUSIONS

Both the damping in homogeneous magnets as well as the

in noncollinear systems are described by a damping term in
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the equation of motion which looks similar to the Gilbert
damping term, however, with several important differences.
First, the damping scalar � of the Gilbert equation is re-
placed by a damping matrix which means that the damping
term is no longer a vector perpendicular to the time deriva-
tive of the local magnetic moment. Second, the damping
matrix depends in the magnetic configuration, in contrast to
Gilbert’s damping scalar. For homogeneous situations this
configuration is described by the orientation of the magneti-
zation, �= =�= �M�, whereas for noncollinear systems it is de-
scribed by the orientations of all atomic magnetic moments
in the system, i.e., �= R=�= R��MR���. As a result, for noncol-
linear systems the Gilbert equation which is a local equation
is replaced by a nonlocal equation, i.e., the mathematical
character of the equation of motion has been changed com-
pletely. Finally, in noncollinear magnets the damping matrix
�= R is different for different sites R if the magnetic configu-
rations in the surroundings are different for different R. This
means that at least for systems for which the degree of rela-
tive cantings of magnetic moments is different for different
parts of the system �e.g., very high in the core of a magnetic
vortex and much smaller outside� it does not make sense to
use just one damping matrix.

In the breathing Fermi surface model the damping matrix
is determined by the dependence of the effective single-
electron energies on the modification of the magnetic con-
figuration, and by the electronic scattering processes which
transfer angular momentum from the electronic spin system
to the lattice. The latter process is mediated by the spin-orbit
coupling. The change of the single-particle energies results
exclusively from the spin-orbit coupling for a homoge-
neously magnetized system, whereas in general there is a
strong additional contribution from the exchange interactions
for a noncollinear magnetization configuration. An exception
is the case of a propagating spin wave. Because the exchange
energy of a spin wave does not depend on its phase, the only
dependence of the single-electron energies on the phase
arises from the spin-orbit coupling.

There is another important difference between damping in
a homogeneous system and in a noncollinear system. In the
former case the damping matrix, Eq. �14�, is of second order
in the derivatives of the single-particle energies, whereas in
the latter case it is of first order, see Eq. �26�, like the mag-
netic anisotropy field Haniso, Eq. �15�. Because the deriva-
tives may be positive and negative for different electronic
states �jk� there may be a near-cancellation of many terms in
the sum over �jk� which may result in a delicate convergence
behavior with respect to the number of considered states �as
for Haniso�. However, it must be recalled that the derivatives
are in general considerably larger for a noncollinear than for
a collinear situation because the exchange coupling is stron-
ger than the spin-orbit coupling. It is planned to figure out
the relative importance of the two damping mechanisms by
ab initio calculations for various representative situations.

To conclude, we have generalized the breathing Fermi
surface model to the case of slightly noncollinear magneti-
zation configurations. The damping term in the equation of
motion has a similar structure as the Gilbert damping term,
with the important difference that Gilbert’s damping scalar is

replaced by a damping matrix which in general is different
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for each atomic site and which depends in the whole mag-
netic configuration of the system, i. e., the resulting equation
of motion is strongly nonlocal. For strongly noncollinear
magnetization configurations �e. g., magnetic vortices of nar-
row domain walls� our detailed theoretical approach cannot
be used, but we are convinced that also in such situations the
general statements on the site dependence and the nonlocal-
ity of the damping term are valid. In addition, for such con-
Fähnle, R. Drautz, R. Singer, D. Steiauf, and D. V. Berkov,

184427
figurations not only the orientations eR but also the magni-
tudes MR of the atomic magnetic moments MR=MReR
depend8 on the whole magnetic configuration �MR�� whereas
in the Gilbert equation the magnitudes of the magnetic mo-
ments are conserved. Altogether, we must conclude that the
Gilbert equation represents at most a very rough approxima-
tion for the equation of motion for noncollinear magnetiza-
tion configurations.
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