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We present results for the dynamic structure factor of the S=1/2 bond alternating Heisenberg chain over a
large range of frequencies and temperatures. Data are obtained from a numerical evaluation of thermal aver-
ages based on the calculation of all eigenvalues and eigenfunctions for chains of up to 20 spins. Interpretation
is guided by the exact temperature dependence in the noninteracting dimer limit which remains qualitatively
valid up to an interdimer exchange A=0.5. The temperature induced central peak around zero frequency is
clearly identified and aspects of the crossover to spin diffusion in its variation from low to high temperatures
are discussed. The one-magnon peak acquires an asymmetric shape with increasing temperature. The two-
magnon peak is dominated by the S=1 bound state which remains well defined up to temperatures of the order
of J. The variation with temperature and wave vector of the integrated intensity for one-magnon and two-

magnon scattering and of the central peak are discussed.
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I. INTRODUCTION

Low-dimensional gapped quantum antiferromagnets have
received much interest in recent years both experimentally
and theoretically. They serve as model substances allowing
one to investigate in detail the effects of quantum fluctua-
tions and to test theoretical models. A particularly simple
class of materials in this context consists of an assembly of
dimers (two strongly coupled spins 1/2) which interact suf-
ficiently weakly to guarantee that the dimer gap does not
close. These materials are characterized by a disordered sin-
glet ground state and a finite spin gap to triplet excited states.
Materials of this type occur in nature as quasione-
dimensional ~ (1D)  [Cu(NOs),-2.5H,0],!  quasitwo-
dimensional (BaCuSi,Og),> and three-dimensional (3D)
(KCuCl; and TICuCl;) (Refs. 3 and 4) compounds.

Systems of this type are characterized by both quantum
and thermal fluctuations: Thermal fluctuations are controlled
by the temperature 7 and the quantum fluctuations of interest
in dimer systems (i.e., those modifying the basic quantum
mechanics of isolated dimers) are governed by the interdimer
coupling. So far, most investigations have concentrated on
the quantum aspects, excluding thermal fluctuations by
working at zero (theoretically), respectively, low (experimen-
tally) temperature. The theoretical approach is then restricted
to the low-lying eigenstates of the quantum Hamiltonian,
which are accessible to an approximate analytical treatment
or to numerical calculations. However, at finite temperature
of the order of or even large compared to the magnetic ex-
change energy, all levels participate and more elaborate ap-
proximations, respectively, numerical approaches are neces-
sary.

Recently increasing interest has developped in the finite
temperature behavior of such systems and experimental re-
sults for Cu(NO;),-2.5H,0 (Refs. 1 and 5) and TICuCl;
(Ref. 6) demonstrate that an understanding of the interplay of
thermal and quantum fluctuations requires additional work
on the theoretical and numerical side. Our aim here is to
investigate for the system of weakly coupled dimers de-
scribed above the dynamical structure factor over a wide
range of frequencies and temperatures.
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To explore from numerical calculations the content of a
given Hamiltonian for finite temperatures is more involved
than for T=0 since the Lanczos approach which allows one
to treat reasonably large systems (up to 36 spins S=1/2)
does not give more than a few low-lying energy levels. In-
stead, the direct approach to dynamic properties at finite tem-
peratures requires full exact diagonalization (FED) to obtain
energies and wave functions; this has been done so far for
the XXZ S=1/2 chain’ and the frustrated S=1/2 Heisenberg
chain® up to 16 spins. If FED is restricted to energy levels
only, thermodynamic properties such as the specific heat,
susceptibility and structure factor S(q) are obtained; this has
been done for a number of dimer type systems such as the
dimerized and frustrated S=1/2 chain’ and the two-leg
ladder.'® These numerical approaches to finite temperatures
have been supplemented by approximate analytical ap-
proaches such as including thermal occupation factors in the
mean field approach®!! and a strong coupling field theoretic
approach.'?

We describe the 1D S=1/2 chain with alternating isotro-
pic antiferromagnetic nearest-neighbor exchange [the bond
alternating Heisenberg chain (BAHC)] as a system of N/2
unit cells with two spins each and two exchange constants,
the intradimer exchange J and the interdimer exchange \J,
using the following Hamiltonian:

NI2
H=JE (Sn,l 'Sn,2+)\sn,2'sn+l,l)' (1)

n=1

We assume J>0 and apply periodic boundary conditions.
For A=0 the ground state of the system consists of singlets
on the intradimer bonds (n,1)—(n,2). These local singlets
can be excited to triplets which develop into a band of
gapped excitations when switching on . At higher energies
multiparticle excitations dominate the spectrum. In the limit
A=1 we arrive at the well known Heisenberg antiferromag-
netic chain (HAF) with pairs of S=1/2 spinons as lowest
gapless excitations. Other related models are described in
Ref. 13.
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The dynamics of such a system is most appropriately dis-
cussed in terms of the dynamic structure factor, i.e., the Fou-
rier transform of the time dependent spin correlation function
which, apart from well known prefactors gives the spectral
weight measured as the magnetic inelastic neutron scattering
(INS) cross section.'* The dynamic structure factor of the
BAHC at low temperatures (7<<J) is characterized by a peak
due to singlet-triplet transitions as most prominent feature
and continua of multiparticle excitations at higher energies.
From extended work on the 7=0 quantum mechanics of this
system (Refs. 15-19, and references therein) it is known that
finite interdimer coupling N leads to considerable modifica-
tions in energies and transition strengths for one and two
magnon processes as well as to the emergence of bound
states below (and above) the two magnon band. Here we
present results from FED for up to 20 spins for the longitu-
dinal dynamic structure factor (DSF) $%(q,w) for a wide
range of temperatures, varying from 7<<J to 7> J. Our dis-
cussion will concentrate on the variations of the one and two
magnon line shapes with temperature (with particular em-
phasis on the bound state) and on the temperature depen-
dence of the contributions from the temperature induced,
“central peak” at w= 0 which is due to intraband transitions.
This peak is the signature of spin diffusion in the classical
limit; its temperature dependence has not been discussed so
far in a microscopic context, but it is clearly seen in recent
INS experiments.’

For N spins localized on sites x; on a 1D lattice the dy-
namical structure factor is defined as

1 * .
Saﬁ ,w)=—— dtel[q(x,'—x_/)—wt]
(q,0)=—-2,

ij J -

(S7(1)SF(2=0)). 2)

The superscripts a, 3 denote the spin components and the
brackets (- --) thermal expectation values (which for 7=0 re-
duce to ground state expectation values (0| -+|0)). For the
isotropic Hamiltonian (no magnetic field) of Eq. (1) the dy-
namic structure factor is diagonal with three equal compo-
nents. It is therefore sufficient to restrict the discussion in the
following to one component, S%(q,w). In the presence of a
magnetic field, a case to be treated in subsequent work, we
will have to distinguish between S%(q, w) and $*~(q, ).

The remainder of this article is organized as follows: In
Sec. IT we review and discuss simple limiting situations and
our numerical approach, in Sec. III we present results for the
BAHC with A up to 0.3 and temperatures up to 4J and in the
final Sec. IV we discuss the range of validity of our approach
and give our conclusions.

II. LIMITING CASES AND NUMERICAL APPROACH

The BAHC has lattice sites x;=nb+pd/2, n=1---N/2,
p==1. Here d is the intradimer distance, the direction of d
in general differs from the chain direction given by b. At
finite temperatures the general expression for S%(q,w) is
written as
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e_'gEi
5%(q, @) = 2, — 2 KlSe P olo = (@, - )],
i k

3)

where Z is the partition function and we have introduced the
Fourier transformed spin operators

N/2-1

Sfl — % E E eiq('lb+pd/2)Sf,,,- (4)
VN n=0 p=+1 ’

We begin by reviewing results for the two limiting cases
T=0 (pure quantum effects) and A=0 (pure thermal fluctua-
tions). The BAHC at T=0 with its singlet-triplet gap is one
of the simplest systems to study strong quantum fluctuations
in numerical and analytical approaches. This has been done
by many different methods, among them the random phase
approximation'® and series expansions in the coupling
strength \.'6-1° The application of these methods has concen-
trated on two types of low-lying excitations, i.e., eigenstates
of the Hamiltonian, above the singlet ground state: (i) The
basic quantum excitation is the first excited triplet, i.e., the
propagating one magnon excitation (one excited dimer) and
(ii) two magnon excitations which form a continuum with
the possibility of bound states. These states are decorated by
admixtures of multimagnon excitations which become more
and more important when the interdimer coupling N\ in-
creases. These methods have established the existence of
bound states of two excited dimers below the two magnon
band, two singlets and two triplets,17 for wave vectors close
to 7 and energies and transition matrix elements for the one
and two magnon bands have been obtained up to 13th order'®
from series expansions. We remark that the analogous calcu-
lation including 3D interactions has only been done up to
third order.!” These results are in excellent agreement with
experiments at low temperatures.

In the limit of vanishing coupling, A=0, on the other
hand, the BAHC reduces to an assembly of noninteracting
dimers and its exact dynamical structure factor can be easily
calculated for all temperatures. In spite of the simplicity of
the calculation the result is instructive as a guide to the gen-
eral case. The full result for $%(q, w) in this limit is

. 11 _
Sio(@0) = ;75 2(1 + cos g - d)e Sw)

+(1-cosq-d)[dw-J)+e P sw+J)]}.
(5)

This expression is valid for any number of spins N. The
wave vector q is in chain direction and ¢ takes only the N/2
discrete values g=(27m)/(Nb/2), m=1,2,...,N/2 of the
lattice of dimers (lattice constant b). Equation (5) shows the
two types of contributions which survive the limit A — 0, i.e.,
which are present in the noninteracting dimer limit: (i) one
magnon excitations with energy w==J (related in strength
by the detailed balance factor ¢=#); (ii) a contribution at @
=0 which results from transitions (diagonal terms for S%)
within the excited dimer triplet. It therefore carries a factor
e B/ and will develop into a central peak for N # 0. Since all
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transition processes in this limit are localized, the only non-
trivial wave vector dependence results from form factors re-
lated to the internal dimer structure: the intradimer distance d
determines the “dimer structure factor” (1—cos q-d) and the
corresponding factor (1+cos q-d) for the central contribu-
tion.

The result of Eq. (5) is independent of N since for inde-
pendent dimers, A=0, the correlation length vanishes and the
exact result is obtained already for N=1. Increasing N only
changes the number of wave vectors q and their positions.
This guarantees the extensivity of the sum rule
3 dwS%(q,w)=N/4.2° The absolute intensity of the one-
“magnon” peak at, e.g., g=2 develops from 1/2 at T=0 to
1/8 at T— . We note that the various contributions to this
intensity from states with a different number of excited
dimers depend on N as can be identified easily from Eq. (5):
The prefactor in Eq. (5),

1 (143 )Vt
1+3e™ (143 )N

(6)

originates from the partition function in the denominator and
the phase space factor resulting from excited dimers which
do not participate in the transition in the numerator. The
expansion of the numerator thus gives as a series the relative
strength of the various contributions with energy J starting
from a state with M excited dimers: The contribution
of states with M excited dimers is proportional to
(%2)(3e‘ﬁj)M. For T—  this reduces to (%2)3’”, the degen-
eracy of states with M excited dimers. From this follows that
the various contributions to the dynamic structure factor
from states with M excited dimers have a well defined maxi-
mum (for N>1) at M=M,=zN with z=3/(e”’+3). This
means M= 0.524N for T=J and My,=0.75N for T— <.

It should be noted that even for T— o the result of Eq. (5)
is a quantum mechanical result reflecting the discrete energy
spectrum of a S=1/2 dimer. It does not agree with the clas-
sical limit which is defined by the limit #— 0, i.e., for spins
which are classical vectors or alternatively in the limit S
— o, From the latter approach follows that the frequency
regime 0<w<2JS fills continuously with excitation
strength in the classical limit. The result of Eq. (5) can
clearly also be generalized to include an external magnetic
field, a case which will be treated in a forthcoming paper.

Allowing for finite coupling \ several features appear: (i)
the contributions at w=0 and w==+J acquire a finite width
owing to the dispersion of the excitations, (ii) additional con-
tributions at w= +pJ appear in increasing order in \, (iii) the
intradimer form factors get modified.'"” For small coupling
N <<1, two essential characteristics of the noninteracting limit
survive qualitatively as shown for N=20, A=0.3 in Fig. 1:
The correlation length remains small and the density of states
continues to show a well defined sequence of peaks with
maxima at E= pJ up to the upper bound of the spectrum and
with widths of the order of N independent of energy. Thus,
the largest contributions to the transitions w=J (w=2J),
which start at energies E~M, J will be included for N
=16 (N=20) even for T—oe. We conclude that these sys-
tem sizes will be sufficient to obtain reasonable results for
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FIG. 1. Density of states for N=20, A=0.3, g=. Each point in
the figure represents one multiplet.

the BAHC structure factor at moderate N and all tempera-
tures in its most interesting frequency regimes.

For our numerical calculations we have used the House-
holder algorithm to obtain all eigenvalues and eigenvectors
of the Hamiltonian in the subspace of constant ¢ and wave
vector. Calculations were performed on workstations with
Pentium IV processors at the ITP, Hannover University and
on the JUMP supercomputer at NIC Jiilich. Calculations for
N=16 are comfortable to perform (matrix dimension is about
2000, required memory about 100 MB). A few calculations
have been performed for N=20 for one value of A and the
wave vector and frequency regime where the bound triplet
two magnon state is found; here memory (a few GB) and
required CPU time are at the limit what can be reasonably
managed at present.

III. RESULTS AND DISCUSSION

In this section we present our results for S%(q, ). We
cover the full range of temperatures (in units of J), T
=0.1---T=4 (the latter being representative for T— ) and
wave vectors ¢ (in units of »7') from 0 to 2. As standard
values we use N=16 and A=0.3. We find that the variation
with \ for smaller values can be safely found from interpo-
lating the results presented here. The number of spins
strongly influences the level density and the discreteness of
reciprocal space; however, the positions of levels which oc-
cur at identical wave vectors for different N (e.g., the one
magnon state and the S=1 bound state below the two mag-
non band at wave vector 1) do not change with N going from
N=12 to N=24 (values for N=24 were obtained from Lanc-
zos diagonalization). In this work we consider the simplest
case d=b/2. Then d is the distance between all spins and it
is sufficient to specify g=|q| in the following. d=b/2 implies
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S*(g,w) for N~ 16, A~

03,7 05

S#(g,w) for N — 16, A — 0.3, T — 2.0

S#(q,w)

0.012

0.01
0.008
0.006
0.004
0.002

FIG. 2. Overall picture of the dynamic structure factor S%(q, )
for N=16, A=0.3, (a) T=0.5, (b) T=2.0. The intensity of the two
magnon peaks is enlarged by the factor 20.
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that the effects from the dimer form factors are particularly
simple: in lowest orders the central contribution vanishes for
g=27 and the one magnon contribution for g=0. Tempera-
tures and frequencies are given in units of J throughout this
section. The complete variation of $S%(¢q, w) with wave vector
and frequency for N=16 and A=0.3 is shown in Fig. 2 for
two temperatures, 7=0.5 and 7=2. The small contribution of
the two-magnon excitations has been enlarged by a factor 20.
The remaining figures display the details of the influence of
temperature on the various interesting aspects of the spectra.
The scale of S%(q, w) is set by the value for the one magnon
peak for noninteracting dimers at 7=0 and ¢g=21r, i.e., 1/2 in
the units of Eq. (2). For all presentations the transitions
strengths have been added up within frequency bins of
mostly Aw=0.01 (0.002 in Fig. 6).

Figure 3 illustrates the evolution with temperature of the
one-magnon peak for N=16 and A=0.3. With increase in
temperature, the peaks extend over a nearly constant range in
frequency, although the decrease of the maximum of inten-
sity formally implies an increase in the width at half maxi-
mum. For both g=7 and 27 the position of the maximum
shifts to lower frequencies, but the peak develops a marked
asymmetry with more intensity on the high frequency side.
This effect is most pronounced for g=21r, the wave vector of
the energy gap (and may not be the case at all for small
values of g, see Fig. 2). Thus, the detailed description of the
line shape provides an understanding for the puzzling obser-
vation that the gap energy seems to increase with
temperature® (comparable to an analogous observation in the
Haldane chain).?! It would be interesting to compare the line
shape to the result of the theoretical approach of Ref. 12.
However, with N=16, a continuous line shape results only

S#(q, w) for N=16, A=0.30, g=7 and g=27
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N=16, A=0.30, g=7/4 and g=m
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for temperatures above the energy gap and is thus in the
nonuniversal approach of the approach of Ref. 12. When we
look at the microscopic origin of the peak broadening, we
find that, e.g., at T=1.0 the basic transition from the ground
state to the one magnon excitation at g=1r is responsible for
30% of the weight at that frequency and that for the neigh-
boring frequencies transitions starting from the one-magnon
band contribute about 10% of the total weight, whereas the
by far largest part of the intensity originates from transitions
starting at states with two or more excited dimers.

Figure 4 illustrates for N=16, g=/4, and 7 the evolu-
tion of the central peak with temperature (for A=0.3). At low
T and A<<1 the shape of the central peak is dominated by
transitions inside the weakly interacting one magnon band
with g-independent matrix elements. The physical process
may be thought of as an external probe accelerating a ther-
mally populated excitation and is thus similar to well known
processes in soliton bearing 1D magnets.?? As in these mod-
els, the limiting form of the structure factor is

Olw,(9) -1 (7

T

SE (g, w) e P
© V- (‘)2/(‘)m(q)2

with ,,(¢)=Asin(¢/2) just from phase space effects (a
small variation with temperature resulting from the disper-
sion has been neglected). Numerically we find that the cutoff
of the central peak remains localized at w= w,,(q) for all
wave vectors and temperatures [apart from corrections of
O(N\?)]. The line shape, however, cannot be expected to be
reproduced since only a few discrete transitions in the one
magnon band are available for N=16 and dominate the spec-
trum at the lowest temperatures. Nevertheless, for g=, T

02 04
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0.003
0.002
FIG. 4. (Color online) Central peak for N
=16, A=0.3: variation with temperature up to 7
=4 for (a) g=m/4 and (b) g=.
0.001

=0.5 the inverted line shape of Eq. (7) starts to become vis-
ible even with this restriction. Between medium (7=0.5) and
high (T=4) temperatures a crossover of the line shape from
squarelike to Gaussian is observed for small wave vectors. In
view of the experimental®® and theoretical**?> discussion of
spin diffusion in gapped 1D magnets we have also made a
rough analysis of the linewidth variation with the wave vec-
tor. We find that the T=4 spectra fit surprisingly well to a
Gaussian (but not to a Lorentzian) and the linewidth in-
creases by a factor of about 5 upon doubling the wave vector
from g=m/4 to /2. This indicates that the crossover to
spin-diffusion-like behavior governs the behavior of the DSF
in the regime considered here. The decrease of the overall
intensity with temperature due to the thermal occupation fac-
tor will be discussed below, see Fig. 7.

Figure 5 shows the two-magnon peak at g=1 (where the
bound states are most clearly visible) and g=27 for N=16,
A=0.3 in the temperature range 7=0.5---2 (note the en-
hancement in frequency and intensity scales). For g=1r the
low temperature spectra are entirely dominated by the S=1
bound state at w=1.938. .., whereas the continuum (which at
T=0 is smaller by a factor of A? in intensity'®) plays no
significant role. The bound state remains clearly visible up to
T=1 and then disappears in parallel with rapid decrease in
the integrated intensity of the two-magnon peak for tempera-
tures above T=1 (see also Fig. 7 below). This reflects the
fact that dimers become independent of each other with in-
creasing temperature such that the correlations between spins
in two different dimers required for a finite two-magnon
peak disappear. In Fig. 6 we present a comparison between
results for N=16 and N=20 (available only for g=1r and the
limited frequency range 1.84<w<2.02). In going from N
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=16 to N=20 some improvement is obtained, the continuum
becomes smoother and the bound state less dominant, but the
main characteristics are unchanged. Thus, the increase in N
is not really crucial. The spectra invoke the impression that
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at intermediate temperatures additional transitions (in par-
ticular the $§=0 state at w=1.868 which could be reached
from a thermally excited S=1 state) become visible. This,
however, is misleading as the comparison between the data

I | S T I I TTT1T I TT 1T I TTT 2)(10_5
L N=16 |
| T=10 N=20 |
- — 1.5x10-°
L J FIG. 6. (Color online) The two-magnon peak
B A yg-s5 for g=m, A=0.3 and N=16 and N=20 (for the

frequency interval 1.84<w<2.02) in compari-
son: (a) 7=0.5 and (b) T=1. Here, narrow fre-
quency bins, Aw=0.002, are used.

5x10-¢
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I (g==m, T) for N=16, A=0.30
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FIG. 7. Temperature dependence of the exclusive structure fac-
tors I,(q,T) for N=16, A\=0.3 and g=7. n=0,1 [left scale, lines
give the result for A=0 from Eq. (5)] and n=2 (right scale).

for N=16 and N=20 shows: A change in the number of spins
leads to a different set of allowed wave vectors and thus,
from the accompanying change in the initial and final ener-
gies, to trivially different excitation frequencies (although the
energies at, e.g., g=1r are remarkably independent of N). For
g=21r there is no bound state; the two discrete transitions at
T=0 in Fig. 5(b) are the remainder of the continuum for the
limited number of spins 16.

For a more global analysis we show in Fig. 7 the intensi-
ties I,(g=,T) obtained from integrating S%(g=1,w) over
frequency intervals (n—%) <w< (n+%) The results for g=
are representative also for the other g values. These “exclu-
sive structure factors” show most clearly the relevance of
quantum fluctuations with increasing interdimer coupling A
at low temperatures. Quantum fluctuations are most impor-
tant for the one-magnon peak I, at low temperatures. /(g
=1r,T) comes close to its classical limit independent of \ at
T=2, whereas the temperature dependence of Iy(g=1,T)
follows closely the A=0 result of Eq. (5) for all temperatures.
The temperature variation of I,(g=m,T) shows clearly that
an observation of the two-magnon peak requires low tem-
peratures 7<<1. Transitions corresponding to exciting more
than two dimers are extremely small in magnitude: A typical
number is I3(g=2m,T=0.5)~2X 107>, From further calcu-
lations of integrated intensities we conclude that the number
of spins is not very important for the overall features: N
=12 gives nearly undistinguishable results.

Figure 8 shows the influence of temperature and inter-
dimer interaction on the dimer structure factor (1-cos gd)
for the one-magnon intensity and the corresponding factor
(1+cos gd) for the central peak. In the analysis of experi-
ments this factor is usually considered as a prefactor inde-
pendent of A and w, although it is clear already from the zero
temperature analysis'® that corrections are present in higher
orders in A. Figure 8 shows an overall agreement between
the numerical results for A=0.3 and those of the noninteract-
ing limit although closer inspection reveals significant differ-
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I.(g, T) for N=16, A=0.30
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FIG. 8. Wave vector dependence of the exclusive structure fac-
tors I,(q,T) for (a) T=0.5 and T=2.0. Lines for n=0,1 give the
result for A=0 from Eq. (5). Units for /, (right scale) are enhanced
by a factor of 20.

ences: The ratio I,(¢g=2m,T=0.5)/1,(g=m,7=0.5), e.g., is
about 2.5 for A=0.3 compared to 2 for A=0. Figure 8 also
displays the wave vector dependence of the two-magnon
peak which is absent in the noninteracting limit: The inten-
sity of this peak depends strongly on wave vector and wave
vectors ¢ > m are most favorable for an observation of these
processes.

IV. CONCLUSIONS

We have calculated the dynamic structure factor of the
bond alternating Heisenberg chain based on full exact diago-
nalization for chains with up to 20 spins 1/2. This allows us
to obtain results at finite temperatures which cover the com-
plete temperature range from 7<<J to 7> J. Our results are
for dimerlike chains with sufficiently small interdimer ex-
change NJ. We find that the characteristics of the noninter-
acting dimer limit [where the full temperature dependent
structure factor, Eq. (5), is easily available analytically] de-
scribe much of the interacting BAHC. This is demonstrated
here for N=0.3 (but is essentially true up to typically A
~(.5) and applies in particular to the existence of the central
(zero frequency) peak and to the temperature and wave vec-
tor dependence of the integrated intensities (exclusive struc-
ture factors) for the central and the one-magnon peak. This
large range of validity of the dimer picture is in agreement
with the observation?® that the dimer picture gives a good
account of excitation strengths up to and including the iso-
tropic limit of the HAF at zero temperature.

Experimental and theoretical interest in the dynamics of
the BAHC results from the possibility that this theoretical
model and its realizations in a number of materials might
serve as simple model systems to discuss the interplay be-
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tween temperature and quantum fluctuations. Our results re-
veal that this interplay becomes apparent in a number of
points which are accessible to experimental, in particular
neutron scattering, observations:

(i) The shape of the central peak which is a prominent
feature of the BAHC, displays the crossover with tempera-
ture from the noninteracting particlelike behavior at low tem-
peratures to the diffusive behavior at high temperatures.

(ii) The one-magnon peak develops an asymmetric line-
width (with appreciable strength on the high frequency side)
with temperature. This is particularly evident for wavevector
g=2 at temperatures 7= 1 and appears to describe in more
detail the upward shift in gap energy with temperature noted
in approximate theoretical approaches.

(iii) The two magnon peak (around g= ) is dominated by
the bound triplet state on top of a small continuum which is
smooth at all temperatures and wavevectors.
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The results as presented here are restricted to the basic
situation of equidistant spins and isotropy implying the ab-
sence of an external magnetic field. In subsequent work we
will extend the calculations to cover the finite temperature
dynamics in an external magnetic field and also to describe
real materials such as Cu(NOs), and (VO),P,0;. We will
also investigate in more detail the regime A > 0.5, approach-
ing the isotropic (Heisenberg) limit in order to study stronger
deviations from the dimerlike situation.
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