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We revisit the phase transition from the Néel ordered to a valence bond solid �VBS� state in the two-
dimensional J1-J2 antiferromagnetic Heisenberg model. In the first part we address the question whether or not
this transition could be an example of a second-order phase transition due to a deconfinement of spinons. We
give arguments based on series expansion and spin-wave theory that this is not the case and the transition is
most likely first order. The method proposed here to detect first-order phase transitions seems to be very
sensitive and might be useful in other models as well. In the second part we analyze possible VBS patterns in
the magnetically disordered phase based on numerical data for different susceptibilities, obtained in the ordered
phase, which test the breaking of lattice symmetries. We conclude that a columnar dimerization pattern is the
most likely candidate.
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I. INTRODUCTION

It is well known that microscopically different systems
can show similar behavior near a critical point, a phenomena
termed universality. The universal behavior is caused by the
fact that only a small number of long-wavelength degrees of
freedom are relevant for most physical quantities at the criti-
cal point. It is indeed often sufficient to consider an effective
theory in which all modes other than the order parameter
have been eliminated. The concept of the order parameter
and effective theories based on this quantity has been devel-
oped by Landau and Ginzburg.1

Recently, it has been argued that there is a second-order
phase transition in the S=1/2 square lattice antiferromagnet
between the Néel state and a paramagnetic valence bond
solid state which is not described by a Ginzburg-Landau
�GL� type critical theory.2,3 Instead the proposed theory in-
volves fractional degrees of freedom �spinons� interacting
with an emergent gauge field. One of the best studied models
where this scenario could possibly be realized is the spin-
1 /2J1−J2 Heisenberg antiferromagnet in two dimensions

H = J1�
nn

SiS j + J2�
nnn

SiS j . �1�

Here J1�0 is the nearest-neighbor interaction and J2�0 a
frustrating next-nearest-neighbor exchange. There are two
well understood limits: For J1�0, J2=0 the model is just the
usual two-dimensional Heisenberg antiferromagnet which is
known to possess Néel order although with an order param-
eter M �0.3 which is reduced compared to its classical value
M =1/2. For J1→0 and J2�0 and fixed, on the other hand,
both sublattices are Néel ordered and J1 then induces a so-
called collinear order. For general couplings J1, J2, both lim-
iting ground states become frustrated. Therefore a parameter
region might be expected where the magnetic order vanishes
and a spin liquid or VBS ground state is formed. Numerical
studies including exact diagonalization,4 variational quantum

Monte Carlo5,6 as well as series expansion7–11 indeed indi-
cate that for 0.4�g�0.6, with g=J2 /J1, no magnetic order
exists.

To address the question of whether or not the ground state
in the nonmagnetic region breaks a lattice symmetry, the
response to a field

F1 = ��
i,j

�− 1�iSi,jSi+1,j �2�

has been calculated.5,10–12 The series expansion studies10,11

show that the corresponding susceptibility becomes very
large or even diverges when g�0.4 is approached from the
Néel phase, indicating that translational symmetry by one
site is broken and a VBS state is formed. The results ob-
tained in Ref. 5 by a variational quantum Monte Carlo
�QMC� technique seem to support this scenario. Further-
more, the QMC data have been shown to be in good agree-
ment with an exact diagonalization of clusters with N
=16,32 spins. In a later exact diagonalization study, how-
ever, it has been shown that the susceptibility decreases
when going from the 4�4 to the 6�6 cluster.12 Further
evidence in favor of a breaking of translational invariance
has been obtained by a dimer series expansion showing di-
rectly that the corresponding order parameter is indeed non-
zero in this phase.9 On the basis of the series expansion data
we therefore believe that the existence of a homogeneous
spin liquid phase in this parameter region, as proposed in
Ref. 6, is highly unlikely.

A very important result of the series calculations in Refs.
9–11 is that the point gc�, where magnetic order vanishes, and
the point gc�, where dimer order becomes established, are
very close or even coincident. Furthermore, a crossing of
energies between an Ising expansion and a dimer expansion,
which would be the indication of a first-order transition,
could not be detected. This lead to the assumption that the
transition is second order. For a second-order transition it is,
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however, difficult to understand within GL theory why gc�

and gc� should be equal. Each phase has a different broken
symmetry �spin-rotational symmetry versus lattice symme-
try� so that one would naively expect that each transition is
described by its own effective theory containing only the
staggered magnetization �order parameter in the Néel phase�
or the dimer order parameter, respectively. In this case the
transitions should be independent from each other. That this
seems to be not the case tells us that the two order param-
eters must be related. A GL-type theory should therefore at
least contain also terms describing the interaction between
the two order parameters. Such an effective theory has been
proposed in Ref. 11. However, it has been found that within
this theory gc� and gc� will only be identical if the nonmag-
netic phase has massless excitations. This would correspond
to a transition to a translationally invariant spin liquid phase
which we believe can be ruled out based on the numerical
data obtained in Ref. 9.

The new effective theory for the second-order phase tran-
sition between the Néel and a VBS state proposed in Refs. 2
and 3 follows an entirely different route. Here the order pa-
rameters in the two phases are represented in terms of frac-
tional degrees of freedom �spinons� which become decon-
fined exactly at the critical point. As the spinons are the
constituents of both order parameters this would offer a natu-
ral explanation for a direct second-order phase transition be-
tween these at first sight very different phases. Among the
models proposed to show such a transition is the two-
dimensional spin-1 /2 model with a four-spin exchange.13

Quite recently, however, it has been argued that the transition
in this model is more likely to be first order.14 In the present
work we will address the same question about the order of
the phase transition for the J1−J2 model.

Our paper is organized as follows: In Sec. II we give
arguments based on series expansion and spin-wave theory
why the phase transition is most likely a weak first-order
instead of a second-order transition. In Sec. III we will dis-
cuss numerical data for three different susceptibilities prob-
ing the VBS order in the nonmagnetic phase. These suscep-
tibilities are obtained in the Néel phase where the ground
state is known and the series is therefore not biased. We will
discuss why these data provide additional evidence against
the deconfinement scenario and will conclude that the VBS
order is most likely of the columnar dimer type. The last
section presents a summary and conclusions.

II. ORDER OF THE PHASE TRANSITION

Usually a first-order phase transition is detected in series
calculations by looking for the crossing of energies obtained
by expansions starting from different states. For the J1−J2
model such an energy crossing has been detected between an
Ising expansion in the collinear regime and a dimer expan-
sion in the VBS phase.9 This shows that the transition at g
�0.62 from the VBS to the collinear state is first order �see
also Fig. 7�. For the transition from the Néel to the VBS state
at g�0.4, on the other hand, no crossing has been found.
More precisely, the energies for an Ising expansion and vari-
ous dimer expansions are so close over a relatively large

parameter regime around the transition point that it is not
possible to decide within the accuracy of the series if there is
a crossing or not �see Ref. 9 and Fig. 7�. In all previous series
studies it has been implicitly assumed that the transition is
second order. Here we propose a more sensitive method to
distinguish between first- and second-order transitions and
conclude that the transition is most likely weak first order.

Let us consider the ground-state energy e��� for the
Hamiltonian �1� with the field in Eq. �2� included for �� �
�1 and g	0.4. We have calculated e��� for different g by
Ising series expansion. Using an Ising expansion means that
we start with a state which breaks spin-rotational symmetry
whereas the lattice symmetries are intact. Obviously, it is
then impossible to restore spin-rotational symmetry and
break lattice symmetries—as would be required when going
from the Néel to the VBS state—in any finite order in the
expansion. However, we can expect that an instability of the
state we are starting with is signaled by a susceptibility, with
respect to the corresponding symmetry breaking field, which
is divergent.

In Fig. 1 we present our numerical data. For a fixed g we
have fitted e��� by a polynomial of the form

e��� − e�0� =
a

2
�2 +

b

4
�4 +

c

6
�6. �3�

The susceptibility is then given by


1 =�−
�2e

��2�
�=0

= − a . �4�

As the series for the ground state energy shows better con-
vergence than the series for the susceptibility itself �which
was calculated in Ref. 10�, we were able to obtain 
1 with
much smaller error bars than before as shown in Fig. 2. The
new data are nevertheless consistent with the old data within
the given error bars. A strong response to the field F1 is
visible indicating that translational symmetry is broken in the
nonmagnetic phase. If the phase transition with respect to the
corresponding order parameter would be second order we

FIG. 1. Ising series data for the ground state energy e��� with
the field F1 included and g=0.0,0.1,0.2,0.3. The lines are a guide
to the eye.
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expect 1 /
1� �gc�−g��� where gc� is the critical point and
�� the critical exponent. In mean-field theory ��=1 and we
can indeed obtain a nice linear fit of 1 /
1 as shown in Fig. 2.
Note, that �� is not expected to change dramatically even if
fluctuations are taken into account �an O�1�-model, for ex-
ample, would have ���1.2	 so that changes to the value of
gc� would be minor.

To study different possible scenarios for this phase tran-
sition we consider an effective field theory for the magneti-
cally ordered phase. In the effective field theory for a two-
dimensional antiferromagnet in the ordered phase no
topological term �Berry phase� is present.15 One can there-
fore describe the system by the following O�3�-model:

Hv =
1

2

��tv�2 + cv

2��v�2 + mv
2v2� +

uv

4
�v2�2. �5�

Assuming a second-order phase transition at a critical point
gc� we have m�

2=a��g−gc���� and u��0. Here �� is the criti-
cal exponent for the staggered magnetic susceptibility with
��=1 in mean-field theory. At ggc� the vector field ��� will
then show a nonzero ground state expectation value ��
=�a��gc�−g� /u�.

Consider now the case that we are in the magnetically
ordered phase and add the field F1 as given in Eq. �2� with
�� � �1. The Néel order will then coexist with a small dimer-
ization described by a scalar field

H� =
1

2

��t��2 + c�

2 ����2 + m�
2 �2� +

u�

4
�4 +

r�

6
�6 − �� .

�6�

If a second-order phase transition with respect to � at a
critical point gc� would occur, we would have m�

2 =a��gc�

−g��� and u��0. We also want to include an interaction
between the vector and the scalar field. The lowest order
coupling term allowed by symmetry is

Hint =
uv�

2
v2�2. �7�

The effective field theory in the ordered phase for ��0 is
then given by H=H�+H�+Hint and we will have a nonzero
ground state expectation value

�� =
�

A
−

u�

A4 �3 +
3u�

2 − Ar�

A7 � 5 + O��7� �8�

with A=m�+u����2. This leads to a ground state energy
given by

e��� − e�� = 0� = −
1

2A
�2 +

u�

4A4�4 +
Ar� − 3u�

2

6A7 �6 + O�� 8� .

�9�

This regular expansion in powers of �2 will exist for any g
gc� but the radius of convergence will become smaller and
smaller when the assumed critical point is approached. Fi-
nally, this expansion will break down and directly at the
critical point e��� will show a scaling with a critical expo-
nent which is in general noninteger. Nevertheless, in the pa-
rameter regime where this expansion is valid we expect the
coefficient of the �4-term to be positive because u��0 for a
second-order phase transition.

We have fitted e��� shown in Fig. 1 by the polynomial
given in Eq. �3� but studied so far only the coefficient of the
quadratic term which gives the susceptibility �see Fig. 2�.
The coefficient of the quartic term obtained by a fit of these
data is shown in Fig. 3. Surprisingly, this coefficient is nega-
tive. Before we discuss the consequences we will check if
the coefficient follows the form predicted in �9�. The coeffi-
cient A=1/
1 so that we can use the linear fit shown in Fig.
2 for this parameter. With these values for A the data in Fig.
3 are in very good agreement with Eq. �9� where the single
parameter fit �shown as dashed line� yields u�=−5.68.

FIG. 2. The susceptibility 
1 calculated as described in the text
�solid line� compared to the old data from Ref. 10 �dashed line�.
The dotted line represents a linear fit of the new data 1/
1=6.58
� �0.43−g�.

FIG. 3. �Color online� The coefficient b of the quartic term in
Eq. �3� obtained from a fit of the data in Fig. 1 �black squares�. The
dashed line represents a fit b�g�=−5.68/ �6.58�g−0.43�	4. Inset, the
coefficient b from LSWT and MFSWT in comparison to the series
data. The lines are a guide to the eye.
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A check of our series data for b is provided by calculating
this coefficient in spin-wave theory. We know that linear
spin-wave theory �LSWT� yields accurate results for quanti-
ties like ground-state energy or sublattice magnetization for
the two-dimensional Heisenberg antiferromagnet without
frustration.16,17 Surprisingly, LSWT gives also a phase dia-
gram for the J1-J2 model18 which is very similar to the one
found by numerical calculations. In particular, a nonmagnetic
ground state for g� �0.38,0.51	 is found. In a spin-wave
theory where the quartic terms are treated self-consistently in
one-loop approximation �MFSWT�, however, the phase dia-
gram changes dramatically and Néel order remains stable up
to g�0.6.19 This tells us that we cannot trust spin-wave
theory in the strongly frustrated regime. If we consider g
close to zero, on the other hand, we might expect that spin-
wave theory results are reasonable.

In complete analogy to the series calculations we have
calculated the ground-state energy e��� in LSWT and MF-
SWT for the J1-J2 model with the term �2� included. The
coefficient of the �4-term obtained from these calculations is
shown in the inset of Fig. 3 in comparison to the series data.
Again we find that b is negative and decreases with increas-
ing g. Quantitatively, b is larger, both in LSWT and MFSWT,
as in series and decreases more slowly.

A negative u� in Eq. �6� means that the phase transition
with respect to � will be first order and the assumed critical
point gc� will never be reached. For �=0 the order parameter
�� will instead jump from zero to some finite value. To
determine the transition point one also needs to know r�

which must be positive for stability reasons. In principle, r�

can be determined from the sixth-order term in �9�. In prac-
tice, the errors in the numerical data for e��� and in the
parameters A, u� are too large to determine r� reliably. Due
to the interaction term �7� a jump in �� will induce a simul-
taneous jump in the Néel order parameter �v. Depending on
the strength of the interaction uv� two scenarios are possible:
The Néel order parameter could jump to zero yielding a di-
rect first-order transition from the ordered phase to a disor-
dered phase with broken translational invariance. A more ex-
otic scenario, where �v jumps to a smaller but nonzero value
and then decreases further before vanishing at a critical
point, is also possible. This would imply that there is a re-
gion in the phase diagram where dimerization and Néel order
coexist. Based on the currently available numerical data it is
impossible to decide which scenario is actually realized. We
also want to mention that our mean-field treatment of the
order parameters and the use of the expansion �9� are a pos-
teriori justified. The finding of a first-order phase transition
means that we never get to the assumed critical point gc�

where the length scale for fluctuations would diverge and a
mean-field treatment would therefore be very questionable. It
also means that the expansion �9� exists and its radius of
convergence will be finite everywhere in the ordered phase.

III. VBS ORDER IN THE NONMAGNETIC PHASE

In this section we provide additional, independent argu-
ments against the deconfinement scenario and in favor of a
first-order phase transition. We also address the question

which kind of VBS order is actually realized.
In Refs. 2 and 3 dealing with a possible deconfined criti-

cal point separating a Néel ordered from a VBS phase in a
two-dimensional antiferromagnet it has been implicitly as-
sumed that the VBS order is either of columnar dimer type as
shown in Fig. 4�a� or of plaquette type as shown in Fig. 4�b�.
The order parameter for columnar dimerization is given
by Oc= �−1�iSi,jSi+1,j whereas the order parameter for the
plaquette phase can be represented as Op= �−1�iSi,jSi+1,j

+ �−1� jSi,jSi,j+1. As discussed in Ref. 3 they can also be in-
terpreted as a single complex order parameter where only the
phase is different for the two patterns. At a deconfined criti-
cal point, however, this phase will only appear as an irrel-
evant operator. Therefore both order parameters are expected
to show power law correlations at such a point and suscep-
tibilities testing the breaking of lattice symmetries with re-
spect to columnar or plaquette order should diverge when the
deconfined critical point is approached from the magnetically
ordered phase.

First, consider the field

F2 = ��
i,j

�Si,jSi+1,j − Si,jSi,j+1� �10�

which tests if rotational symmetry is broken, which would be
the case for the columnar dimer state but not for the
plaquette state. The corresponding susceptibility 
2 shows
only a very moderate increase with g and certainly no sign of
divergence when the possible critical point gc��0.43 is ap-
proached �see Fig. 5�.We mention here that our results for the
susceptibilities 
1 and 
2 are in qualitative agreement with
Ref. 5 where the finite size scaling of these susceptibilities
has been investigated by exact diagonalization and varia-

FIG. 4. Possible VBS ordering patterns: �a� columnar dimer
order, �b� plaquette order, and �c� plaquette order with every second
column of plaquettes shifted by one lattice site.

SIRKER et al. PHYSICAL REVIEW B 73, 184420 �2006�

184420-4



tional QMC methods. Note that it does not come as a sur-
prise that there is no quantitative agreement: the variational
QMC method explores only a small part of the Hilbert space
so that a convergence to the true value for the susceptibility
cannot be expected even if arbitrary large clusters could be
treated. If a good variational wave function is chosen, how-
ever, one might expect that the finite size scaling is at least
qualitatively similar to the true finite size scaling.

Next, we consider the susceptibility 
3 corresponding to
the field

F3 = ��
i,j

�− 1�i+j�Si,j
x Si+1,j+1

x + Si,j
y Si+1,j+1

y � �11�

which has already been calculated in Ref. 11. We reproduce
the result in Fig. 6. 
3 even decreases when the nonmagnetic
phase is approached which seems to indicate that the corre-
sponding lattice symmetry, which would be broken for the
plaquette but not for the columnar dimer state, is intact.

The fact that 
2 and 
3 do not diverge when g→gc�

�0.43 as would be expected for a deconfined critical point
provides an argument independent of the considerations in

Sec. II that the phase transition in the J1-J2 model is not an
example for the scenario proposed in Refs. 2 and 3. Putting
the arguments given in Sec. II aside, this alone, however,
does not exclude the possibility of another kind of second-
order phase transition from the Néel ordered to a state with
VBS order. Nevertheless, in any second-order scenario we
should take the fact that 
2 and 
3 do not diverge seriously.
This means that in this case the VBS order cannot be of
columnar dimer type because then 
2 should diverge, and not
of plaquette type because this would lead to a diverging 
3.
So in such a scenario the quest is to find an ordering pattern
with lattice symmetries which agree with our findings for all
three susceptibilities.

A possible pattern is shown in Fig. 4�c�. Translational
symmetry by one site along the x axis is broken leading to a
divergent 
1. 
3 will be finite because of the 180° rotational
symmetry around the axis marked by “1” in Fig. 4�c� or
identical positions. 
2 will be finite for this pattern because
of the following symmetry: A rotation by 90° around the axis
“2” or identical positions, followed by a shift of every sec-
ond row of plaquettes by one lattice site, followed by a shift
of every second column of plaquettes by one lattice site.
Although other pattern which have the correct symmetries
might be possible, the pattern in Fig. 4�c� seems to be the
one with the smallest unit cell.

We have calculated the ground-state energy as well as the
singlet and triplet dispersion for different g for this state by
series expansion starting from the decoupled plaquettes
shown in Fig. 4�c�. The expansion parameter x describes the
couplings between the plaquettes. For x=0 the plaquettes are
decoupled whereas x=1 corresponds to the case we are fi-
nally interested in where the couplings within and between
the plaquettes are of equal strength.

In Fig. 7 we show the ground-state energy obtained from
this expansion compared to other series data.

The obtained energies for 0.4	g	0.5 are similar or even
slightly lower than the energies obtained from the columnar
dimer expansion. This shows that the state in Fig. 4�c� is
indeed a possible candidate for the ground state in this pa-
rameter region. In series calculations it is, however, impor-
tant to make sure that the state which is the starting point for
the expansion remains stable when extrapolating to the iso-
tropic limit x→1. We have therefore calculated also the sin-
glet and triplet dispersions. The plaquettes for this VBS state
are arranged on a triangular lattice. With respect to this lat-
tice both singlet and triplet dispersion show a minimum at
momentum k= �0,2� /�3�. The series coefficients for the
singlet and triplet gaps at this point and g=0.25,0.45 are
given in Table I. Dlog Padé approximants for these series
show that the singlet gap always vanishes before the triplet
gap and at a value xc1. This indicates that the state in Fig.
4�c� is unstable.

For the columnar dimer state, on the other hand, it is very
difficult to obtain the singlet dispersion by series expansion
because the state we are starting with consisting of decou-
pled dimers does not contain a singlet excitation. We have,
however, calculated the triplet gap in this case which shows
a minimum at k= �0,�� and Dlog Padé approximants suggest
that in this case the gap remains nonzero for x→1. In addi-
tion, the instability of the state in Fig. 4�c� which manifests

FIG. 5. Susceptibility 
2 as a function of g calculated by Ising
series expansion. The line is a guide to the eye.

FIG. 6. Susceptibility 
3 as a function of g calculated by Ising
series expansion. The line is a guide to the eye.
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itself by a vanishing of the singlet gap at k= �0,2� /�3� for
x1 is an instability towards a columnar dimerization. Al-
though this does not prove that the columnar state is finally
stable, it makes the columnar dimerization pattern the most
likely candidate for the VBS order in the nonmagnetic region
of the phase diagram.

IV. CONCLUSIONS

We have calculated the ground-state energy e for the
J1-J2 model including a small field F1 with strength �, which
induces a columnar dimerization in the Néel ordered phase,
by Ising series expansion. We have argued that everywhere
except directly at a critical point it is possible to expand e���

in a regular series in �2 and that this series has a finite radius
of convergence which goes to zero when the tentative critical
point is approached. The prefactor of the �2-term in that
series gives the susceptibility 
1 with respect to F1. The data
for this susceptibility obtained by an Ising series expansion
indicate that the Néel state becomes unstable for g�gc
�0.43 and that the ground state for g�gc breaks transla-
tional symmetry by one site and therefore seems to be of the
VBS type and not a spin liquid. Based on a mean-field treat-
ment of an effective field theory describing the Néel state
coexisting with the small dimerization induced by F1 we
have argued that the sign of the �4 term in the expansion of
e��� determines whether the transition with respect to the
VBS order parameter is first or second order. We believe that
this is an in general more sensitive and less biased method to
distinguish between a first- and a second-order transition
than looking for a crossing of energies obtained by different
expansions. From the series data we found that the �4-term
has a negative sign and we showed that the same is true in
spin-wave theory. Within the presented GL-type theory this
means that the transition is expected to be first order. Our
mean-field treatment of the order parameter is a posteriori
justified because a critical point where such a treatment
would break down is never reached.

In the second part we gave arguments in favor of a first-
order transition which are independent of any effective field
theory by analyzing two additional susceptibilities testing
different lattice symmetries. These susceptibilities were cal-
culated based on an Ising expansion in the Néel phase so that
the series is not biased by any assumed dimerization pattern.
We argued that at a deconfined critical point all three suscep-
tibilities considered here are expected to diverge and that the
fact that 
2 and 
3 do not diverge excludes this scenario. We
further argued that in any second-order scenario the nondi-
vergence of 
2 would mean that the VBS state is not of the
columnar dimer type and the nondivergence of 
3 would
mean that the VBS state is not of plaquette type either. For
an assumed second-order transition we have been able to find
a VBS pattern which does have the correct lattice symme-
tries to explain our data for all three susceptibilities. Series
expansion data starting from this pattern, however, have
proven that this state is unstable with respect to the columnar
dimerization pattern.

Taking the arguments given in the two parts together
shows that the transition from the Néel state to a VBS state

FIG. 7. �Color online� Ground state energies calculated by dif-
ferent series expansions starting from the nonmagnetic states shown
in Fig. 4 as well as from the magnetic Néel and collinear states. The
curve 4�a� �open squares� corresponds to the columnar dimer state
shown in Fig. 4�a�, the curve 4�b� �black dots� to the plaquette state
shown in Fig. 4�b�, and the curve 4�c� �red dots� to the plaquette
state shown in Fig. 4�c�. The black triangles show results of Ising
series expansions starting from the Néel and collinear states.

TABLE I. Series coefficients xn for the minimum singlet gap �s and triplet gap �t for the plaquette state
from Fig. 4�c� and g=0.25 �g=0.45�, respectively.

n �s /J1 �g=0.25� �t /J1 �g=0.25� �s /J1 �g=0.45� �t /J1 �g=0.45�

0 1.500000000 1.000000000 1.100000000 1.000000000

1 0.000000000 −8.33333334�10−1 0.000000000 −4.33333334�10−1

2 −4.356195887�10−1 −5.722808442�10−1 −4.151003339�10−1 −5.005966374�10−1

3 −3.880918282�10−1 1.4032850965�10−1 −1.832689336�10−1 8.2113320127�10−2

4 −4.828163654�10−1 −2.265506840�10−1 −1.537390367�10−1 −3.080455443�10−2

5 −6.032418702�10−1 7.5790435073�10−3 −1.592497102�10−1 −1.108096117�10−1

6 −7.988310579�10−1 −4.517676083�10−2 −1.653261118�10−1 1.6084176410�10−2
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with columnar dimerization is most likely first order. For a
first-order phase transition we still expect that the suscepti-
bility 
1 when calculated by Ising series expansion diverges
because the field F1 directly tests the instability of the Néel
state with respect to columnar dimer order irrespective of the
order of the phase transition. For the susceptibility 
2, on the
other hand, we can only expect that it diverges if the transi-
tion is second order. The fact that 
2 does increase with g
without diverging at g�0.4 therefore further supports that

the transition is most likely first order and the VBS state
most likely of the columnar dimer type.
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