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Extensions of an existing circuit theory for current perpendicular to plane magnetoresistance and current-
driven torque in noncollinear magnetic-multilayer pillar devices are presented. Our expressions for mon-
odomain critical-current threshold Jc and giant magnetoresistance �R are firstly derived in terms of assumed
spin-channel resistances for each of the two ferromagnets. Spinflips are thus neglected. We find a class of
closed linear relationships connecting Jc

−1 and �R. We then derive more general expressions for these quantities
which take into account spin-flip relaxation. In this case, we assume analytically calculable linear 2�2
current-voltage matrices for the separate two-channel ferromagnets. These expressions again lead to a class of
closed linear relationships connecting Jc

−1 and �R. The latter generalization gives a simple theoretical frame-
work to take into account bulk and interfacial spin flip and more complicated multilayer structures often used
in experiments.
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I. INTRODUCTION

The discovery of current-in-plane �CIP� giant magnetore-
sistance �GMR� by Baibich et al.1 in 1988 opened a new
field of research known as spintronics. It led to new applica-
tions for magnetic devices such as commercial read heads2 in
data storage and exploratory integrated magnetic random ac-
cess memory3 �MRAM�. Recent attention is additionally fo-
cused on the alternative current perpendicular to plane �CPP�
spin-dependent transport in a magnetic multilayer �MML�,
which is dominated by spin-dependent scattering.4 This
strong spin dependence permits control of the current flow-
ing through a spin valve5 by means of the relative orientation
of the magnetization of the ferromagnetic electrodes.

An inverse effect of CPP-GMR was predicted6,7 in 1996.
These authors showed that an electrical current spin polar-
ized by a first ferromagnetic layer can induce excitations in a
second ferromagnetic layer. Subsequently, many experiments
have confirmed the resulting current-induced magnetization
oscillations and switching �CIMS� using point contacts8 and
device pillars.9 This phenomenon, known as spin transfer
torque �STT�, is now studied experimentally in spin-valve
structures10 and magnetic tunnel junctions.11 More advanced
theories for STT through metallic12 and tunneling13 spacers
have appeared.

One STT theory for the case of a metallic spacer com-
bines a statistical-density operator description of the spacer
layer and a classical resistive spin-channel model description
of the ferromagnetic electrodes.14 It applies particularly to
certain magnetic metals and alloys, including Co, CoFe,
NiFe, and Ni, which lie on the negative-slope portion of the
Slater-Neél-Pauling curve of atomic moment versus atomic
number. This theory extends the common two-channel resis-
tor model of collinear CPP-GMR to the case of noncollinear
magnetizations. Later, there appeared a general expression

for critical current based on this theory.15 We propose here a
more comprehensive study of its implications, and give more
general expressions for currents and torques.

In Sec. II we present the main results of the original cir-
cuit model for the case of two simple ferromagnetic elec-
trodes neglecting all spin-flip processes within the device
pillar. Section III digresses briefly to an experimental study
of a different case which includes spin-flip relaxation within
the spacer. In Sec. IV, we generalize to the case where the
electrodes are more complicated in order to introduce bulk
and interfacial spin-memory loss. In Sec. V, we discuss the
validity of this model.

II. SIMPLE CIRCUIT THEORY

Throughout this paper, we consider a unit cross-sectional
area of a magnetic trilayer, composed of two ferromagnetic
electrodes �left pinned layer and right free layer�, separated
by a nonmagnetic spacer layer. In a simple illustration of the
method, Refs. 14 and 15 use the circuit similar to Fig. 1. Our
object is to evaluate the left and right spin-channel electric
currents JL and JR and the spin torque induced on the right
electrode �say� by a total electrical current J flowing from
left to right. Spin-flip relaxation, also called spin diffusion, is

FIG. 1. Effective electrical circuit for a simple trilayer neglect-
ing interfacial spin flip.
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neglected in this illustration everywhere except in the large
nonmagnetic external contact regions. In these regions resis-
tance is neglected and spin flip is taken into account, as a
limiting case, by the two direct interchannel connections in-
dicated in the figure. The spacer is a normal diamagnetic
layer metal having negligible bulk resistivity. Here, RL �re-
spectively, RR� are the left-spin-channel resistances �respec-
tively, right-spin-channel resistances�. They are composed
additively of bulk and interfacial terms. WL �respectively,
WR� are the corresponding electrochemical voltages within
the spacer, appropriate to the spin quantization axes of the
left �respectively, right� magnets. We use the general defini-
tion W=V��� /e, where V is ordinary electric voltage
within the spacer and 2�� is the difference in chemical po-
tential, associated with spin accumulation, between any two
spin channels and −e is the electron charge. The use ofWL
and WR, just as one would normally use V, when applying
Kirchoff’s laws to this effective resistive network, takes ac-
count of spin accumulation effects. To solve the network, one
needs four relations connecting the variables JL and WL to JR
and WR. Two of these relations are those of ordinary electric
continuity: 2V1=WL++WL−=WR++WR− and J=JL++JL−
=JR++JR−. For the two remaining relations we refer to the
quantum-mechanically determined connection formulae �13�
and �14� of Ref. 14. Setting �Ji=Ji+−Ji− and �Wi=Wi+
−Wi−, �i=R ,L�, these relations are:

2�JR cos � = �JL�1 + cos2 �� − G�WL sin2 � , �1�

2�WR cos � = − �JL sin2 �/G + �WL�1 + cos2 �� , �2�

where � is the angle between the magnetizations of the right
and left electrodes. The parameter G is given by the formula
G=e2kF

2 /�3�h for an assumed spherical Fermi surface in the
spacer. It is the only additional parameter introduced while
advancing from the collinear ��=0,�� to noncollinear �gen-
eral �� magnetic configuration. Note that −	�Ji /2e is the
spin-angular-momentum current across the interface between
the spacer and the ith electrode and �Wi is proportional to
the spin accumulation of the spacer with respect to the spin-
quantization axis in this electrode. Equations �1� and �2� are
specialized to electrode/spacer interfaces with vanishing
majority-spin reflection. This approximation is suited to in-
terfaces joining Cu to such weakly spin-flip relaxing elec-
trode compositions as Co, CoFe, NiFe, Ni, and others of
magnetic elements or alloys lying on the negative-slope side
of the Slater-Neél-Pauling curve.

Furthermore, a macroscopic relation14,15 gives the expres-
sion for the torque exerted by the current on the right elec-
trode:

LR = 	 �− �JR cos � + �JL�/2e sin � . �3�

Thus the key variables to calculate the torque are �JR and
�JL. To evaluate these quantities, Eqs. �1� and �2� can be
combined with Kirchoff’s equations

WR+ = RR+JR+, �4�

WR− = RR−JR−, �5�

WL+ = V1 − RL+JL+, �6�

WL− = V1 − RL−JL−, �7�

to give, after some algebra:


�JR + ��JL = �J , �8�

�JR + ��JL = �J , �9�

where:


 = − 4 cos � , �10�

� = 2�1 + cos2 �� + G sin2 ��RL− + RL+� , �11�

� = G sin2 ��RL− − RL+� , �12�

 = 2�RR+ + RR−�cos � , �13�

� = 2 sin2 �/G + �RL− + RL+��1 + cos2 �� , �14�

� = �1 + cos2 ���RL− − RL+� + 2�RR− − RR+�cos � . �15�

Then, �JR and �JL can be expressed as a function of the
electric current J=JL,R++JL,R−:

�JR = J��� − ���/D , �16�

�JL = J�
� − ��/D , �17�

where D=
�−� is the determinant of the coefficients in
Eqs. �8� and �9�.

Note that solution �16�, �17� satisfies the collinear rela-
tions

�d�JL

d�
�

�=0,�
= �d�JR

d�
�

�=0,�
= 0.

Also, these collinear conditions satisfy the equality �JL
=�JR. Therefore, differentiation of Eq. �3�, with proper treat-
ment of limits having the form 0÷0, gives the equation

�dLR

d�
�

�=0,�
=

	

4e
��JR ±

d2�JL

d�2 −
d2�JR

d�2 �
�=0,�

�18�

evaluated at the limits �=0 or �=� depending on the initial
P or AP state of the magnetizations. The efficiency of initial
conversion of electric current to torque is defined by the
formula �Ref. 15 and 16�.

� =
2e

	J
�dLR

d�
�

�=0,�
. �19�

Carrying this out, one finds the efficiencies

�↑↑�↑↓� =
1

2

RL� − RL± + RR− − RR+ + G�RL�RR+ − RL±RR−�
RL+ + RL− + RR+ + RR−

.

�20�

The complete expression for critical current threshold,
following Ref. 16 in the single-domain approximation to a
small free element, is:
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J↑↑�↑↓� =
4
GMsdReHef f

	�↑↑�↑↓�
, �21�

where Hef f =Hcoupling+Hext+Hk, Hext is the external field,
Hcoupling is the combined effect of exchange, dipole, and Neél
coupling fields between the ferromagnetic electrodes, Hk is
the uniaxial anisotropy field including demagnetizating ef-
fects of shape. It is written Hk= 1

2Hshape+2�Ms for the usual
experimental case of in-plane equilibrium magnetization,
where Hshape is the in-plane shape-induced anisotropy field
and Ms the saturation magnetization.

The expression of the absolute magnetoresistance of the
pillar circuit is:

�R =
�RL− − RL+��RR− − RR+�
RL+ + RL− + RR+ + RR−

. �22�

We can also express the current polarization for collinear
moments. As we neglected the resistivity of the spacer, as
well as spin accumulation inside it, we get from �16� and
�17�:

�JR�� = 0�
J

�
�JL�� = 0�

J
�

RR− − RR+ + RL− − RL+

RR− + RR+ + RL− + RL+
.

�23�

Using Eq. �23�, one can express any parameter of the
MML as a function of �J /J. Substituting this latter expres-
sion in Eqs. �21� and �22�, one can find a relationship be-
tween the collinear polarization and the absolute CPP-GMR,
where the coefficients will depend on all the material param-
eters except the one which was substituted in Eq. �23�.

Thus, and this is one important result of this paper, we
find a class of linear relationships between the collinear po-
larization and the absolute CPP-GMR. For example, express-
ing RL+ as a function of the collinear polarization and replac-
ing it in �R�V1 /J���−V1 /J�0�, one finds:

�R =
�RR− − RR+��2RL− + RR+ + RR−�

2�RR− + RL−�
�JR

J
�� = 0�

−
�RR− − RR+�2

2�RR− + RL−�
. �24�

By the same method, the inverse critical current J↑↑�↑↓�
can be expressed as a function of the collinear polarization:

1

J↑↑
= �4
GMsdReHef f

	
�−1� �2 + G�RR+ + RR−��

4

�JR

J
�� = 0�

−
G�RR− − RR+�

4
� �25�

and

1

J↑↓
= �4
GMsdReHef f

	
�−1

�� �2 + G�RR+ + RR−��
4

�J

J
�� = ??�−

G�RR− − RR+�
4

� .

�26�

Combining Eqs. �24� and �25�, we find then a linear rela-
tionship between the inverse critical current and �R:

1

J↑↑
= �4
GMsdReHef f

	
�−1

���R

2

�RR− + RL−��2 + G�RR− + RR+��
�RR− − RR+��2RL− + RR− + RR+���

−
�RR− − RR+��1 − GRR−�
2�2RL− + RR− + RR+� � . �27�

In summary, our derived Eq. �27� has the linear form

1/J↑↑�↑↓� = P�R + Q �28�

for the inverse critical current threshold on the absolute mag-
netoresistance whenever any one of the four-channel resis-
tances RL±, RR±, is varied without affecting 
G, Ms, or dR.

III. ALTERNATIVE CASE OF SPIN-FLIP IN SPACER

A linear dependence, superficially resembling Eq. �28�,
has been proposed recently17,18. Urazhdin et al., in Ref. 17
varied the spacer layer spin-diffusion length and observed a
linear variation of the inverse critical current as a function of
the absolute magnetoresistance. Whereas we assume no spin
diffusion inside the spacer layer in our model, it remains
interesting to compare it with this experiment. As a matter of
fact in Ref. 17, increasing the spacer spin diffusion length
inside the spacer layer decreases the collinear polarization
due to the pinned layer �here called �JL /J� impinging on the
free layer. This variation of collinear polarization induces a
variation of both CPP-GMR and spin torque amplitude illus-
trated by the linear dependence. This experiment shows the
important role of the collinear polarization in the linear rela-
tionship between CPP-GMR and spin torque amplitude in a
context different from that of this paper.

This linear dependence can be understood phenomeno-
logically. The general behaviour of the inverse critical cur-
rent as a function of the CPP-GMR depends on a material
parameter that does not appear in Eqs. �24� and �25�. It
means that the linearity can be observed when varying ex-
perimentally one parameter while keeping all the others un-
changed. Although the authors of Ref. 17 varied the spacer
layer spin-diffusion length, we show a similar dependence
varying other material or structure parameters like layer
thickness or spin asymmetry.

Another explanation of this experiment17 has been pro-
posed by one of the authors,19 using a model based on the
Valet and Fert theory of CPP collinear spin-dependent trans-
port. It is shown that, in a spin-valve, it is possible to link the
spin torque amplitude to the absolute magnetoresistance
through the collinear polarization due to the pinned layer
alone. The simulations presented in this model show another
interesting feature that can be seen in Eq. �28�.

As a matter of fact, we note that Q is generally nonzero.
This means that one might adjust the varying parameter in
order to obtain �R=−Q / P in order to cancel the spin transfer
effect. Alternatively, a value of this parameter may cause
cancellation of the magnetoresistance preserving a torque of
amplitude Q.
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Let us focus now on the critical current threshold ex-
pressed in Eq. �21�. Substituting one parameter by its expres-
sion as a function of J↑↓ for example, one can find another
linear relationship in the form:

1/J↑↑ = S/J↑↓ + T . �29�

We find the same explanation as exposed above for this lin-
earity and the same kind of conclusion: is seems to be theo-
retically possible to cancel one inverse critical current, keep-
ing the other one nonzero.

IV. GENERALIZATION

A weakness of the Sec. II model is that it does not con-
sider any spin-flip transitions within the device pillar. �Only
within the large external contact region.�. Jiang et al.18,19 for
example, inserted a Ru capping layer on the top of the active
part of a spin-valve and observed a reduction of the critical
current as well as an enhancement of the absolute magne-
toresistance. This experiment emphasizes the importance of
spin-flip processes20 in CPP-GMR devices. Let us now con-
sider a more general case, where both electrodes are more
complex electrical subcircuits �which allows us to introduce
spin flip or synthetic antiferromagnets for example� as shown
in Fig. 2. In order to include this case, we use Eqs. �1� and

�2� together with general Kirchoff’s relations. �We still dis-
allow spin flips within the spacer and its interfaces.�:

WR+ = aJR+ + bJR−,

WR− = cJR+ + dJR−,

WL+ = V1 + kJL+ + lJL−,

WL− = V1 + mJL+ + nJL−.

Solution of the Valet-Fert diffusion equations in seperated L
and R regions can provide the eight new parameters
a ,b , . . . ,n in these equations. The coefficients of Eqs. �8� and
�9� are now given by:


 = − 4 cos � ,

� = 2�1 + cos2 �� + G sin2 ��− k + m + l − n� ,

� = G sin2 ��k − m + l − n�

 = 2�a − c + d − b�cos � ,

� = 2 sin2 �/G + �− k + m + l − n��1 + cos2 �� ,

� = �1 + cos2 ���k − m + l − n� − 2�a − c − d + b�cos � .

In this framework, the general expression of the absolute
magnetoresistance is:

�R =
�k − n��a − d� + �l − m��c − b�
k − l − m + n − a + b + c − d

. �30�

We note that k, l, m, n are generally negative for positive
spin asymmetry in the right electrode. The expression of the
critical current when the magnetizations are initially parallel
is now:

J↑↑ =
4
GMsdReHef f

	

k − l − m + n − a + b + c − d

− k − l + m + n + a + b − c − d + G��b − d��k − m� + �a − c��n − l��
�31�

and when the magnetizations are antiparallel:

J↑↓ =
4
GMsdReHef f

	

k − l − m + n − a + b + c − d

k + l − m − n + a + b − c − d + G��n − l��b − d� + �a − c��k − m��
. �32�

Once again it is possible to find a linear relationship, as proposed in Sec. II, between the inverse critical current and the
absolute CPP-GMR. Using Eq. �30�, we express l, for example, as a function of �R and substitute it in Eq. �31�. One finds a
linear relationship between STT amplitude and CPP-GMR:

1/J↑↑ = P�R + Q , �33�

where:

P =
4
GMsdReHef f

	

�− 2 + G�− d + c + b − a���k − m + c − a�
�b − c��2m − k − n + a − c + d − b� + �a − d��k − n�

,

FIG. 2. Effective electrical circuit for a general multiplayer with
interfacial spin flip.
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Q =
4
GMsdReHef f

	

�d + c − b − a��n − k + b − c + G��a − c��n − m� + �b − a��k − m���
�b − c��2m − k − n + a − c + d − b� + �a − d��k − n�

.

A relation of the form �33� is obeyed whenever any one of
the eight circuit parameters a ,b , . . . ,n varies without altering

G, Ms, or dR.

V. VALIDITY OF THIS MODEL

This more general model has been validated by Xiao
et al.,20 using a different notation. They showed that the cir-
cuit theory, taking into account bulk scattering, fitted very
well with their model based on the Boltzmann transport
equation, provided that the thickness of the left ferromag-
netic layer �which polarizes the current� is lower than the
spin diffusion length. For Co for example, experimental val-
ues give a spin diffusion length of 38 nm, and usual MML
used in experiments have often a 5 nm-thick pinned layer. In
such a case, the authors give the following equivalence for
the material parameters:

�RR,L+ + RR,L−�/2 = �̄Nlsf
N �1 − exp�− tN

R,L/lsf
N �� + �̄FtF

R,L + R̄I

+ R̄C, �34�

�RR,L+ − RR,L−�/2

=
��FtF

R,L + �RI

�̄Nlsf
N �1 − exp�− tN

R,L/lsf
N �� + �̄FtF

R,L + R̄I + R̄C

, �35�

where �̄N,F, lsf
N and tN,F are, respectively, the bulk resistivity,

the spin-diffusion length, and the thickness of the nonmag-
netic lead �respectively, ferromagnetic electrode�, �̄= ��+

+�−� /2 is the average resistivity, ��= ��+−�−� /2 is the resis-
tivity difference. RI and RC are the interface and contact re-
sistances. Replacing the material parameters by their equiva-
lent formulae �34� and �35�, the authors find an excellent
agreement with the Boltzmann-based description of spin
torque in MML. Furthermore, when the ferromagnetic elec-
trodes are thicker than their spin diffusion length, it remains
possible to evaluate the equivalent values of the circuit pa-
rameter using first principles calculations. Nevertheless,
evaluation of the circuit parameters using Valet and Fert
theory gives accurate results for thin pinned layers.

VI. CONCLUSION

We have extended a previous theory of CPP magnetore-
sistance and current-driven torque.14,15 This theory is based

on a circuit model utilizing voltage-current connection for-
mulae �1� and �2� whose assumption of perfect majority-spin
transparency generally applies to electron structures of ferro-
magnetic electrodes whose compositions lie on the negative-
slope side of the Slater-Neél-Pauling curve. It leads to closed
expressions for current and torques in a noncollinear metallic
magnetic multilayer expressed in terms of the same transport
parameters which determine the magnetoresistance when the
moments are aligned. We demonstrate that this theory can
readily take into account complications due to spin flip in the
bulk and at interfaces other than those of the spacer.

One special result is a class of linear relationships be-
tween STT amplitude and CPP-GMR. Each such relationship
is found when varying only one CPP parameter, keeping all
the others unchanged. The same kind of relationship can be
demonstrated for the inverse critical current for monodomain
excitation. In particular, we find that the torque is not neces-
sarily zero when CPP-GMR is zero, and inversely.

Finally, we emphasize that this model accords well with a
more complicated theory based on the Boltzmann transport
equation, and can be used in designing magnetoelectronic
devices when one wants to enhance or reduce STT effects.

Note added. A recent paper by L. Berger21 also relating
excitation threshold to magnetoresistance, has come to our
attention. Our relations are some equivalent to his. One rea-
son for any differences may arise from a difference in mod-
els of ferromagnetic electron structures. Berger assumes the
s-d model which distinguishes sp conduction electrons from
localized d electrons comprising the spontaneous magnetiza-
tion.

Our present treatment applies to the model of majority-
spin transparency at interfaces 14 which is founded on results
of first-principles electron structure calculations. The elec-
tron structure of fcc Co and Ni, to which our results apply,
have strong hybridization between sp and d electrons in
minority-spin band.
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