
Current-driven vortex domain wall dynamics by micromagnetic simulations

J. He, Z. Li, and S. Zhang
Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, Missouri 65211, USA

�Received 19 December 2005; revised manuscript received 24 February 2006; published 9 May 2006�

Current-driven vortex wall dynamics is studied by means of a two-dimensional analytical model and mi-
cromagnetic simulation. By constructing a trial function for the vortex wall in the magnetic wire, we analyti-
cally solve for domain wall velocity and deformation in the presence of the current-induced spin torque. A
critical current for the domain wall transformation from the vortex wall to the transverse wall is calculated. A
comparison between the field- and current-driven wall dynamics is carried out. Micromagnetic simulations are
performed to verify our analytical results.
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I. INTRODUCTION

Magnetic domain walls in magnetic films have various
structural forms which are determined by geometrical and
material parameters. For a magnetic wire with an “infinite”
length and a finite width, there are commonly two types of
domain walls: transverse walls �TWs� and vortex walls
�VWs�. Both of them are stable. Depending on the wire
thickness and width, one of the walls is usually more
stable.1,2 However, in a certain range of the parameters, the
static energies of these two walls are comparable and thus
one can produce both types of walls in the same wire. By
using different initialization methods, one can create either
wall.1 When a magnetic field or an electric current is applied,
both TWs and VWs are able to move along the wire. The
dynamics of the walls is generally very complex and micro-
magnetic simulations are required in order to describe the
details of the domain wall motion. For the TW, a simplified
and yet very insightful analytical treatment was developed
by Walker.3 A one-dimensional �1D� wall profile, i.e., the
magnetization direction in the wall depends only on the co-
ordinate along the wire, has been used to approximate the
TW profile. With this approach, one can analytically calcu-
late the wall velocity and wall distortion in the presence of
magnetic field and electrical current.4 For the VW, however,
the 1D wall profile fails to capture the wall structure and one
needs at least to use a 2D model to approximately character-
ize the vortex structure. In this paper, we propose such a 2D
model for the VW. Our focus will be on the analytical cal-
culation of the dynamic behavior of the VW. Within our
model, we are able to describe the vortex wall motion, in-
cluding the wall distortion, wall velocity, and wall structure
transformation, in terms of material parameters and external
magnetic field or electric current. In particularly, we show
how the vortex core moves toward the edge of the wire when
a current or a field is applied along the wire. With a suffi-
ciently large current or field, the vortex core may vanish at
the boundaries of the wire edges and the transformation from
the VW to the TW occurs. This paper is organized as fol-
lows. In Sec. II, we develop the analytical 2D model for the
VW. An equation of motion for the domain wall is estab-
lished. The steady state motions driven by the current and by
the field are investigated. We also compare the dynamics
between the TW and the VW. In Sec. III, the micromagnetic

simulations are performed. We compare the simulated results
with the analytical ones. Finally, we summarize the different
features of dynamics for TWs and VWs in Sec. IV.

II. ANALYTICAL MODEL

A. Equation of motion

We start with the generalized Landau-Lifshitz-Gilbert
equation including the spin-transfer torque terms:5
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where � is the gyromagnetic ratio, Hef f =− �W
�M is the

effective magnetic field, and W is the total energy density
which could be written as W=A��m�2+ �K /Ms

2��M�ex�2

−He ·M− �1/2�Hd ·M, where A is the exchange constant, K
is the anisotropy, He is the external field, and Hd is the mag-
netostatic field. � is the Gilbert damping parameter, and bJ
= Pje�B /eMs�1+�2� and cJ=�bJ, where P is the spin polar-
ization of the current; je is the current density along the
length direction of the magnetic wire; �B is the Bohr mag-
neton, Ms is the saturation magnetization, and � �small, ���
is a dimensionless constant which describes the degree of the
nonadiabaticity between the spin of the nonequilibrium con-
duction electrons and the local magnetization.

To describe the motion of an entire domain wall, it is
useful to introduce a total force acting on the wall. Following
Thiele,6 we define the total force

F��,	� � 	 dV � W =	 ��W

��
���� +

�W

�	
��	��dV �2�

where � and 	 are the angular components of M in the
spherical coordinate. For the steady-state motion of a domain
wall, we may write �=��r−vt�, 	=	�r−vt�, where v is the
steady velocity, then we have

�̇ = − v · ��, 	̇ = − v · �	 . �3�

The above steady-state condition immediately reduces the
temporal-spatial differential equation, Eq. �1�, to a differen-
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tial equation with spatial variables only. By writing Eq. �1� in
the angular components and by placing them into Eq. �2�, we
obtain the equation of motion for the domain wall7

F + G � �v + bJx̂� + D · ��v + cJx̂� = 0 �4�

where G is the domain gyrocoupling vector

G = − Ms�
−1	 dV sin ���� � �	� �5�

and D is the domain dissipation dyadic �tensor�

D = − Ms�
−1	 dV��� � � + sin2 � � 	 � 	� . �6�

The domain wall force defined in Eq. �2� can be simplified
when the domain wall undergoes uniform motion. Let us
separate the force in terms of the internal force Fin and the
external force Fext,

F = Fin + Fext. �7�

Fin contains all the forces from the internal energy including
anisotropy energy, exchange energy, and magnetostatic en-
ergy. When one sums over the internal energy contribution,
the total internal force vanishes due to Newton’s third law.
Therefore, one may simply consider the external energy con-
tribution to the force in Eqs. �4� and �2�, i.e.,

F = Fext =	 dV�����
�

��
+ ��	�

�

�	
��− H · M� , �8�

where we have assumed that the external energy is solely
from the external field, W=−H ·M. We will show later that
we must consider other external forces on the vortex wall
when the wall reaches the boundary of the wire. Note that if
the profile of domain structures 
i.e., M�x ,y ,z� in the mov-
ing frame of the steady motion� is determined, the gyrocou-
pling vector, dissipation dyadic, and static force can be cal-
culated from Eqs. �5�, �6�, and �8�, and the steady velocity
will be then readily derived from Eq. �4�.

In this section, we shall apply the equation of motion, Eq.
�4�, to study the domain wall velocity of the vortex wall,
driven by an external magnetic field and by spin-transfer
torques. Let us first consider a simplified head-to-head trans-
verse wall as shown in Fig. 1�a�. For the transverse wall, we
assume the wall profile can be modeled by the Walker trial
function,3

	�x� = 2 tan−1 exp� x



�, ��x� =

�

2
, �9�

where 	�x� and ��x� are the angles between the direction of
the magnetization and the wire length direction �+x axis� and
wire plane normal �+z axis�, respectively. 
 is the domain
wall width. By placing the above wall profile into Eqs.
�5�–�8�, we find that the gyrocoupling vector is zero, G=0,
and the dissipation dyadic has only one nonzero component
Dxx=−2Ms /�
. The external force is F=2HMsx̂. By insert-
ing them into Eq. �4�, we immediately find the velocity:

vx =
�H


�
−

cJ

�
. �10�

This result had been obtained previously.3,4,7

It is difficult to analytically model the profile of the vortex
wall depicted in Fig. 1�b� by a single elementary function as
we did for the transverse wall. From previous simulation
results,1,2 the VW structure might be understood as two sym-
metrical transverse walls diagonally crossing the wire and a
central vortex core connecting the two TWs. It is noted that
the two TWs have opposite polarities, namely, the magneti-

FIG. 1. Magnetization patterns of �a� a transverse wall and �b� a
vortex wall, without an applied current or field. �c� Schematic
model for the vortex wall �b�: a vortex wall is modeled by two TWs
and a vortex core, shown in gray areas. The vortex core is at the
center of the wire and ±x0 are the positions of the centers of the
TWs. R is the outer radius of the vortex core, w is the wall width of
two TW walls, and y0 is the half-width of the wire. �d� The mag-
netization pattern of the vortex wall in the presence of the current,
which is calculated by micromagnetic simulation in Sec. III. The
parameters are the spin torque bJ=25 m/s, damping parameter �
=0.05, and nonadiabaticity coefficient �=0.04. �e� The schematic
model for the vortex wall �d�. �y is the displacement of the vortex
toward the edge of the wire. The wall structure is not symmetrical,
and one TW is expanded and the other is compressed.
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zations of the centers of these two TWs orient in opposite
directions. The transitional region between these two TWs is
sometimes called the Bloch line,8 which characterizes the
wall-polarity reversal in analogy to the Bloch wall. For the
VW we consider here, this transitional region contains a vor-
tex core. The magnetization of the inner vortex core has a
significant out-of-plane component and thus the inner radius
of the vortex core must be very small since the out-of-plane
magnetization enhances demagnetization energy.9 Outside
the inner vortex core the magnetization lies in the plane and
the outer radius of the vortex core is limited by the transverse
wall width and the wire width. To characterize the entire VW
profile, we separate the wall into three parts: two transverse
walls and a vortex core 
schematically shown in Figs. 1�c�
and 1�e��, and for the model in Fig. 1�e�, they will be as-
signed to different trial functions given below. For the vortex
part,9–12

� = �2 tan−1�x2 + y2

rcore
� �0 � x2 + y2  rcore

2 � ,

�

2
�rcore

2 � x2 + y2  R2� , �
	 = q arg�x + iy� + c

�

2
�0 � x2 + y2 � R2� , �11�

where rcore and R are the inner-core and outer radius of the
vortex, respectively, q �=±1, ±2, . . . � is the vorticity of the
vortex, c �=±1� is the chirality of the vortex, and i=−1.
Here we just use the arg function of the complex variable
x+ iy as a convenient way to express 	.11 In this paper, we
consider only a single vortex �q=1�. And we note that the
vortex profile we introduced in Eq. �11� does not include its
image profile.11 For the wire structure, the image profile con-
sists of a series of terms formed by multiple reflections of
two wire boundary planes. Including these images would
make the analytical calculation intractable. Instead, we intro-
duce a “restoring force”13 due to the induced charges along
the boundaries of the nanowire. This restoring force has a
similar role to the image vortices in the method of images.11

For the two transverse walls3,4 where �−�x +��,

� = �/2 �− y0 � y � y0� ,

	 = �2 tan−1 exp� x + x0

w�
� �− y0 − �y � y � 0� ,

2 tan−1 exp� x − x0

w�
� �0 � y � y0 − �y� , �

�12�

where x0 is the distance from the center of each TW part to
the vortex core center, w� and w� are the wall widths of two
TWs, y0 is the half-width of the magnetic wire, and �y is the
displacement of the vortex core away from the wire center in
the y direction. We realize that the TW and vortex core de-
fined above are not strictly valid because the TW is extended
to the vortex region when 0�x2+y2�R2. However, this ill-

defined overlapped region does not contribute significant er-
rors since �� and �	 are exponentially small in this region.
By using the above wall profile, we are able to calculate G,
D, and F defined in Eqs. �5�, �6�, and �8� in a similar way as
the calculations in Refs. 14 and 15. The steady-state velocity
can then be calculated from Eq. �4�.

1. Current-driven domain wall motion

We consider the current-driven vortex wall motion with-
out the external field so that F=0 
see Eq. �8��. Let us apply
the equation of motion, Eq. �4�, to the vortex part of the wall
and neglect its interaction with two TW parts. By placing Eq.
�11� into Eqs. �5� and �6�, we find the explicit expressions for
G and D:

G = − 2�Ms�
−1pẑ = Gvẑ , �13�

D = − Ms�
−1� ln

R

a
�x̂x̂ + ŷŷ� = Dv�x̂x̂ + ŷŷ� �14�

where x̂ , ŷ , ẑ are unit vectors in the directions of the wire
length, width, and thickness, respectively. p �=±1� repre-
sents the polarity of the vortex core 
��0�=0 or ��, and a is
the lattice constant of the crystal structure of the wire mate-
rial. Note that in the calculation of D, we have neglected a
small part of the vortex core ��a2�, and this does not con-
siderably affect the wall dynamics.14 By placing Eqs. �13�
and �14� and F=0 into Eq. �4�, we have

− Gvvy + Dv��vx + cJ� = 0,

Gv�vx + bJ� + �Dvvy = 0, �15�

and one immediately finds

vx0
= − bJ

Gv
2 + ��Dv

2

Gv
2 + �2Dv

2 � − bJ �� � 1,� � 1� ,

vy0
� −

1

2
bJp�� − ��ln

R

a
. �16�

It is shown that the velocity of the VW has two components:
vx0

along the wire and vy0
perpendicular to the wire. The

nonzero vy0
�except for �=�� is caused by the gyrotropic

term �nonzero G� of the vortex dynamics.6 The sign of vy0
�to

which edge of the wire� is determined by the sign of the
product p��−��, i.e., it is vortex polarity �p� dependent. If
we characterize the vortex by a Bloch line, the perpendicular
motion might be understood in terms of the moving Bloch
line inside and along the wall surface.8

We recall that the velocity of the TW is vx=−cJ /� and
vy =0 in the steady state motion. The different velocities for
the vortex core and the transverse wall cannot be a steady
state solution for the entire wall. In fact, the interaction be-
tween these different parts of the wall must be included in
order to reach a common velocity in the steady state. One
can immediately see that the motion of the vortex core along
the y direction would push one TW and pull the other. As a
result, one TW expands and the other gets compressed 
see
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Fig. 1�e��. Conversely, these distorted TWs would produce a
reacting force to the vortex core; sometimes it is called a
restoring force.7,10,16 If we model the forces between the vor-
tex core and the TW by elastic potentials in analogy to
spring-connected particles, we must add the spring force as
an external force when one applies Eq. �4� to each individual
part of the vortex wall. Then, two scenarios are possible: the
reacting force is strong enough to completely halt the per-
pendicular wall velocity; or the reacting force is unable to
stop the vortex from colliding with the wall edge. In the
former case, the perpendicular wall velocity eventually
reaches zero and a steady state wall velocity along the wire is
achieved. The final wall velocity is precisely the same as that
of the transverse wall �i.e., vx=−cJ /� and vy =0; see the
calculations below�. In the latter case, the vortex core col-
lides with the wire edge and can either vanish �move out of
the wire� or be reflected, i.e., the transformation of the vortex
wall to other types of walls occurs. Usually, the vortex core
disappears at the edge and the wall becomes a TW.17

When a steady state motion is achieved, we may apply
Eq. �4� to the entire wall. The interaction between the vortex
core and the TWs becomes an internal force and does not
enter Eq. �4�. However, there is an external force acting on
the entire wall, which is due to the magnetic charges coming
from the distorted TW parts at the boundaries. This force is
again analogous to the counteractive force from fixed bound-
aries to compressed springs. If we model this force as lin-
early dependent on the displacement of the vortex core �y in
the y direction, i.e., Fre=−��y, where the constant � is dis-
cussed in Ref. 13, we find, from Eq. �4�,

− Gvvy + Dxx��vx + cJ� = 0,

− ��y + Gv�vx + bJ� + �Dyyvy = 0, �17�

where we have used and determined

G = Gvẑ , �18�

D = �Dv + Dt�x̂x̂ + Dvŷŷ = Dxxx̂x̂ + Dyyŷŷ �19�

where Dt=−2Ms�
−1� y0−�y

w�
+

y0+�y

w�
�. Note that the TW parts

have no contribution to the gyrocoupling vector G; however,
they modify the dissipation dyadic with Dt.

In the steady state of motion, vy =0, we immediately find
from Eq. �17�

vx = −
cJ

�
�20�

and

�y =
GvbJ

�
�1 −

�

�
� . �21�

The above simplified analysis shows that the steady state
domain wall velocity is a universal constant vx=−cJ /�, in-
dependent of the wall structure, as long as the restoring force
from the edges of the wire is strong enough to halt the wall
motion in the direction perpendicular to the wire. We can
qualitatively estimate the critical current bJ

c when the restor-

ing force just barely prevents the wall colliding with the wire
edge, i.e., when �y=y0 �y0 is the half-width of the wire�. By
using Eq. �21�, we have

bJ
c =

�y0

Gv
�1 −

�

�
�−1

. �22�

If the current is larger than the above current density, the
restoring force is unable to stop the vortex core colliding
with the boundary and the VW transforms into a TW. The
wall transformation may be qualitatively understood in terms
of the conservation of the topological charges:12 when the
vortex core reaches the edge, the vortex with the winding
number +1 is absorbed by one of the edge defects �one of the
transverse wall parts� with winding number −1/2; then a
+1/2 edge defect must be created to conserve the topological
charges. This +1/2 edge defect together with the −1/2 edge
defect on the other side of the wire edge is equivalent to a
simple transverse wall with a uniform polarity.

2. Field-driven domain wall motion

By adding the external force due to the magnetic field

defined in Eq. �8�� to Eq. �17�, we can similarly derive the
domain wall steady motion velocity. In the steady state, the
external force on the entire wall is

F = 4y0HMsx̂ + c�HMs�R − a�ŷ = Fxx̂ + Fyŷ . �23�

In the absence of the current where cJ=bJ=0, we find that
from Eq. �17� the steady state velocity along the wire �vy

=0� is

vx = −
Fx

�Dxx
=

�Hy0

� � 4

� ln
R

a
+ 2� y0 − �y

w�
+

y0 + �y

w�
��

�24�

and the displacement of the vortex center in the direction of
the wire width is

�y =
Gvvx + Fy

�
. �25�

As in the case of the TW, the wall velocity is not universal
and it depends on the details of the wall structure. Compared
with a TW, the velocity of the VW is smaller;18 this can be
qualitatively understood in terms of a smaller wall width for
the VW. Let us take the width of the TW part2 as

y0−�y

w�

=
y0+�y

w�
=� �again, y0 is the half-width of the wire�. And the

width of the TW 

 in Eq. �9�� in the same wire is also taken
as 
=2y0 /�. For the VW, we may define an effective wall
width from Eq. �24�:

wvw = 
� 1

2 +
1

2
ln

R

a
� . �26�

For example, for a wire R=w /2=20 nm and the lattice con-
stant a=0.5 nm, the ratio of the TW to VW velocity is about
2+ 1

2 ln R
a =3.8.
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When the magnetic field is large, the restoring force is
unable to stop the wall colliding with the wall edge. The
vortex wall will be annihilated and the transformation to the
TW occurs. Similarly, we may estimate the critical field He

c

for the wall transformation by the condition �y=y0. We thus
find

Hc = �y0��Gvwvw

�
+ c�Ms�R − a��−1

. �27�

III. MICROMAGNETIC SIMULATION

A. Simulation procedure

To verify the analytical results derived above, we perform
micromagnetic simulations by directly solving Eq. �1� for a
defect-free magnetic wire sample. The geometrical size of
the wire is 2 �m long �x direction�, 128 nm wide �y direc-
tion�, and 8 nm thick �z direction�. The grid size is taken as
4�4�8 nm3. The material parameters are the exchange
constant A=1.3�10−6 erg/cm, the anisotropy field HK=0
�Oe�, the saturation magnetization Ms=800 emu/cc, the spin
polarization P=0.5, and the damping parameter � and the
non-adiabaticity factor � varying from 0.01 to 0.08.

The magnetization at both ends is set to be along the x
direction and directed inward to the wire and we use free
boundary conditions for the other dimensions. Since the do-
main wall may move several micrometers in some cases, it is
important to keep the domain wall far away from the ends to
reduce the influence of magnetostatic fields from the wire
ends: we shift the x coordinate of the entire domain wall after
each numerical iteration so that the center of the wall is
always located at the center of the wire. By using two initial
domain configurations similar to Ref. 1 we generate two
types of walls in the middle of the wire, the TW in Fig. 1�a�
and the VW. The VW has four equivalent configurations cor-
responding to different polarity �p= ±1� and chirality �c
= ±1�. We only show the VW for p=−1 and c=1 in Fig. 1�b�
The TW and VW shown in Fig. 1 are our initial wall con-
figurations. At time t=0, a constant spin torque or a magnetic
field is applied to the wire, and we calculate the wall motion
as a function of time until the wall reaches steady motion or
until a sufficiently long time that the wall motion remains
nonuniform.

B. Simulation results

To compare the analytical results on the universal domain
wall velocity, we first consider applying a sufficiently small
spin torque �bJ=25 m/s� so that the vortex core remains in-
side the wire. We vary the damping parameter � and nona-
diabaticity coefficient � from 0.01 to 0.08 to determine the
relation between the domain wall velocity and these two pa-
rameters. In Fig. 2 we show that the initial velocity of the
VW in the x direction is always bJ �independent of � and ��,
while the total displacement of the center of the wall in the y
direction quantitatively agrees with Eq. �21�. As expected,
the y-component velocity gradually reduces to zero when the
center of the core moves toward the edge. The restoring

force eventually stops the wall motion in the y direction, and
a steady state motion with the velocity vx=−cJ /� along the x
direction is reached. In Fig. 3, we show the relations of the
terminal velocity vx with both � and �. These simulated re-
sults are in excellent agreement with our analytical formula.

When we increase the applied current density �or the
strength of the spin torques� above a critical value, the simu-
lations show that the vortex core moves outside the nanowire
from the edge and the VW transforms to a TW. The trans-
formed TW moves at the velocity −cJ /�.19 We note that the
critical current density depends on the parameters. A special
case is when �=�. We find that the VW can maintain its wall
structure up to a much higher current density. This is because
the vortex wall does not move toward the wire edge 
see Eq.
�21��. However, this accidental case should not be considered
as a general property of the VW motion. When the current
density is further increased, the TW will also deform during

FIG. 2. The dependence of �a� the x component of the initial
velocity vx0

and �b� the y-component displacement �y as a function
of the nonadiabaticity parameter � for two different polarity VWs
�p= ±1�. We have used bJ=25 m/s and �=0.05. The straight lines
are simple data fits.

FIG. 3. Steady state velocity of TW and VW as a function of �a�
the damping parameter, and �b� the nonadiabaticity parameter. The
current density is bJ=25 m/s. The straight lines are simple data fits.
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its motion and the velocity is highly nonuniform; this is
known as Walker’s breakdown.3 The alternative appearance
of a transverse wall and a vortex wall �or antivortex wall�20

is seen in simulations �not shown here�. In our analytical
calculations, we exclude these extremely complicated wall
dynamics.

As a comparison, we also simulate the field-driven do-
main wall motion at sufficiently small fields. The behavior of
the VW driven by a field is similar to the current-driven case:
namely, besides the motion along the wire, the vortex core
moves toward the edge and eventually stops due to the re-
storing force. At a critical field, the VW overcomes the re-
storing force and the VW transforms into a TW. While the
steady velocities of TW and VW are both proportional to the
magnetic field H and �−1 �see Fig. 4�, the VW has a smaller
velocity compared to the TW for the same field.

Finally, we point out that the analytical and simulation
analysis in this paper is for a defect-free wire. In a realistic
wire, defects are unavoidable. We expect that our analytical
results may not be applicable. For example, the steady state
wall velocity may not be universal and the defect pinning
depends on the detail of the wall structure. Indeed, we have
seen in our earlier simulation19 that the critical current is
larger for depinning a TW than for a VW. An even more
remarkable finding is that the VW first begins depinning and
then transforms to a TW, which is finally pinned by defects
again �the wall stops�. The phenomenon occurs when one
applies a moderate current density between the critical values
of two depinning currents of the VW and TW.19 The above
feature has been captured in a recent experiment.17

IV. CONCLUSION

In summary, we have calculated the velocity of the VW in
the magnetic wire. In a defect-free wire, the terminal velocity

is independent of the wall structure for the current-driven
steady motion, while for the field-driven case, the effective
domain wall width is a key parameter for the domain wall
mobility. The transformation between the VW and the TW is
explained as the consequence of the perpendicular motion of
the vortex core and the conservation of topological charges.
Our model is further supported by numerical solutions and is
in agreement with experimental results.
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