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Determining energy barriers by iterated optimization: The two-dimensional Ising spin glass
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Energy barriers determine the dynamics in many physical systems like structural glasses, disordered spin
systems, or proteins. Here we present an approach, based on subdividing the configuration space in a hierar-

chical manner, which leads to upper and lower bounds for the energy barrier separating two configurations. As
an application, we consider Ising spin glasses, where the energy barriers which need to be surmounted in order
to flip a compact region of spins of linear dimension L are expected to scale as LY. The fundamental operation
needed is to perform a constrained energy optimization. For the the two-dimensional Ising spin glass we use an
efficient combinatorial matching algorithm, resulting in the nontrivial numerical bounds 0.25 < <<0.54.
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I. INTRODUCTION

A unifying concept in the physics of disordered systems is
the notion of energy land-scapes. The dynamics of these sys-
tems is determined by (free) energy barriers. Prominent ex-
amples include spin glasses,' structural glasses,” and folding
of proteins.? In the language of theoretical computer science,
the barrier problem belongs* to the fundamental class of non-
deterministic polynomial (NP) hard problems.’> As a conse-
quence all known algorithms determining lowest barriers run
with a time which grows exponentially with system size.

In this paper, we will present a hierarchical approach to
calculating minimum barriers. The basic operational tools
needed are combinatorial optimization algorithms to perform
constrained energy optimizations. The algorithm presented
below will result in the number of constraints increasing with
the level in the hierarchy.® As an illustrative application, we
study the prototypical two-dimensional Ising spin glass,
where nontrivial bounds for the barriers have not previously
been obtained.

In the droplet’ or scaling theory of Ising spin glasses the
low-energy excitations are compact droplets. The creation of
a droplet (a region of reversed spins of linear extension L)
results in the formation of a domain wall around the reversed
spins, its energy scaling as L?. The system orders at low
temperatures only if #>0. The domain wall is fractal and
has area L9, with d—1<dy<d. The dynamics of the system
are controlled by the height of the barriers which have to be
crossed to create such droplets. It is generally assumed that
the barrier to be surmounted to create a droplet of linear
extent L has an energy which scales as LY where < y<d
—1 for dimension d. The argument for these inequalities goes
as follows: the barrier must be at least as large as the energy
required to create the domain, hence 6= is; the upper limit is
due to the fact that the barrier must be lower than the energy
of a compact droplet with a nonfractal surface containing the
same number of reversed spins.” While for a directed poly-
mer in a random system it was shown that ¢=6,8 for Ising
spin glasses ¢ appears to be an independent exponent.

While many numerical studies have been done to calcu-
late the exponent 6, we are aware of only one direct numeri-

1098-0121/2006/73(18)/184405(7)

184405-1

PACS number(s): 75.10.Nr, 75.40.Mg

cal estimate of ¢ and that was for two dimensions.’ It was
equal to the upper bound, i.e., y=d—1, but only small sys-
tems were studied (L <6). As mentioned, the barrier problem
is NP hard and it has been difficult even to find good ap-
proximate algorithms for barriers. This is presumably the
reason for the paucity of studies of this exponent. Recently
Drossel and Moore instead of attempting to calculate the
barrier exactly, placed bounds on its energy.'® They showed
that for the hierarchical lattice (which is constructed itera-
tively by replacing each bond by 2¢ bonds) there exists a
lower bound on ¢ which coincides with the upper bound d
—1; hence ¢y=d—1. In the same spirit as their work, we will
also obtain upper and lower bounds on the energy of the
barriers but for the more physically relevant case of the
square lattice. Rather than studying droplets of order of the
system size L, we will consider the computationally simpler
task of determining upper and lower bounds for the barrier
separating the two ground states (GSs) related by a flip of all
spins. This represents the highest barrier in the system and
thus determines the longest time scale of the dynamics. It is
equivalent to sweeping a domain wall through the system.
Both types of barriers should be equivalent for two-
dimensional spin glasses since domain walls and droplets
seem to share the same exponents.'!

In the next section we explain the general idea of our
algorithm. We describe the general case, but for illustration
we give examples in the chemical language, where a mol-
ecule changes its state, e.g., the transition of a protein be-
tween two conformations. This is probably more illustrative
for the general reader. Then we introduce the spin-glass
model which we study here and show how the algorithm is
implemented for this case. In the main section, we present
the results for the barriers of two-dimensional Ising spin
glasses. We conclude with a summary and a discussion.

II. ALGORITHM

A. General outline

The algorithm works in the following way. Given are an
energy function H(c) of configurations ¢, e.g., the (free) en-
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ergy of a molecule depending on the positions ¢ of all atoms,
and two initial configurations Cgo)’c(z())' For simplicity, we
consider in the following just energies instead of free ener-
gies. We assume that we have a good minimization algorithm
opt available which finds ground states min H(c). We also
assume that the algorithm allows us to introduce constraints
C', e.g., restricting some bond angles or interatomic dis-
tances to fixed values or within an interval, i.e., the result
opt(C") depends on C’. For the case of molecules, there is in
fact no efficient method to generate exact ground states, but
we can assume that we can get reasonable good approxima-
tions using steepest-descent methods like conjugate gradient,
possibly combined with other heuristics. It is important to
say that for the two-dimensional spin-glass problem we are
finally considering here, there is in fact a fast polynomial
algorithm, which we use to calculate exact ground states (see
below).

The general goal is to find a (reaction) path in configura-
tion space between c<10) and c(zo) whose energy E, .. at the
highest point along the path is as low as possible, i.e., a
minimum path in that sense. The energy barrier is then
AEB=Emax—H(c(10)). The standard way to describe the tran-
sition between the two configurations is by using a reaction
coordinate 7, which changes along the path. This can be a
suitably chosen bond angle or interatomic distance in the
case of chemical molecules. We always assume that reaction
coordinates are available that change strictly monotonically
during the transition, e.g., if a side group of the molecule
rotates by 240°, a bond angle is better suited than some in-
teratomic distances. Also for the case of two-dimensional
spin glasses there are such natural coordinates (see below). If
one knows the reaction path fully, 7€ [, 7] just param-
etrizes the configurations ¢(7) along the reaction path, i.e.,
the full configurations are parametrized by 7 and E,
=max {H(c(7))}.

In our case we do not know the reaction path in advance;
we only have c(71)=c(10), c(72)=c(20). Our approach here is to
find a good approximation of the minimum reaction path by
first selecting one “physical” reaction coordinate 7 which
characterizes the transition very well, e.g., a bond angle,
which changes most during the transition. One can now get a
rough idea of the transition, if one varies 7 between 7, and 7,
and generates a finite set of values Te{7
=7 ..., & 7k=72}. For each of these values, using opt
we then obtain minimum energy configurations ¢ (i
=1,...,k) with a minimization under the constraint 7=7".
Hence, we get a set of energies H(c'), which is a coarse-
grained picture of the energy landscape encountered during
the reaction path (see top panel in Fig. 1). This coarse-
grained path is determined by the set of constraints C’ which
fix the path at 7=7". Since the description of the path via
constraints is more general, and in particular more suitable
for our spin-glass problem, we will use this description. The
reaction path so obtained is a reasonable good approximation
for the true minimum reaction path, because a ground state
was calculated (under the given constraints) for each inter-
mediate point. This is the first basic idea of our approach.
This first coarse-grained path we denote as the path on level
1. Nevertheless, the quality of the result depends on a good
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FIG. 1. Excitation energies AE for sequences of configurations ¢
generated by the algorithm.

choice of 7, which might be difficult for molecules, but is
straightforward for the case of two-dimensional spin glasses.

Now, it might be the case for two adjacent configurations
c¢',c*! that these configurations are again separated by a
high-energy barrier, e.g., another subgroup of the molecule
might first need to be rotated aside. For continuous degrees
of freedom this becomes obvious, if the interpolation be-
tween the two configurations leads to ridiculously high ener-
gies (such as would occur if one attempted to move some
atoms through other atoms). For discrete degrees of freedom,
when assuming a dynamics consisting of changes of single
variables, an energy barrier might occur if c¢/,c*! differ by
more than one variable. In general for such a case, one can
apply the same algorithm recursively for all adjacent pairs
¢!, e where it is necessary. This is the second basic idea of
our approach. Hence, one obtains the reaction path with
higher level of details, i.e., a reaction path on level 2, and
also a refined picture of the energy landscape (see middle
panel in Fig. 1). Note that within the optimization the con-
straints that have appeared on the upper level will also be
suitably included, i.e., 7€ [7, 7*!] when looking at the case
Ci *>Ci+1.

The whole approach is iterated on lower levels, leading to
finer and finer descriptions of the reaction path and of the
energy landscape along the path, until one is sure that be-
tween two adjacent configurations there is no high energy
barrier (see bottom panel in Fig. 1). For the case of systems
with discrete degrees of freedom, as is the case for the two-
dimensional spin glasses, this is achieved when one arrives
at the level of single-variable changes, i.e., single-spin flips
here.

To formally summarize, the algorithm is based on two
fundamental operations. Note that for the following descrip-
tion we again describe the restriction of the accessible con-
figuration space via sets of constraints. Hence sequences of
configurations along a reaction path are given in terms of
sequences of constraints, each constraint being equivalent to
the configuration obtained after a minimization under the
constraints.

(1) seq(c;,c,,C) finds sequences {C',C?,...,C*} of con-
straints interpolating between the two given configurations
c1,c, under an already given set C of constraints (empty
when called on level 1). In general, the number k of elements
of the sequence, i.e., of interpolation steps along the reaction
path, may also be determined by seq, which is possible for
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problems having discrete degrees of freedom, as for Ising
spin glasses. For continuous degrees of freedom, one would
have to limit or preselect the number of elements.

Note that the choice of seq determines mainly the quality
of the reaction path. The better seq, the better the final result.

(2) opt(C’) finds the optimum energy of the system for
the given set C' of constraints. In case the optimization prob-
lem is hard, e.g., for proteins and other molecules, this could
be heuristic as mentioned above.

The algorithm hierarchically constructs a path in configu-
ration space. It first calls seq for c(lo),c(zo) without any con-
straints. For each set C' of constraints returned by
seq,opt(CU C') is called (C are the constraints from the pre-
vious level, modified slightly to allow for variations between
certain limits as discussed above), resulting each time in op-
timum configurations under the given constraints. This se-
quence of configurations is the first level of the hierarchy
(see again Fig. 1). The reaction coordinate chosen on level 1
must change from 7; to 7, when moving from c(10> to 6(20) also
for all other possible reaction paths. Since there are no other
constraints present on level 1, and because the configurations
are obtained from a (presumably exact) optimization, any
reaction path must overcome an energy barrier at least as
high as the energy barrier encountered on level 1. Hence one
has obtained already a lower bound for the true minimum
barrier energy.

To construct the path in finer detail, for each consecutive
pairs of constraints obtained on the first level the same pro-
cedure is applied again. This results in a more detailed path
in configuration space (level 2). The process is continued
hierarchically until one arrives on the level of changes of
single degrees (for discrete systems) or when one has the
desired level of detail (continuous systems), i.e., when linear
interpolation is feasible. The highest energy encountered on
the final level is an upper bound for the true minimum bar-
rier. First, it is an upper bound, because any reaction path
provides an upper bound. Second, this bound is not tight,
because the algorithm cannot guarantee that, e.g., the choices
made on level 1 do not lead to higher energy barriers on
lower levels. It could be that if one chooses a path with
comparatively higher energy on level 1, this leads to a path
where the final energy barrier is comparatively lower. The
true minimum barrier can presumably only be found by con-
sidering basically all possible paths.

B. Two-dimensional spin glasses

To show how the algorithm can be implemented explicitly
we apply it to two-dimensional Ising spin glasses. The model
consists of N=L? spins S;=+1 on a square lattice with free
boundary conditions in both directions. The Hamiltonian is

H=_E‘]ijSiSj7 (1)

(ij)
where the sum runs over all pairs of nearest neighbors (ij)
and the J;; are the quenched random spin couplings. We will
consider a Gaussian distribution of couplings with zero mean

and unit width, which guarantees that the system just has two
GSs {6 and {-¢°}. We define the barrier to be the energy
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required to invert all spins in the GS within the context of
single-spin-flip dynamics, as in Ref. 9, i.e., the reaction path
goes from {¢°} to {~c”}. Each trajectory of reversal is char-
acterized by the highest maximum in the trajectory having
energy AEp, in excess of the GS energy, and the minimum
barrier height Ez=min(AEg), where the minimum is over all
the possible trajectories.

All spin configurations can be described by the set of
spins having {¢"} orientation, while the remaining spins have
the {-¢°} orientation. Hence, each configuration is equiva-
lent to a set of domain walls (DWs) separating the two GS
orientations. Since these DWs so defined always have posi-
tive energies, our search for low-energy paths can be re-
stricted to configurations which are separated by just one
DW. Therefore, each configuration is described by one DW
w here. The path from {6} to {6} will be equivalent to a
DW sweeping—say—from left to right through the system
via single spin flips. For our implementation, we will allow
only that each spin flips exactly once along the reaction path,
i.e., the DW cannot fluctuate back and forth. This is another
major approximation and as a consequence we can finally
only obtain an upper bound for the minimum barrier height
AEj instead of the true one.

The basic idea of the implementation of the approach for
two-dimensional spin glasses is to use the position of one
part of the DW wall as reaction coordinate. For level 1 of the
energy-landscape hierarchy, we fix (“pin”) the DW—say—at
different positions at the top boundary of the system and
move this position from left to right through the system. The
remaining part of the DW is allowed to adjust freely such
that its energy becomes minimal. One higher levels of the
iteration, a DW is moved between two given DWs which are
adjacent on the preceding level. The process is repeated hi-
erarchically until a sequence of N single spin flips from {0}
to {—o”} is obtained.

Now we describe the seq and opt operations. We start
with the opt operation, because the algorithm we use im-
poses some restriction on the kind of constraints we can use
to describe the reaction path. Hence, the nature of these con-
straints then determines the way we implement the seq op-
eration.

The opt operation consists here of the calculation of the
GS {0"}. This can be done in a time that grows polynomially
in the number N of spins, by mapping the GS problem to a
graph-theoretical problem, the so-called minimum-weight
perfect matching problem. For the details of this well-
established method (see Refs. 6 and 12). The very first step
for the treatment for each realization of the disorder is to
calculate its true GS {0} without any constraints. Then {0}
and {-¢°} are the start and end points of the reaction path to
be constructed.

The most natural way to realize constraints is to fix the
orientations of some spins. Unfortunately, this is not possible
within the matching approach, because it does not work in
the presence of local or global magnetic fields. The only
thing one can do is to change some of the interaction bonds
Ji;- Hence, constraints are included here by introducing hard
bonds, which are bonds of very high magnitude, e.g., |/
=10°, replacing the original bonds between neighboring
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FIG. 2. Example of the generation of a DW via introducing hard
bonds (small black rectangles) and one inverted hard bond (small
white rectangle), after the GS of the system has been obtained. The
following GS calculation including the hard bonds generates two
domains, one where the spins have the GS orientation (white area)
and one where the spin have the opposite GS orientation (dark
area). The DW separates these domains and is forced to run through
the inverted hard bonds, and it must not run through the other hard
bonds.

spins 7,j. The high magnitude of the bonds ensures that they
are satisfied in all following calculations of configurations.
Note that hard bonds fix only the relative orientation of two
adjacent spins, not the absolute orientation of single spins.
Here, as a general rule, the signs of most hard bonds are
chosen such that they enforce the same relative orientation of
the two spins as in the original GS. Furthermore, to induce
DWs with respect to the GS, a few of the hard bonds will be
inverted, i.e., they ensure a relative orientation of adjacent
spins that is opposite to the GS orientation. As we will see
below, the remaining part of the algorithm (i.e., the operation
seq) consists mainly of choosing which hard bonds to intro-
duce, and which hard bonds to invert.

To understand the way the hard bonds are introduced, we
look at the following example. Assume that we have calcu-
lated the GS of a given realization. Now we introduce a
horizontal line of hard bonds connecting all spins in the top
row. If we calculated with this changed realization a new GS,
we would get exactly the same GS again. To get something
new, we further invert exactly one of the hard bonds, say the
bond J; ;.1 somewhere in the middle of the top row (see
Fig. 2). Now we compute the GS of this changed realization.
The inverted hard bond guarantees that spins [, and [y+1
have opposite relative orientations to the original GS. Hence,
a DW originates between spins [, and /,+ 1. The other (non-
inverted) hard bonds guarantee that all other spins at the top
row have the same relative orientations as in the GS. This
means that the DW has to leave the system at one of the
other boundaries, e.g., at the bottom row, as shown in the
example. Since the DW is obtained from another GS calcu-
lation, its energy is minimized under the constraint that its
starting location is pinned between spins [, and [+ 1 and that
it does not terminate at the top row. Everything else will be
adjusted such that the energy is minimal. In the resulting
configuration, all spins left of the DW will have one GS
orientation and all spins right of the DW the opposite GS
orientation.

The basic idea to construct the reaction path on level 1 is
to consider all possible positions of the inverted hard bond
along the horizontal line, running from left to right, such that
the DW is swept from left to right as well. This generates a
sequence of DWs (see Fig. 3) describing the path on level
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FIG. 3. A sample sequence of DWs generated by considering all
different positions of the inverted hard bond along the horizontal
line, corresponding to level 1 of calculation of the reaction path.
The differently shaded regions show the different parts of the do-
mains flipped when the ith bond is inverted. Hence, for the inverted
bond at the leftmost position (connecting spins 1 and 2), the result-
ing GS exhibits a domain consisting of part 1 with one GS orien-
tation, and another domain consisting of parts 2-10 with the other
GS orientation. For the inverted bond connecting spins 2 and 3, the
two domains consist of parts 1,2 and 3-10, respectively, etc. The
sequence of DWs generated in this way describes on a coarse-
grained level the order in which one moves from one GS to the
other GS.

one. The refinement of the path and the energy landscape is
obtained by recursively finding sequences of DWs on level
n+1 which interpolate between adjacent DWs on level n,
again using straight lines along which an inverted hard bond
is moved. The only additional generalization we apply is that
we interpolate between DW configurations not only along
horizontal but also along vertical lines. Furthermore, we also
remark that the energies obtained on level 1 are not neces-
sarily true lower bounds on the barrier height, because we
choose to sweep the DW from left to right, but it might be
better to sweep it from bottom to top, or even diagonally.
Nevertheless, from symmetry arguments, the results we de-
note as “lower bound” should be very close to true lower
bounds.

Note that also the initial situation on the first level of the
above described hierarchy, i.e., the GSs C(IO)Z{O'O} and c(zo)
=—{¢"}, can be described in the DW picture via two straight-
line DWs being located at (“behind”) the left and right bor-
ders of the system, respectively. One can imagine that these
initial configurations correspond to the situations where the
DW has not yet entered the system, and where the DW has
finally left the system, respectively. Hence, the task on all
levels of the hierarchy is to interpolate between two DWs.

This means, in general, that two domain walls w,,w, are
passed to seq. Furthermore, we pass constraints C such that
the bonds left of w; and right of w, are hard bonds (i.e., no
hard bonds at all on level 1). These hard bonds cause the
spins left of w; and right of w, to be frozen independently
into relative GS orientations. Thus, all subsequent DWs cal-
culated on higher levels will run between w; and w,. This
guarantees in the end that the domain wall does not fluctuate
back and forth. Technically, it also accelerates the subsequent
GS calculations considerably, because, hard bonds do not
have to be considered during the minimization. The basic
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FIG. 4. Example of the operation of the algorithm. Left: two
adjacent domain walls (generated on level) shown together with the
line of hard bonds (horizontal black line) generated by seq, with the
inverted hard bond (white part of line) (ij,i,;), corresponding to
C*. The hard bonds left of the left DW and right of the right DW are
not shown for clarity. After a new GS calculation with additional
constraints C¥, a DW will result that runs between the two shown
DWs and exactly through the inverted hard bond. The resulting
sequence of “interpolating” domain walls obtained after the calls to
opt could look like that on the right, where the different domains
are shown in different shades for better visibility.

idea is now to generate a (partial) reaction path interpolating
between w, and w,, i.e., to sweep a DW from w, to w, from
left to right, by pinning it at one location through an inverted
hard bond and moving the inverted hard bond such that it
moves the DW from w; to w,. This is achieved here by seq
by determining the longest straight (horizontal or vertical)
separation between w; and w, which lies completely inside
the region without hard bonds. Let k+1 be the length of this
separation. To construct sequences of constraints leading to
this behavior, we add (inverted) hard bonds, such that the
DW is effectively moved. Formally, we do this by denoting
with iy, ... i, the spins along this line, and by i, and i;,,
the spins that are reached when extending the separation in
both directions by one spin. Then, seq finally returns the

sequence {C',...,C*} of constraints, which are defined as
follows: C' (I=1,...,k) consists of the hard bonds!?
{Go,i1),(ys0), oo Gigoiger) s (iger > fzs2)} Where  exactly  the
bond (i;,i;,) is inverted and the others are not inverted (see
Fig. 4).

Thus, for the subsequent calls to opt with the constraints
C'UC, each time a domain wall is generated, which lies in
the region between w; and w, and is forced by the inverted

20
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FIG. 5. An example of the energy landscape explored by our

algorithm for L=14; the exponent ¢ is associated with the scaling
of the maximum energy found in the sequence.

PHYSICAL REVIEW B 73, 184405 (2006)

AE,..
AEmin
10
10
L

FIG. 6. Upper line: average barrier energy as obtained by the
algorithm, being an upper bound for the true lowest barrier height.
Lower line: lower bound for the barrier energy as obtained from the
first level of the hierarchy.

hard bond to run exactly between spins i; and i;,;, the DW is
pinned between #; and i;,;. Going with / from 1 to k, each
time calculating the GS, results in a sequence of domain
walls interpolating between w; and w,. For all pairs of adja-
cent domain walls generated in this way, the same procedure
is continued recursively at the next level.

The hierarchical procedure stops for all pairs w;,w, that
are separated only by a line of spins of width 1. For this case
one can just flip in the region between w; and w, one spin
after the other starting at one end. Hence, the full algorithm
finally outputs a sequence of single spin flips corresponding
to the movement of a domain wall from one end of the
system to the other.

For each flipped spin the energy of the configuration is
calculated, and at the end the maximum AE,,, among the N
energies is considered. An example of the corresponding en-
ergy landscape sampled by this sequence is shown in Fig. 5.

II1. RESULTS

We applied our method for system sizes in the range 8
< L =40, and for each L used 1000 independent realizations
of the bonds J;;. The two averaged quantities (AE,,;,) (the

AE/LY

FIG. 7. (Color online) Rescaled probability distribution of the
upper bound for the barrier heights corresponding to ¢=0.54. The
inset shows the same data (but not for all system sizes, for clarity)
with logarithmic y scale.
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AB/LY

FIG. 8. (Color online) Rescaled probability distribution of the
lower bound for the barrier heights corresponding to ¥=0.25. The
inset shows the same data (but not for all system sizes, for clarity)
with logarithmic y scale.

lower bound, obtained from the first level) and (AE,,,,) (the
upper bound) as a function of system size are shown in Fig.
6. Both quantities can be fitted by an algebraic function ~LY,
where ,=0.25+£0.01 and ¢,,=0.5420.01. There could of
course be a procedure to obtain a better path in configuration
space, yielding a barrier that grows more slowly than L0,
Anyway, our approach is to our knowledge the only numeri-
cal estimate of the energy barrier exponent giving an upper
bound different from the trivial one d— 1. Note that the exact
values for small sizes, which were also restricted to each spin
flipping once,’ lie basically between our upper and lower
bounds, so it is not clear which bound is the better approxi-
mation.

There are experimental estimates of ¢ for two-
dimensional Ising spin-glass systems in the literature. Dek-
ker et al.'* reported experimental verification of activated
dynamics in a d=2 system obtaining =0.9. Schins et al.'
find y=1.0+0.1 by studying aging via the low-frequency ac
susceptibility giving credence to the claim that ¢ is equal to
its upper bound. The numerical study of Gawron et al.® gave
=0.9+0.1 in two dimensions, but that of Berthier and
Bouchaud'® had /~ 1.0 and ¢~ 2.3 in three and four dimen-
sions, respectively. We remark that our approach has the ad-
vantage that is does not suffer from equilibration problems
and it allows the study of large systems at least in two di-
mensions. Note that the algorithm finds energically low-lying
paths because, by iteratively applying the matching algo-
rithm, we are producing large-scale changes to the domain
wall, resulting in a value ¢y<<d—1. We have also studied the
barrier associated with a straight domain wall and found that
the expected B~ L behavior is approached by L=40, being
sublinear for L<<40.

We also studied the distributions of the barrier heights
over different random samples. In Fig. 7 the probability dis-
tributions rescaled by L¥ for the upper bounds are shown for
different sizes L, while Fig. 8 shows the same data for the
lower-bound results. In both cases the result is compatible
with an approach to a fixed shape in the thermodynamic
limit. In particular this means that the barrier energy is not
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FIG. 9. The perimeter (Iength) of the surface of the domain wall
as a function of system size corresponding to the upper bound
(maximum) energy. Error bars are smaller than symbol sizes. Data
are fitted by a power law P~ L% with dg=1.273+0.07.

self-averaging because the width of the rescaled distributions
does not decrease with growing system size. Note that both
these distributions show the existence of some very large
barriers in some samples (see insets of Figs. 7 and 8). Nev-
ertheless, the distributions decrease faster than exponentially
in the tails.

Finally, we also studied geometrical properties of the do-
main walls at the energy barriers. The domain walls are frac-
tal with an average length of order P~ L9, with d—1<d
<. For the small sizes accessible within this framework, we
obtained d¢=1.273+0.007 for the upper-bound domain walls
(see Fig. 9). This is very close to the values found in previ-
ous work for domain walls of minimum energy.!”?* For the
domain wall representing the lower bounds, we obtained in
the same way dg=1.278+0.004.

IV. CONCLUSIONS

To conclude we have introduced a hierarchical algorithm
to compute upper and lower bounds on energy barriers. Ap-
plying the algorithm to two-dimensional Ising spin glasses,
we find that the minimum barrier energy is bounded above
by the scale L°* and below by L%?. The power of our
approach becomes visible by noting we can study much
larger system sizes than before and by the fact that our nu-
merical upper bound is significantly less than the rigorous
upper bound (and the value for the hierarchical lattice) d
—1. Hence, we suspect that ¢ is an entirely nontrivial expo-
nent. At the present time there seems to be no theoretical
approach available that might explain a nontrivial value of .
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