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Guided and quasiguided elastic waves in a glass plate coated on one side with a periodic monolayer of
polymer spheres, immersed in water, are studied by means of accurate numerical calculations using the
on-shell layer-multiple-scattering method. This system supports, in addition to the modes of the bare plate,
almost dispersionless, slow modes which originate from the array of spheres. We calculate and analyze in detail
the dispersion diagrams of the interacting modes of the composite slab, and provide a consistent interpretation
of the underlying physics.
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I. INTRODUCTION

The propagation of surface elastic waves can be effi-
ciently manipulated by periodic structuring on a length scale
comparable to the corresponding wavelength. Surface elastic
waves, and in particular Rayleigh waves, at a periodically
corrugated surface of a semi-infinite isotropic elastic medium
have been studied both theoretically1 and experimentally.2

More recently, surface modes of composite materials with
elastic coefficients varying periodically in space on a macro-
scopic scale, so-called phononic crystals,3 attracted also con-
siderable interest.4–12 However, these studies refer, almost
exclusively, to semi-infinite phononic crystals having a two-
dimensional �2D� periodicity, while elastic modes of periodi-
cally structured finite slabs received much less attention.
Guided and quasiguided elastic waves in thin homogeneous
slabs, so-called Lamb waves,13 have been extensively stud-
ied for a long time for a variety of reasons, not least of which
are technological applications in nondestructive testing and
quantitative evaluation,14,15 acoustic sensors,16 etc. Introduc-
ing a periodic modulation in a thin slab, will cause a folding
of the dispersion curves of the Lamb waves, accompanied by
the opening of Bragg gaps at the Brillouin-zone boundaries.
Moreover, additional modes may appear thus offering further
possibilities for tailoring the propagation of slab elastic
waves.

The aim of the present paper is to study guided and
quasiguided elastic waves in thin slabs of phononic crystals.
For this purpose we consider a composite slab consisting of
a 2D periodic array of polymer spheres on a glass plate,
immersed in water. This system supports, in addition to the
modes of the bare plate, almost dispersionless, slow modes
which originate from the array of spheres. We report a thor-
ough analysis of all these guided and quasiguided modes, by
means of first-principles calculations using the layer-
multiple-scattering method.17,18 This method is ideally suited
for the system under consideration because it can treat effi-
ciently, besides an infinite phononic crystal, also a slab of the
crystal of finite thickness �the slab may consist of a number
of layers, which can be either planes of spheres with the
same 2D periodicity or homogeneous plates�. The eigenfre-
quency and the lifetime of the above slab modes are deduced
directly from the corresponding spectral density of states of
the elastic field. The corresponding dispersion curves and

their symmetry are analyzed in conjunction with relevant
transmission spectra, for normal incidence as well as for in-
cidence at an angle. Our analysis elucidates the complex
spectra associated with these modes and provides a transpar-
ent picture of the underlying physics.

The paper is organized as follows. In Sec. II we summa-
rize the essentials of our method of calculation, the emphasis
being placed on aspects of it which are directly related to the
calculations carried out in this work. Section III is devoted to
the discussion and analysis of our results, and the last section
concludes the paper.

II. METHOD OF CALCULATION

We consider, to begin with, a plane of nonoverlapping
spheres at z=0: an array of spheres centered on the sites of a
2D lattice specified by Rn=n1a1+n2a2, where a1 and a2 are
primitive vectors in the xy plane and n1 ,n2
=0 , ±1, ±2, ±3, . . . . The corresponding 2D reciprocal lat-
tice is obtained, in the usual manner, as follows: g=m1b1
+m2b2, with m1 ,m2=0 , ±1, ±2, ±3, . . . and b1 ,b2 defined by
bi ·a j =2��ij, where i , j=1,2. We assume that an elastic
plane wave �it can be longitudinal or transverse� of angular
frequency � is incident on the plane of spheres from the left
�z�0�. Due to the 2D periodicity of the structure under con-
sideration, the component of the wave vector of the incident
wave parallel to the plane of spheres, q�, can always be writ-
ten as q� =k� +g�, where the reduced wave vector k� lies in
the surface Brillouin zone �SBZ� and g� is an appropriate
reciprocal vector of the given lattice. Therefore, the wave
vector of the incident wave has the form Kg���

+ =k� +g�
+ �q��

2 − �k� +g��2�1/2êz, where êz is the unit vector along the z
axis, and �� specifies the polarization of the wave: q��=ql
=� /cl for a longitudinal wave and q��=qt=� /ct for a trans-
verse wave. The displacement vector uin�r� corresponding to
the incident plane wave, expressed with respect to an origin
Al on the left of the plane of spheres, has the form

uin�r� = �uin�g�i�
+ exp�iKg���

+ · �r − Al��êi�. �1�

For ��= l, i�=1 denotes the only nonzero component of the
displacement vector, ê1 being the radial unit vector along the
direction of Kg�l

+ . For ��= t, i�=2 or 3 denotes the only non-
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zero component of the displacement vector, ê2 and ê3 being
the polar and azimuthal unit vectors, respectively, which are
perpendicular to Kg�t

+ .
Since � and k� are conserved quantities in the scattering

process, the scattered by the plane of spheres field will con-
sist of a series of plane waves with wave vectors

Kg�
± = k� + g ± �q�

2 − �k� + g�2�1/2êz, �2�

for all reciprocal-lattice vectors g and polarizations along ê1,
ê2, and ê3 �radial, polar, and azimuthal unit vectors, respec-
tively, associated with every Kg�

s , s=±�. When �k� +g�2�q�
2

the corresponding wave decays to the right for s=+ and to
the left for s=−, and the corresponding unit vectors êi be-
come complex. The transmitted �incident+scattered� wave,
expressed with respect to an origin Ar on the right of the
plane of spheres, has the form

utr
+�r� = �

gi

Qgi;g�i�
I �uin�g�i�

+ exp�iKg�
+ · �r − Ar��êi, z � 0,

�3�

and the reflected wave, expressed with respect to Al, has the
form

urf
−�r� = �

gi

Qgi;g�i�
III �uin�g�i�

+ exp�iKg�
− · �r − Al��êi, z � 0. �4�

The above equations define the elements of the transmission
�QI� and reflection �QIII� matrices for a plane wave incident
on the plane of spheres from the left. They depend on the
scattering properties of the individual scatterer, on the geom-
etry of the plane, and of course on the frequency, the angle of
incidence, and the polarization of the incident wave. Simi-
larly we can define the transmission matrix elements Qgi;g�i�

IV ,
and the reflection matrix elements Qgi;g�i�

II for a plane wave
incident on the plane of spheres from the right. One can use
the same notation �the calculation is of course much easier�
to describe the scattering properties of a homogeneous plate.
In this case the Q matrices are diagonal in g because of the
translation invariance parallel to the xy plane. Explicit ex-
pressions for the Q matrices in the different cases can be
found elsewhere.18

We obtain the transmission and reflection matrices for a
pair of consecutive layers, say 1 on the left and 2 on the
right, to be denoted by Q, by combining the matrices Q�1�
and Q�2� of the two layers. Taking Ar�1�, the origin on the
right of the left layer, at the same point as Al�2�, the origin
on the left of the right layer, in the host region, one can easily
show that

QI = QI�2��I − QII�1�QIII�2��−1QI�1� ,

QII = QII�2� + QI�2�QII�1��I − QIII�2�QII�1��−1QIV�2� ,

QIII = QIII�1� + QIV�1�QIII�2��I − QII�1�QIII�2��−1QI�1� ,

QIV = QIV�1��I − QIII�2�QII�1��−1QIV�2� . �5�

All Q matrices refer of course to the same � and k�, and I is
the unit matrix. It is obvious that by the same procedure we
can obtain the Q matrices for a slab consisting of any finite
number NL of layers. The transmittance T�� ,k� +g� , i�� and
the reflectance R�� ,k� +g� , i�� of the slab are defined as the
ratio of the transmitted, respectively the reflected, energy
flux to the energy flux associated with the incident wave. For
incidence from the left we obtain

T =
�gi

c�
2�Qgi;g�i�

I �2Kg�z
+

c��
2 Kg���z

+ �6�

and

R =
�gi

c�
2�Qgi;g�i�

III �2Kg�z
+

c��
2 Kg���z

+ . �7�

We remember that only propagating beams �those with Kg�z
+

real� enter the numerators of the above equations. Finally we
note that if absorption is present it can be calculated from the
requirement of energy conservation: A=1−T−R.

The difference in the number of states up to a given fre-
quency �, between the slab embedded in a homogeneous
medium and that of the homogeneous medium extending
over all space is given by19

	N��� =
N

A
� �

SBZ
d2k�	N��,k�� , �8�

where N is the number of surface unit cells of the plane of
spheres, A is the area of the SBZ, and

	N��,k�� =
1

2�
Im ln det S , �9�

with the elements of the S matrix in the representation 	sgi

given by

Sgi;g�i�
++ = exp	i�Kg�

+ · Al�1� − Kg
+ · Ar�NL��
Qgi;g�i�

I ,

Sgi;g�i�
+− = exp	i�Kg�

− · Ar�NL� − Kg
+ · Ar�NL��
Qgi;g�i�

II ,

Sgi;g�i�
−+ = exp	i�Kg�

+ · Al�1� − Kg
− · Al�1��
Qgi;g�i�

III ,

Sgi;g�i�
−− = exp	i�Kg�

− · Ar�NL� − Kg
− · Al�1��
Qgi;g�i�

IV �10�

for the given � and k�. The phase factors in Eq. �10� arise
from the need to refer all waves to a common origin. We note
that the size of the S matrix in Eq. �9� is restricted to those
reciprocal-lattice vectors which correspond to propagating
beams, and that the resulting 	N�� ,k�� does not include pos-
sible bound states of the system. The eigenfrequencies of the
bound states can be obtained, separately, from the condition
for the existence of a wave field localized within the slab.
Dividing the slab into a left and a right part, this condition
leads to the following secular equation:
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det�I − Qleft
II Qright

III � = 0. �11�

The S matrix is defined, in general terms, as the matrix
which transforms the incoming wave field into the outgoing
wave field, and it is a unitary matrix because of flux conser-
vation. The causality condition implies that the eigenvalues
of the S matrix are analytic functions in the upper complex
frequency half-plane but they may have poles in the lower
half-plane at �i− i
i, 
i�0, which correspond to zeros at
�i+ i
i; �i is the eigenfrequency while 
i denotes the inverse
of the lifetime of the respective mode. Among all possible
solutions, those with 
i /�i�1 are of particular physical in-
terest. Considering such a simple pole at �1− i
1, separated
from the other poles, in the vicinity of this point, on the real
axis, the corresponding eigenvalue of the S matrix has the
form: exp�2i���−�1− i
1� / ��−�1+ i
1�. Assuming that
the phase angle  as well as the other eigenvalues do not
vary considerably with frequency in the vicinity of the pole,
we obtain from Eq. �9�,

	n��,k�� =
�	N��,k��

��
�

1

�


1

�� − �1�2 + 
1
2 , �12�

i.e., the change in the density of states, 	n�� ,k��, has the
form of a Lorentzian resonance centered at �1. Its width is
determined by 
1 and its integral from −� to � equals unity.
Since 
1 /�1�1, this resonant mode resembles a bound state:
it has a long �though not infinite� lifetime and the field in-
tensity associated with it is mostly concentrated within the
slab �though it leaks, to some minor degree, in the host re-
gion�. Such states are referred to as virtual bound states.

The virtual bound states of a phononic-crystal slab mani-
fest themselves as resonance structures also in the corre-
sponding transmission spectrum. Let us restrict ourselves, for
simplicity, to the case of a fluid host medium and to frequen-
cies below the first Bragg diffraction threshold, so that the
scattered wave field consists of only one longitudinal propa-
gating beam. Assuming further that the slab has a parallel
plane of mirror symmetry, the S matrix has the form

S = � t r

r t
 , �13�

where t and r, the corresponding transmission and reflection
matrices with the proper phase factors �see Eq. �10��, are
reduced to scalar quantities. It is straightforward to show that
the eigenvalues of the S matrix are t+r and t−r and, since S
is unitary, these can be written as

t + r = exp�2i�+�, t − r = exp�2i�−� , �14�

where �+ and �−, the so-called scattering phase shifts, are
real functions of frequency. Using Eqs. �14�, the transmit-
tance of the slab can be expressed in terms of the scattering
phase shifts as follows:

T � �t�2 = cos2��+ − �−� . �15�

If in a relatively short range of frequency there is a number,
i=1,2 , . . ., of virtual bound states, introducing �i, the corre-
sponding resonant parts of the phase shifts, through

sin �i =

i

��� − �i�2 + 
i
2�1/2 ,

cos �i = −
� − �i

��� − �i�2 + 
i
2�1/2 , i = 1,2, . . . ,

�16�

and a roughly constant phase � which contains the contribu-
tion of the nonresonant parts of the phase shifts, the trans-
mittance of the slab takes the form

T � cos2�±�1 ± �2 ± ¯ − �� . �17�

The + or − sign of �i in Eq. �17� corresponds to a pole of t
+r or of t−r, respectively.

III. RESULTS AND DISCUSSION

We consider, to begin with, a monolayer of a phononic
crystal: a 2D periodic array of spheres. This may support
guided and quasiguided modes which originate from reso-
nant states of the individual spheres. Polymer spheres in a
liquid host exhibit, in general, such resonant modes and are
good candidates for our purposes. The displacement field
associated with these modes has a mixed longitudinal-
transverse �L−N� character in the sphere and is purely lon-
gitudinal in the host medium. Let us assume a square array,
with lattice constant a0, of polyethylene spheres ��p
=900 kg/m3, clp=1950 m/s, and ctp=540 m/s�, with radius
S=0.23a0, immersed in water ��=1000 kg/m3 and cl
=1490 m/s�.

In Fig. 1 we show the change 	N��� in the number of
states and the change 	n��� in the density of states of the
elastic field induced by a single polyethylene sphere in water.
These quantities have been calculated from the general

FIG. 1. Change in the number of states 	N �dotted line� and in
the density of states 	n �solid line� induced by a polyethylene
sphere in water. The field intensity distribution associated with the
two resonant states is shown at the top.
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equation19 	N���= �1/��Im Tr ln�I+T�, using the appropri-
ate T matrix.18 The density of states in the frequency region
under consideration is characterized by two sharp peaks, at
�S /cl=0.727 and 1.090 or, for the given S=0.23a0, at
�a0 /cl=3.163 and 4.737. These peaks are associated with a
�=2 and a �=3 resonant state, respectively. We see that
	N��� increases by nearly five states over the �=2 reso-
nance, and by nearly seven states over the �=3 resonance, as
expected from the �2� +1�-fold degeneracy of these modes.
The sharpness of the peaks implies a long lifetime for these
states and a high amplitude of the associated displacement
field in the sphere, as shown at the top of Fig. 1.

Assembling polyethylene spheres on a �square� lattice, we
expect that their resonant states of given �, interacting
weakly between them, will form 2� +1 relatively narrow
bands, ���k��, �=1,2 , . . . ,2� +1, about the corresponding
eigenfrequency of the single sphere. At the symmetry points
and along the symmetry lines of the SBZ, these bands can be
classified in terms of the irreducible representations of the
point group of the corresponding wave vector. For example,
for k� = �0,0� ��̄ point�, the modes have the symmetry of the
irreducible representations of the C4v group: 	1, 	2, 	1�, 	2�,
	5.20 The 	1, 	2, 	1�, 	2� modes are nondegenerate and 	5
are doubly degenerate. According to a group-theory
analysis,21 a mixed longitudinal-transverse �L−N� quadru-

pole state of the spheres gives at the �̄ point a 	1, a 	2, a
	2�, and a 	5 mode. We note that a longitudinal plane acous-
tic wave propagating in the water host, normal to the plane
of spheres �q� =0�, has the 	1 symmetry and, therefore, only
modes of the plane of spheres with the same symmetry can
be excited by an externally incident wave. The modes of
different symmetry are inactive; they are guided modes and
decay exponentially to zero away from the plane of spheres
on either side of it. The inactive modes show up as delta
functions and the active modes, of 	1 symmetry, show up as
Lorentzian resonances in the corresponding density of states.
The integral of each such Lorentzian equals one, while its
center and width determine the eigenfrequency and inverse
lifetime, respectively, of the respective quasiguided mode. As
can be seen from Fig. 2�a�, in agreement with the above
discussion, the quadrupole resonant state of the single sphere
gives, for k� =0, guided modes at �a0 /cl=3.147�	2�,
3.177�	5�, 3.183�	2��, and a 	1 quasiguided mode at
�1a0 /cl=3.152 with an inverse lifetime 
1a0 /cl=0.013 94.
In Fig. 2�b� we show the transmittance of the plane of
spheres, at normal incidence, in the frequency region about
the quadrupole resonant state of the single sphere. It can be
seen that the transmission spectrum is characterized by a
sharp dip which originates from the excitation of the corre-
sponding quasiguided mode and is very well described by
the function �see Eqs. �16� and �17�� T=cos2��1−�� with a
single adjustable parameter �=1.23°.

For k�� �0,0� the symmetry is lower. For example, along
the �X direction: k� = �kx ,0�, 0�kx�� /a0, the point group
of the wave vector is the C1h group. This group has two
one-dimensional irreducible representations, with basis func-
tions which are even �Q1� and odd �Q2� upon reflection with
respect to the xz plane. Group theory tells us that, along �X,
each of the 	1 and 	2 modes develops into a Q1 band, the

	2� mode develops into a Q2 band, and the doubly degener-
ate 	5 mode splits into one Q1 and one Q2 band.20 Since a
longitudinal elastic plane wave incident on the plane of
spheres with q� = �qx ,0� has the Q1 symmetry, it can excite
only Q1 modes. Therefore, for a given k�, along the �X di-
rection, we expect two guided �Q2� and three quasiguided
�Q1� modes about the quadrupole resonance of the single
sphere. This is indeed shown in Fig. 3�a� for k�

= �0.24� /a0 ,0�: we obtain two guided modes at �a0 /cl

=3.177 and 3.182; and three quasiguided modes at �1a0 /cl
=3.149, �2a0 /cl=3.153, and �3a0 /cl=3.174 with inverse
lifetimes 
1a0 /cl=0.000 12, 
2a0 /cl=0.011 89, and 
3a0 /cl
=0.002 34, respectively. The corresponding transmission
spectrum exhibits various types of resonance structures at
�1 ,�2 ,�3, as can be seen in Fig. 3�b�, and is very accurately
reproduced by the function �see Eqs. �16� and �17��

FIG. 2. A square array, with lattice constant a0, of polyethylene
spheres, with radius S=0.23a0, in water. �a� Change of the density
of states of the system with respect to water, for k� =0. The dotted
vertical lines indicate the position of the bound states. �b� Transmit-
tance at normal incidence.

FIG. 3. A square array, with lattice constant a0, of polyethylene
spheres, with radius S=0.23a0, in water. �a� Change of the density
of states of the system with respect to water, for k� = �0.24� /a0 ,0�.
The dotted vertical lines indicate the position of the bound states. In
the frequency region about �a0 /cl=3.15, 	n is analyzed in the two
Lorentzian curves of unit area shown in the inset. �b� Transmittance
at off-normal incidence for q� = �0.24� /a0 ,0�.
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T=cos2��1+�2−�3−�� with a single fitting parameter �
=1.35°. It is interesting to note that a resonance structure in
the transmission spectrum, which originates from a corre-
sponding quasiguided mode, can be a simple peak or dip, but
also an abrupt variation between a minimum and a maximum
�asymmetric Fano resonance22� such as the sharp structure in
Fig. 3�b� at �1, depending on the values of the phase angles
entering in Eq. �17�.

By varying k� along �X, we deduce the corresponding
dispersion curves of the guided and quasiguided modes of
the plane of spheres. As shown in Fig. 4, we obtain five
narrow bands about the eigenfrequency of the quadrupole
resonant state of the single sphere. It can be seen that states
of the same symmetry interact and repel each other. It is
worth remembering that the quasiguided modes are virtual
bound states and not true bound states of the system. In other
words, they have a long but finite lifetime, which corre-
sponds to an imaginary part of the eigenfrequency typically a
few orders of magnitude smaller than the real part, as shown
in Fig. 4.

We now place the square array of polyethylene spheres on
top of a homogeneous plate of glass ��g=2500 kg/m3, clg
=5700 m/s, and ctg=3400 m/s�, of thickness d=a0, and the
whole system is immersed in water. Figure 5 shows the cor-
responding change in the density of states with respect to the
water host, for k� = �0.24� /a0 ,0�, as well as the transmission
coefficient of a �longitudinal� elastic plane wave incident
with q� = �0.24� /a0 ,0�. It can be seen that, compared with
the corresponding case of the unsupported plane of spheres
shown in Fig. 3, we now have more resonance structures,
and this implies the existence of additional modes. More
precisely, we find the modes of the plane of spheres some-
what shifted to lower frequencies: we obtain two guided
modes at �a0 /cl=2.994 and 3.142; and three quasiguided
modes at �1a0 /cl=2.879, �2a0 /cl=2.990, and �3a0 /cl
=3.095 with inverse lifetimes 
1a0 /cl=0.017 20, 
2a0 /cl

=0.000 69, and 
3a0 /cl=0.000 06, respectively. In addition,
we obtain one quasiguided mode at �4a0 /cl=2.756 with

4a0 /cl=0.005 08 as well as three modes, two guided and
one quasiguided, at low frequencies �not shown in Fig. 5�.

In order to understand the physical origin of the additional
modes, let us consider the glass plate alone. A bare glass
plate in water supports, besides the nonresonant scattering
states, also guided and quasiguided modes. These modes can
be of transverse s type �the displacement field oscillates par-
allel to the plate� or of mixed longitudinal-transverse p type
�the displacement field oscillates in a plane normal to the
plate�. The s modes cannot be matched continuously with an
acoustic wave in the water region and represent guided
waves confined within the plate �Love modes�.13 There is
one band of Love modes starting from �=0 as q�→0. On the
other hand, the mixed longitudinal-transverse p modes can
be excited by an externally incident �longitudinal� wave, pro-
vided they are inside the propagation cone in water defined
by �=clq�, and represent quasiguided waves. These modes
can be classified as antisymmetric �A� and symmetric �S�
upon reflection with respect to a parallel plane of mirror
symmetry at the middle of the plate. There are four bands of
such modes starting from �=0 as q�→0. These correspond
to the water-borne A and S Scholte-Stoneley waves, and to
the lowest A and S Lamb-type waves.13 The Scholte-
Stoneley modes lie outside the propagation cones in both
glass and water �the dispersion curve of the S Scholte-
Stoneley mode coincides with the line �=clq��; they repre-
sent guided waves which propagate along the water-glass
interfaces and decrease exponentially away from each inter-
face, on either side of it. Obviously, these modes cannot be
matched continuously with a propagating wave in the water
region and, therefore, they cannot be excited by an externally
incident wave: energy and momentum cannot be conserved
simultaneously. On the contrary, the Lamb-type modes lie
inside the propagation cone in water; they represent quasigu-
ided waves which leak outside the plate and can be excited
by an externally incident wave.

FIG. 4. Dispersion curves of the guided and quasiguided modes
of a square array, with lattice constant a0, of polyethylene spheres,
with radius S=0.23a0, in water, along the �X direction. There are
two bands of guided modes with real eigenfrequencies which have
the Q2 symmetry, and three bands of quasiguided modes with com-
plex eigenfrequencies which have the Q1 symmetry.

FIG. 5. A square array, with lattice constant a0, of polyethylene
spheres, with radius S=0.23a0, on top of a glass plate, with thick-
ness d=a0, in water. �a� Change of the density of states of the
system with respect to water, for k� = �0.24� /a0 ,0�. The dotted ver-
tical lines indicate the position of the bound states. �b� Transmit-
tance at off-normal incidence for q� = �0.24� /a0 ,0�.
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When we put the 2D array of polyethylene spheres on the
plate, the dispersion curves associated with the plate modes
are folded within the SBZ of the given lattice and �small�
Bragg gaps open up at the Brillouin-zone boundaries. This is
shown in Fig. 6 for k� along the �X direction, in which case
the transverse s and the longitudinal-transverse p plate
modes belong to the irreducible representations Q2 and Q1 of
the C1h group, respectively. It can be seen that the folded
bands of the Scholte-Stoneley modes, above �a0 /cl=3.14,
lie inside the propagation cone in water and, therefore, rep-
resent quasiguided waves. These modes can be excited by an
externally incident wave through an Umklapp process and
give rise to resonance structures in the corresponding trans-
mission spectrum. Moreover, the plate modes interact with
those of the plane of spheres, of the same symmetry, and the
corresponding bands repel each other if they are in close
proximity in the complex frequency plane �see Fig. 6�. We
note that the A Lamb-type modes, which have a very short
lifetime �the corresponding eigenfrequencies have a large

imaginary part�, essentially do not interact with the other Q1
modes. The interaction between bands of Q2 symmetry is
also not observed, because there is no spatial overlap be-
tween the Love modes and the corresponding modes of the
plane of spheres.

IV. CONCLUSION

In summary, we presented a theoretical study of guided
and quasiguided elastic waves in a glass plate coated on one
side with a periodic monolayer of polymer spheres, im-
mersed in water, using the layer-multiple-scattering method.
We found that this system supports, in addition to the modes
of the bare plate, almost dispersionless, slow modes which
originate from the array of spheres. Moreover, the periodic
monolayer causes a folding of the bands within the SBZ and,
in this manner, guided plate modes become quasiguided. Fi-
nally, the interaction between modes of the same symmetry
induces a repulsion of the corresponding bands if they are in
close proximity to each other in the complex frequency
plane. The eigenfrequency and the lifetime of the guided and
quasiguided modes of the composite slab are calculated di-
rectly from the corresponding spectral density of states of the
elastic field. The associated dispersion curves and their sym-
metry are analyzed in conjunction with relevant transmission
spectra, and we developed a simple analytic model which
explains the complex line shapes of the observed transmis-
sion resonances. Our results demonstrate the efficiency of the
layer-multiple-scattering method, which constitutes a power-
ful tool also for the analysis of the elastic modes of compos-
ite phononic-crystal slabs, even if there is large elastic mis-
match and/or dissipative losses in the constituent materials.
We note that the method can be extended to phononic crys-
tals of nonspherical scatterers: the properties of the indi-
vidual scatterer enter only through the corresponding T ma-
trix, and this matrix for nonspherical scatterers can be
evaluated efficiently by, e.g., a surface-integral method. Such
an extension of the layer-multiple-scattering method in the
corresponding problem of photonic crystals has been re-
ported recently.23 However, in systems similar to that studied
in the present work, substitution of the spheres by cylinders,
spheroids, or scatterers of other shape would not lead to
qualitatively different results although, in some cases, degen-
eracies that arise from the high symmetry of the sphere may
be removed. We expect that the present work will open new
possibilities in the design of Lamb-wave delay lines, filters
and resonators, based on phononic-crystal slabs, which might
be useful for acoustoelastic devices,24 telecommunication
applications,25,26 etc.

ACKNOWLEDGMENTS

This work was supported by the research program “Kapo-
distrias” of the University of Athens.

FIG. 6. Dispersion curves of the guided and quasiguided modes
of a square array, with lattice constant a0, of polyethylene spheres,
with radius S=0.23a0, on top of a glass plate, with thickness d
=a0, in water �see top diagram�, along the �X direction. The left-
hand panel shows the modes of Q1 symmetry: modes of the plane of
spheres �a�, symmetric and antisymmetric Lamb-type modes �b�,
�c�, and symmetric and antisymmetric Scholte-Stoneley modes �d�,
�e�. In grey we show the dispersion lines �=ctgq� and �=clgq�. The
insets show a detail view of level repulsion about the crossing
points. The right-hand panel shows the modes of Q2 symmetry:
modes of the plane of spheres �a� and Love modes �b�.

R. SAINIDOU AND N. STEFANOU PHYSICAL REVIEW B 73, 184301 �2006�

184301-6



1 N. E. Glass and A. A. Maradudin, J. Appl. Phys. 54, 796 �1983�.
2 J. R. Dutcher, S. Lee, B. Hillebrands, G. J. McLaughlin, B. G.

Nickel, and G. I. Stegeman, Phys. Rev. Lett. 68, 2464 �1992�.
3 For a comprehensive list of references on phononic crystals, see

the Phononic Crystal database at http://www.phys.uoa.gr/
phononics/PhononicDatabase.html

4 Y. Tanaka and S. I. Tamura, Phys. Rev. B 58, 7958 �1998�.
5 M. Torres, F. R. Montero de Espinosa, D. García-Pablos, and N.

García, Phys. Rev. Lett. 82, 3054 �1999�.
6 F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sánchez-

Dehesa, C. López, and J. Llinares, Phys. Rev. B 59, 12169
�1999�.

7 Y. Tanaka and S. I. Tamura, Phys. Rev. B 60, 13294 �1999�.
8 E. V. Tartakovskaya, Phys. Rev. B 62, 11225 �2000�.
9 B. Manzanares-Martínez and F. Ramos-Mendieta, Phys. Rev. B

68, 134303 �2003�.
10 T. T. Wu, Z. G. Huang, and S. Lin, Phys. Rev. B 69, 094301

�2004�.
11 V. Laude, M. Wilm, S. Benchabane, and A. Khelif, Phys. Rev. E

71, 036607 �2005�.
12 R. E. Vines and J. P. Wolfe, Z. Kristallogr. 220, 810 �2005�.
13 B. A. Auld, Acoustic Fields and Waves in Solids �Wiley, New

York, 1973�, Vol. II.
14 W. Gao, C. Glorieux, and J. Thoen, Int. J. Eng. Sci. 41, 219

�2003�.
15 S. D. Holland and D. E. Chimenti, Appl. Phys. Lett. 83, 2704

�2003�.
16 Y. Wu, M. de Labachelerie, and F. Bastien, Sens. Actuators B

100, 214 �2002�.
17 I. E. Psarobas, N. Stefanou, and A. Modinos, Phys. Rev. B 62,

278 �2000�.
18 R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, Com-

put. Phys. Commun. 166, 197 �2005�.
19 R. Sainidou, N. Stefanou, and A. Modinos, Phys. Rev. B 69,

064301 �2004�.
20 J. F. Cornwell, Group Theory and Electronic Energy Bands in

Solids �North-Holland, Amsterdam, 1969�.
21 K. Ohtaka and Y. Tanabe, J. Phys. Soc. Jpn. 65, 2670 �1996�.
22 U. Fano, Phys. Rev. 124, 1866 �1961�.
23 G. Gantzounis and N. Stefanou, Phys. Rev. B 73, 035115 �2006�.
24 T. T. Wu, L. C. Wu, and Z. G. Huang, J. Appl. Phys. 97, 094916

�2005�.
25 T. Makkonen, V. P. Plessky, W. Steichen, and M. M. Salomaa,

Appl. Phys. Lett. 82, 3351 �2003�.
26 O. Holmgren, J. V. Knuuttila, T. Makkonen, K. Kokkonen, V. P.

Plessky, W. Steichen, M. Solal, and M. M. Salomaa, Appl. Phys.
Lett. 86, 024101 �2005�.

GUIDED AND QUASIGUIDED ELASTIC WAVES IN¼ PHYSICAL REVIEW B 73, 184301 �2006�

184301-7


