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Diffusion Monte Carlo study of the equation of state of solid para-H,
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The diffusion Monte Carlo method is used to exactly solve the N-body Schroedinger equation for a system
of para-H, molecules at different densities described as pointlike particles interacting via an effective potential.
‘We compare the results obtained using two of the most used model interactions, i.e., the Silvera-Goldman and
the Buck potentials in order to assess their validity. We also discuss the role of explicit three-body forces by
adding a term of the Axilrod-Teller kind. This term corrects the large underestimation of the pressure given by

the standard two-body interactions commonly employed.
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I. INTRODUCTION

The interest about the low- and high-pressure behavior of
molecular solid parahydrogen has recently increased due in
particular to two important findings. Experiments on rota-
tional spectra of linear molecules embedded in He droplets,
and coated with a small number of p-H, molecules show a
sudden drop of the momentum of inertia of the molecule-
hydrogen compound when lowering the temperature of the
system, indicating the onset of a sort of local superfluidity of
the p-H, molecules.! This discovery gave rise to a series of
theoretical studies carried out by means of Monte Carlo tech-
niques, in particular with the path integral Monte Carlo
(PIMC) technique which samples the quantum density ma-
trix at finite temperature,> and variants of the diffusion
Monte Carlo technique.? PIMC has also been used in the past
to study the onset of solidification as a function of the num-
ber of p-H, molecules in a droplet,* and to study effects of
the reduced dimensionality on the onset of superfluidity in
p-H, films’ and two-dimensional droplets.® In all these stud-
ies the molecules of p-H, have been treated as point particles
interacting by means of an effective two-body potential. Sev-
eral model interactions are available for p-H,, and some of
them, in particular the Buck’® potential and the Silvera-
Goldman (SG) (Ref. 9) potential, have been used indiffer-
ently in theoretical works. These interactions either com-
pletely neglect or treat in an effective way the possible three-
body interactions acting among the molecules. The usual
argument for neglecting such terms, which are expected due
to the nonspherical nature of the molecule, is that the p-H,
molecule ground state has total angular momentum J=0, and
therefore the average interaction must have spherical sym-
metry. Three-body interactions should therefore be a second
order effect. Another important issue that was recently dis-
covered by computer simulations of p-H, at very high pres-
sure is the possibility of the occurrence of a phase transition
between the crystal phase and a fluid dissociated phase at
about 400 GPa.'” In this context it is interesting to test the
limit of validity of the intermolecular interactions to see how
fast the quality of the description of the equation of state
decays when increasing the density. Clearly for high pres-
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sures the influence of many-body terms in the interaction
will become more and more important, as it was shown in
similar quantum crystals like solid “He or solid *He.!!

In this paper we present the results of a systematic study
of the equation of state of solid p-H, for pressures ranging
from O (and slightly below) up to 400 MPa using highly
optimized variational functions and projecting from them the
ground state energy by means of the diffusion Monte Carlo
algorithm, which gives for many Bosons the exact eigen-
value of the system. This means that results depend only on
the particular choice of the potential.

Two earlier papers partially addressed the same question.
Cheng and Whaley,'? and previously Cocker and Watts'3 per-
formed diffusion Monte Carlo (DMC) calculations at the
saturation density, using the Silvera-Goldman and the Buck
potentials, respectively. Our work extends this analysis to
higher and lower densities, in order to have a better assess-
ment of the quality of the potentials. The results for pressure
computed in our simulations show a rather large discrepancy
compared to the experimental measurements. We tried to as-
sess the importance of explicit three-body potentials by in-
troducing in the calculation a simple triple-dipole Axilrod-
Teller (AT) form. This term, while making the estimate of the
energy per particle higher, substantially improves the esti-
mate of the pressure.

The next section of the paper will describe the methods
used in our analysis. Section III will present the results on
energies, pressures, and other ground state properties in
p-H,. Section IV is devoted to conclusions.

II. METHODS

The N p-H, molecules are described by the following
Hamiltonian:

N

A h?

H=-— Vz'2+202(rij)+ E U3(rij’rjk’rik)5 (1)
i=1

2mi2 i<j i<j<k

where R={ry,...,ry}. As already mentioned, we use two
different molecule-molecule interaction v,, i.e., the Silvera-

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.73.184124

FRANCESCO OPERETTO AND FRANCESCO PEDERIVA

Goldman and the Buck potentials. In the calculations includ-
ing the three-body interaction it was chosen as a simple
triple-dipole potential of the Axilrod-Teller form, already
used in calculations for He (Ref. 15)

1 + 3 cos(6;;)cos(8;)cos(6y;)
(Vij’”jk"ia')3

In the diffusion Monte Carlo (DMC) algorithm,'® the ground
state of the Hamiltonian H is projected starting from a varia-
tional ansatz for the many-body wave function. In our case
we chose a function of the Jastrow-Nosanow form

WR) = fr;)e =SV, 3)

where the {S;} are the coordinates of the lattice sites around
which the molecules are confined. This form of the wave
function does not respect the required Boson symmetry.
However, it has been shown in the case of He solids that the
low-exchange frequency makes contributions to the total en-
ergy from the symmetrization very small.'”"!8 Solid parahy-
drogen is even more localized than He, and this justifies the
assumption of our ansatz. The projection is achieved by sam-
pling the evolution of a population of N,, points in configu-
ration space (walkers) according to the importance sampled
Green’s function

(2)

US(rij’ Tjkos i) =

DA NS
G(R,R",A7) = Gy(R,R",A7) SR) (4)

where

Go(R’R”AT)e—AT/ZV(R)e(R - R’)Z/ZDATe—AT/ZV(R’) ' (5)

The propagation has to be iterated in order to achieve a
propagation for an imaginary time 7 such that the density of
walkers becomes ¥(R),(R) where i, is the ground state of
the Hamiltonian considered. In this situation the expectation
value of the Hamiltonian itself computed as the average of
the local energy HyAR)/yAR) on the sampled walkers be-
comes

f dRY(R) o(RVHY(R)/YAR)

(H)= =Ey, (6)

f dRY(R) o(R)

the lowest eigenvalue of the Hamiltonian. The computed es-
timate is exact at order Ar.

In order to reduce the variance on the estimate of the
eigenvalue in the DMC calculation the importance function
¢ must be variationally optimized. A series expansion of the
function f(r) in Eq. (3) was used to obtain an accurate de-
scription of the two-body correlations in the system. The
functions f are written in terms of pseudopotentials

)= exp[— §u<r>]. )

The function u=uy+u,. is the sum of a standard McMillan
pseudopotential
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u(r) = (-) ) (8)
r
and of a correction term which has been expanded in terms
of suitable basis functions

uc(rij) = E aan(rij)' (9)

The basis functions y, (about 40) have been chosen to be
similar to the ones introduced by Moroni et al.'® for analo-
gous calculations in He

27n s
1 —cos (r=L12)|(r> r>r,
Xa(r) = L2-r,

0 r=r..

(10)

The cut-off radius r,, if small enough, does not influence the
value of the energy. In our calculations it has been taken
equal to 1 A. All the free parameters have been determined
by minimizing a linear combination of the variance of the
expectation value of the Hamiltonian, and of the expectation
value itself.> This is obtained by cycling through steps of

variational Monte Carlo calculations of (fl} and minimiza-
tion of the variance/energy combination on a set of sampled
configurations using the Levemberg-Marquardt minimization
code by C. J. Umrigar and P. Nightingale. Diffusion Monte
Carlo calculations have been performed for different imagi-
nary time steps and populations of walkers, and the results
have been extrapolated in the limit of A7=0 and N,,— .
Calculations were performed for crystals of different densi-
ties both for the face centered cubic (fcc) structure and the
hexagonal close-packed (hcp) lattices. In the first case a pe-
riodic system of 108 p-H, molecules was used, correspond-
ing to 3 X3 X3 elementary cubic cells. For the hcp lattice
calculations we used 108 p-H, molecules filling 5X3 X3
elementary cells. In this case the box is not cubic, but the
ratio of the three sides to each other is as close as possible to
1. The potential energy was truncated at a distance corre-
sponding to L/2, whereL is the length of the shortest side of
the cell. In order to avoid discontinuities in the Green’s func-
tion used to sample the walkers, the potential was also
shifted of a quantity v(L/2). The error due to the cutoff has
been corrected by integrating the potential in the (L/2,
+0) interval, assuming therefore a uniform distribution of
molecules beyond L/2. The same procedure has been used
for correcting the error due to the shift in the sphere of radius
L/2.

II1. RESULTS

In Fig. 1 we report the results obtained for the equation of
state in the density interval 0.0194 A=< p<0.0430 A=, for
the SG and the Buck potentials. In the inset we report the
expanded curves for density near the equilibrium one. The
curves report the DMC results, which are found to be only
slightly lower than the corresponding results obtained by
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optimizing the Jastrow factor in the wave function (between
1 and 7 % depending on the density). This suggests that the
importance function used is already quite accurate. The re-
sults for the binding energy at saturation density can be com-
pared with the estimate of the sublimation heat at 0 K for
pure p-H,, found in Ref. 14 to be —89.9 K. The computed
DMC values for the fcc and hcp crystals using the Buck
potential are E/N=-93.42(1) K and E/N=-93.87(2) K, re-
spectively, about 3 K below the experimental result. On the
other hand, the SG potential gives a result which is about
10 K higher, as shown in Table I. This discrepancy is due to
the effective triple-dipole term proportional to 1/7°, which is
repulsive, and which tends therefore to increase the energy
per particle. The hcp lattice turns out to be always stable with
respect to the fcc one. The agreement with the experimental
finding of the equilibrium energy is substantially improved
by adding to the Buck potential the explicit three body term
discussed below.

In Table II we also reported some results of simulations
performed in the fcc crystal using 256 molecules arranged on
4 X4 X4 elementary cells. Effects due to the finite size of the
simulation box have been found negligible in comparison

with the effects due to the choice of different potentials. En-
ergetic differences between fcc and hcp lattice seem to
slightly increase if the fcc lattice with 256 sites is taken into
account.

In order to compute the pressure as function of p and the
equilibrium density of the system, we fitted the results of the
energy per particle by means of a Murnaghan-like curve

(1)

The coefficients and the minimum of the curves in the fcc
and hep crystal are reported are reported in Table III. The
pressure as a function of the density was then obtained from
the following expression:

P_p{ ap 7

The computed curves for the pressure are reported in Fig. 3,
and compared with the experimental results of Ref. 20. It can
be noticed how in this case the agreement with the experi-
ment is much less satisfactory. Both the Buck and SG poten-
tials seem to be not capable of describing correctly the

e(p) =€ +ap+bp”.

(12)

TABLE I. Energy per particle (in Kelvin) in solid p-H, computed with different interaction for fcc and hep crystalline structure.

p SG fcc SG hep Buck fcc Buck hcp AT+Buck fec
0.01940 —74.33(3) —74.44(4) —-78.65(3) —78.70(4) —=77.10(4)
0.02150 -80.85(2) -81.13(2) -85.70(2) -85.96(2) -83.63(2)
0.02509 -87.06(2) -87.48(2) -92.79(2) -93.19(2) -89.70(3)
0.02609 —-87.45(2) -87.90(2) -93.42(1) -93.87(2) —-89.94(1)
0.02900 -84.52(3) -85.00(2) -90.89(2) -91.43(3) -86.28(3)
0.03170 -75.50(4) -76.13(1) -82.10(2) —-82.70(1) -76.11(4)
0.03400 -62.30(2) -62.98(2) -68.77(2) -69.51(2) -61.49(3)
0.03700 -36.51(2) -37.34(2) -42.57(2) -43.41(1) -33.22(3)
0.04000 -0.14(2) -1.09(3) -5.25(2) -6.20(2) 6.49(4)
0.04300 47.77(2) 46.70(2) 44.18(4) 43.14(2) 58.71(2)
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pressure-volume curve in the system. In particular, the pres- " ‘ | . i . i .
sure is almost constantly underestimated of about 50 MPa 0.024 0.028 0.032 5 D056 0.040 0.044
over all the range of densities considered. For densities p A

>0.037 A= the Buck potential provides a slightly better
agreement with the experimental data. It can be expected that
at such high densities the effects of many-body potentials
become important. However, the triple-dipole effective term
in the SG potential is practically ineffective in terms of pres-
sure at low densities, and it seems not to give a significant
contribution at higher pressures. In order to explore the ef-
fects of explicit three-body contributions to the potential en-
ergy, we performed DMC calculations adding a three-body
potential V5 of the Axilrod-Teller form (2), that describes the
triple-dipole effects, and can be parametrized with a single
coefficient A, to the Buck potential, which seems to give an
overall slightly better agreement with the experiment when
used by itself and does not include the effective triple-dipole
term proportional to 1/7°. The value A=23914.946 KA®
was fixed as follows: The mean value of V; as function of the
density was calculated by means of DMC simulations. From
the curve (V3)(p) we estimated the contribute of the three-
body potential to the pressure P;(p) and fitted the experimen-
tal values of the pressure in order to fix the value of the
multiplicative coefficient A. The result was checked by re-
peating the DMC simulations using the fitted value of A. The
results for both the energy and the pressure in the fcc lattice
are displayed in Figs. 1 and 2. As it can be seen, the energies
computed with the AT+Buck potential almost overlap with
the SG results at low densities, as expected. The behaviors
tend to depart more at higher densities. On the other hand the
gap in the estimate of the pressure at low densities is almost
completely removed, and the agreement becomes better also
at higher densities, although the density dependence of the
pressure indicates that the pressure would tend to be overes-
timated at higher densities. This result strongly indicates that
effects of explicit many-body interactions in p-H, on the
energy are already very strong at low densities, and they

FIG. 2. (Color online) Pressure as a function of the density p in
solid p-H, computed with different interactions. Curves for fcc and
hcp are almost indistinguishable. The experimental points are taken
from Ref. 20.

cannot be neglected at all when the density is increased.
From the results on the equation of state it is also possible to
obtain information on the compressibility, which is defined

as
1] 9
K:—[—p} . (13)
pLIP |7

Results are reported in Fig. 3. Also in this case the effects of
the inclusion of the three-body potential are relevant.

Another interesting question regards the effects of the
choice of different interactions on the local structure of the
crystal. In Fig. 4 we display the results for the computation
of the pair distribution function g(r) in the fcc lattice at the
equilibrium density using the SG, the Buck, and the AT
+Buck interactions. In both cases the curves are essentially
indistinguishable from each other. This means that despite
the relevant difference in the energy, the structural properties
are not heavily affected by the choice of the interaction. In
general the results are almost independent on the particular
lattice structure chosen.

IV. CONCLUSIONS

We presented the results of a systematic comparison of
ground state properties of solid p-H, computed with the two
most used interactions, the Silvera-Goldman and the Buck
potential. None of the two models is capable to give a com-
pletely satisfactory description of the pressure-volume (PV)

TABLE 1III. Coefficients of the equation of state [Eq. (11)] fitted to DMC simulation results. The energy is given in Kelvin; the computed
equilibrium density pq is given in A=,

€ a b b Po
SG fec 45.6939 ~7129.73 2.08446-107 3.53405 0.02606
SG hep 48.1222 —7278.12 1.99851-107 3.51769 0.02613
Buck fcc 46.8125 —7375.50 2.62068-107 3.60038 0.02647
Buck hep 52.4309 —7741.95 2.14537-107 3.52809 0.02640
AT+Buck fee 46.9315 —7363.65 2.47129-107 3.56850 0.02583
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FIG. 3. (Color online) Compressibility in molecular p-H, com-
puted using the SG, Buck and AT+Buck interactions. Curves for
fcc and hep are almost indistinguishable.

curve. We explored the effects of adding explicit three-body
interactions fitting the PV curve with a simple Axilrod-Teller
potential, which removes the gap in the pressure obtained
with the simple two-body potentials. These results show that
in order to be able to provide the most accurate theoretical
prediction on p-H, it is necessary to revise and improve the
available model interactions.
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FIG. 4. (Color online) Pair distribution function in solid p-H,
computed using the SG (full line) and the Buck (dashed line) and
the AT+Buck (dotted line) potentials at equilibrium density p
=0.02609 A3 in the fcc crystal.
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