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Dynamical mean-field study of the ferromagnetic transition temperature of a two-band model
for colossal magnetoresistance materials
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The ferromagnetic transition temperature �TC� of a two-band double-exchange �DE� model for colossal
magnetoresistance materials is studied using dynamical mean-field theory in wide ranges of coupling constants,
hopping parameters, and carrier densities. The results are shown to be in good agreement with Monte Carlo
simulations. When the bands overlap, the value of TC is found to be much larger than in the one-band case, for
all values of the chemical potential within the energy overlap interval. A nonzero off-diagonal hopping pro-
duces an additional boost of TC, showing the importance of these terms, as well as the concomitant use of
multiband models, to increase the critical temperatures in DE-based theories.
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Colossal magnetoresistance �CMR� rare-earth perovskites
have attracted considerable attention due to their rich mag-
netic and structural phase transitions.1 The CMR effect,
namely an extremely large drop in resistivity caused by a
magnetic field, occurs at the transition between a low-
temperature ferromagnetic �FM�-metallic ground state and a
high-temperature paramagnetic-insulating phase, i.e., near
transition temperature �TC�. A basic aspect of CMR physics
is that the mobile carriers �Mn eg-symmetry electrons� are
strongly coupled ferromagnetically to localized spins �Mn
t2g-symmetry electrons�. The electron motion influences the
core spin’s alignment leading to ferromagnetism. The basic
model used to describe CMR materials is the double-
exchange �DE� model,2 formulated with one localized spin
per site coupled to mobile carriers via a Hund’s coupling J
much larger than the hopping amplitude t �Ref. 3�. While DE
ideas explain qualitatively the ferromagnetism, much of the
CMR physics is still under debate.4,5 This is in part caused
by the absence of fully reliable many-body techniques to
study the complicated DE models applied to CMR com-
pounds. Despite a considerable effort carried out within dy-
namical mean-field theory �DMFT� in the context of one-
band models for CMR �Ref. 6�, the realistic case of two
active bands has received much less attention since its analy-
sis is far more difficult. Only MC and static mean-field ap-
proximations have been applied to the realistic multiband
problem,5 the DMFT treatment being notoriously absent.

In this paper the DMFT method is applied to the analysis
of TC of a two-band model for CMR materials. Its results are
contrasted against Monte Carlo �MC� simulations and found
to be in good agreement. Besides this nontrivial technically
DMFT+MC contribution, we also unveil the key role of the
off-diagonal hopping amplitudes to increase the critical FM
temperature. This effect, which, to the best of our knowledge
has not yet been discussed in literature, may lead to creative
procedures to boost TC in real materials. Our DMFT study is
general, with two s=1/2 active bands, arbitrary couplings,
hoppings, and carrier densities p.
The DE Hamiltonian for the two-orbital model is
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H = − �
ll�,�ji��

�tll�cl�,j�
† cl,i� + H . c . � − 2�

l,i
JlSi · sl,i, �1�

where l , l� �=1,2� are the eg-orbital indexes, i , j label the
sites, cl,i� destroys an electron at site i in the orbital l, sl,i
=cl,i�

† ���� /2�cl,i� is the electronic spin ��̂�Pauli vector�, �
and � are spin indexes, Si is the spin of the local moment at
site i, assumed here classical �Si=Smi, where mi is a ran-
domly orientated unit vector�, and Jl is the coupling between
the core spin and the conduction electrons of orbital l. While
for l= l� we refer to tll as the direct-orbital hopping ��tl�, for
l� l� the off-diagonal tll� is referred to as the “interorbital”
hopping �tll�= tl�l�. The active orbital bands couple through
the simultaneous scattering of carriers on the same core spin,
as well as through the exchange of carriers via the off-
diagonal hopping. While the first coupling clearly causes an
increase in TC when the bands overlap within the same en-
ergy interval, namely when Jl are closed, the electron ex-
change among bands is also shown to induce higher TC even
when the Jl’s are very different.

The inclusion of other terms, such as the antiferromag-
netic exchange JAF among core spins and/or the cooperative
Jahn–Teller phonons, will need a sophisticated “cluster”
DMFT where at least some short-distance effects are consid-
ered. For this reason, this study using the DMFT on a two-
band model focuses on the simplest case where only the FM
phase is relevant, the competition with other phases being
left for future studies.

DMFT results. Within DMFT, the self-energy is momen-
tum independent; ��p , i�n�→��i�n� ��n= �2n+1��T are the
Matsubara frequencies�. Hence, the information about the
hopping of carriers on and off lattice sites is carried by the
bare Green’s function G0�i�n�. Within one-band models, the
local effective action Sef f�m� defined by G0 is quadratic in
the Grassman variables.6,7 Hence, the full Green’s function G
can be solved by integration with the result: �G�i�n��
= ��G0

−1�i�n�+JSm�̂�−1� �Refs. 6 and 8�. If two orbital bands

are active, then one rewrites the average above for each
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band, �Gl�i�n��= ��G0,l
−1�i�n�+JlSlm�̂�−1�,and solve the equa-

tions for the coupled Green’s functions, �G0,l
−1�i�n��=zn

− tl
2�Gl�i�n��− tll�

2 �Gl��i�n�� �l� l��, on a Bethe lattice with a
semicircular noninteracting density of states �DOS�l���
=Re	4tl

2−�2 /2�tl
2, where zn= i�n+	 �	�chemical poten-

tial�. tll� carries in G0,l the information about the second band
l� through Gl�. To find TC, we parametrize G0,l

−1 as G0,l
−1�i�n�

= �zn+Rl�i�n��1̂+Ql�i�n��̂z, and linearize G0,l
−1 with order pa-

rameter M �Ref. 8�. Up to first order in M,

Rl = − tl
2 Bl

Bl
2 − Jl

2 − tll�
2 Bl�

Bl�
2 − Jl�

2 , �2�

where Bl�i�n�=zn+Rl�i�n�. A similar equation for Rl�
�l�� l� can be obtained by interchanging the band indexes l
→ l�. Despite the extreme complexity of Eqs. �2�, we man-
aged to perform analytical calculations to decouple the equa-
tions set and to obtain separate equations for R �l=1,2�. The
l

1�b��. At tll�=0 the bands are fully decoupled, and the values
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polynomial coefficients of the ninth-order equations for Rl,
which are solved numerically, are combinations of all param-
eters of the model, i.e., couplings and hoppings �not repro-
duced because of their size�. For tll�=0, the ninth-order equa-
tions reduce to the third-order ones: Rl

3+2znRl
2+ �zn

2+ tl
2

−Jl
2�Rl+zntl

2=0. At 	=0 and with the substitution i�n→�,
Eq. �2� gives the interacting electronic DOSl at T=0 �Ref. 9�.
If tll��0, then, besides its own parameters tl and Jl, DOSl
depends also on the parameters characterizing the other band
l�, i.e., tl� and Jl�, this interplay of parameters describing the
coupling of bands. The obtained equation for Ql�i�n�,

Ql = tl
2JlM + Ql

Bl
2 − Jl

2 + tll�
2 Jl�M + Ql�

Bl�
2 − Jl�

2 + tl
2 2Jl

2Ql

3�Bl
2 − Jl

2�2

+ tll�
2

2Jl�
2 Ql�

3�Bl�
2 − Jl�

2 �2
, �3�

leads us to an implicit expression for T in the form
C
−
4

3�
n=0


 �l
tl
2Jl

2�Bl
2 − Jl

2�2 + 2tll�
2 
l

Jl�Bl
2 − Jl

2� − �tl
2tl�

2 − tll�
4 ��l

Jl
2�Bl

2 − Jl
2/3�


l
�Bl

2 − Jl
2�2 − �l

tl
2�Bl

2 − Jl
2/3��Bl�

2 − Jl�
2 �2 + �tl

2tl�
2 − tll�

4 �
l
�Bl

2 − Jl
2/3�

= 1, �4�
where above, if l=1 �2�, then l�=2 �1�. At tll�=0, Eq. �4�
reduces to

�
l=1

2

�
n=0



− 2tl

2Jl
2

3�Bl
2 − Jl

2�2 − 3tl
2�Bl

2 − Jl
2� − 2tl

2Jl
2 = 1, �5�

where Bl satisfies Bl
3−znBl

2+ �tl
2−Jl

2�Bl+znJl
2=0. We tested

Eqs. �4� and �5� in several cases: �1� at t2= t12=0 and J2=0
we recovered the one-band model results reported in Ref. 10;
�2� at t2= t12=0, J2=0, and J1→
, the results of Ref. 7 are
reproduced. Details on the calculations above will be pub-
lished elsewhere. From Eq. �4�, the TC contained in the Mat-
subara frequencies was extracted numerically. Equation �5�
predicts an increase in TC only for the values of 	 within the
energy overlap interval.

In Fig. 1�a�, the DOSl��� at J1 / t1=25 and J2 / t2=15 is
shown for several tll�. Our Jl / tl are much larger than both the
value �Jl / tl�min�1.4 that corresponds to the electron and
hole bands formation, and the value J / t=8 considered in the
one-band model large enough to capture properly the FM
features of CMRs �Ref. 11�. Thus, the electron bands are
centered at �1

−=−25 and �2
−=−15, respectively �the hole

bands, centered at �1
+=25 and �2

+=15 due to the electron-
hole symmetry, are not shown here for simplicity�. For clar-
ity, we plotted DOS2��� with a reversed sign. Since �J1 / t1

−J2 / t2 � �1, the bands occupy different energy intervals.
Hence, each band gives its own contribution to TC �Fig.
of TC match the results of the one-band model for all p’s.
However, if tll��0, then the carriers are allowed to hop be-
tween the bands and, thus, they can belong simultaneously to
both bands. This leads to an increase in the effective number
of interacting electrons of each active band. As shown in Fig.
1�a�, due to the transfer of electrons among bands, in
DOSl��� a new region occupied by the interacting electrons
builds up within the interval of energies occupied by the
DOSl����. At tll�= tl, the effective number of interacting elec-
trons within each energy interval becomes twice as large.
Thus, the TC for all p corresponding to 	 within each energy
interval, is almost twice larger than in the one-band case
�Fig. 1�b��. Conversely, when the Jl’s are similar the coupling
of bands is strong enough to lead to a deviation from the
semicircular form, especially when tll�
�Jl−Jl�� �Fig. 1�c��.
If the bands partially overlap, a hump develops in TC at all p
corresponding to 	 within the energy overlap interval �Fig.
1�d��.

In Fig. 2�a�, the total interacting DOS��� �Ref. 9� at t1

=1, t2=1/3
0.33 is shown, for different tll� in the case
when the bands fully overlap �J1 /J2=1�. The electron ex-
change effect not only increases the effective number of in-
teracting electrons in each band, but also extends the energy
region occupied by the bands. However, the total number of
interacting electrons does not change, the bands being fully
filled for p=2. While at t12=0 �Eq. �5�� the increase in TC is
due to the overlap of bands �short-dashed curve in Fig. 2�b��,
when tll��0 �see Eq. �4�� the exchange effect further boosts

TC �Fig. 2�b��.
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Monte Carlo results. The Hamiltonian �1� is also studied
using the MC methods widely applied to Mn oxides in the
limit J→
 �Ref. 11�. Hence, the eg spins are perfectly
aligned with the t2g spin. The technique involves finding the
eigenvalues of the Hamiltonian matrix at each MC step cor-
responding to an updated set of localized spins. Although
this substantially limits the size of the clusters being simu-
lated, the results for small lattices are numerically exact and
they allow for a direct comparison with DMFT. We simulate
lattices of sizes 82 in two dimensions and 43 in three dimen-
sions. The core spins are treated classically, while the treat-

FIG. 1. �Color online� �a� DMFT zero-temperature interacting
DOSl for J1=25 and J2=15 at different t12. �b� TC vs p for the cases
shown in �a�. Since the Hund’s couplings are very different, the
bands and critical temperatures retain the semicircular form. �c�
Zero-temperature interacting DOSl at t12=0.5, for the couplings in-
dicated. �d� TC vs p for the cases shown in �c�. Even if the overlap
of bands is narrow, the exchange of electrons is strong enough to
induce a robust TC at p�1 �solid curve�. In all frames t1= t2=1.

FIG. 2. �Color online� �a� DMFT zero-temperature total inter-
acting DOS for different values of t12. �b� TC vs p for the param-
eters indicated in �a�. The solid curve corresponds to the realistic set
of hoppings �e.g., LaMnO3�. In all frames t1=1, J1=J2=15. The

one-band results are also shown �1b�.
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ment of the fermionic sector is exact. In all simulations 2
�104 MC steps are used, the first 104 being discarded in
order to account properly for the thermalization of the ran-
dom starting configuration. In finite dimensions, the hopping
carries a direction index “�,” that is tll�

� . In two dimensions
�three dimensions�, tl

x=−	3tll�
x =−	3tl�l

x =3tl�
x =1, tl

y =	3tll�
y

=	3tl�l
y =3tl�

y =1, �tl
z= tll�

z = tl�l
z =0, tl�

z =4/3�, in the x, y �and z�
directions, respectively.12 The indexes l and l� stand for the
two active x2−y2 and 3z2−r2 orbitals. t1=1 sets the energy
unit. To find TC we investigate the long-range spin-spin cor-
relations

S�x� =
1

N
�

i

�S� i · S� i+x� =
1

N
�

i

Tr�S� iS� i+xe
−�H�

Tr�e−�H�
, �6�

where N is the total number of sites. TC is the temperature for
which S→0 upon heating, at the maximum allowed distance
xmax in the clusters considered.

In Fig. 3, the results in two and three dimensions are
displayed side by side for comparison.13 Error bars are less
than the symbol size unless otherwise indicated. In panel �a�,
the spin-spin correlations at xmax are shown for an 82 lattice,
corresponding to different electron densities p=Ne /N, where
N is the total number of electrons. The same in �d�, but on a

FIG. 3. �Color online� �a� MC spin-spin correlations at xmax

=4	2 vs temperature for different p, at t1=1��t�, t2=1/3, and the
t12 indicated, using an 82 lattice. �b� Same as in �a�, but changing
t12. �c� TC vs p at different t12 for the same lattice used in �a�. The
one-band results are also shown �1b�. The solid curve shows the TC

obtained from �a�. �d-f� Same as in �a-c�, but using a three-
dimensional �3D� lattice of size 43. In all frames J1=J2→
.
e
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43 lattice. Moreover, we investigate TC versus p at t1=1, t2
=1/3, and different t12. The results are in Fig. 3�b� for two
dimensions and in Fig. 3�e� for three dimensions. The TC is
maximum at p=1 and vanishes in the limits p→0 and p
→2, with an overall semicircular form in the phase diagram,
as seen in frames �c� and �f�. The one-band phase diagram
�denoted 1b� is also shown. Hence, as seen in �c� and �f�, t12
has a substantial effect in raising the TC, which is in qualita-
tive, and even in quantitative,14 agreement with DMFT. As
t12 increases from 0 to 1, the increase in TC can be as high as
100% in two dimensions and 60% in three dimensions.

The finite-size effects are checked using different bound-
ary conditions and simulating clusters of up to 122 in two
dimensions and 53 in three dimensions. In Fig. 4 the spin-
spin correlations at xmax �a� and the magnetization �M� vs T
curves �b� are shown. The size effects are small, showing
that our MC method detects the TC accurately.

Conclusion. We carried out a study of a multiband DE
model applied to CMR using a powerful combination of
DMFT and MC techniques. When two active bands are con-
sidered, the TC is maximized at p=1. DMFT shows that the
interorbital hopping leads to an increase in TC at all p’s, even
if the electron bands do not occupy the same energy interval.
This is due to the electron exchange between the bands,
which increases the effective number of interacting electrons
within each band. Both DMFT and MC indicate that, if the
bands fully overlap, besides the increase of TC due to the
energy overlap, a further boost occurs when the interorbital

hopping is turned on. The ideas developed here can be used

C C
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to search for multiorbital FM materials with even higher TC
than currently known, once the off-diagonal hopping is tuned
up. Our study can be extended to diluted magnetic semicon-
ductors, with similar results expected.15

We acknowledge conversations with R. S. Fishman, J.
Moreno, G. Alvarez, A. Moreo, and C. Timm. This research

FIG. 4. �Color online� MC finite-size effects studied in two di-
mensions. �a� Spin-spin correlations at xmax vs temperature for the
lattice sizes indicated. �b� �M� vs temperature for the same param-
eters in �a�. The nonzero �M� at high temperatures is the asymptotic
1 /	N for a system of size N. 3D results using 53 lattices are similar
�not shown�. While the spin-spin correlations do not show appre-
ciable size effects, the magnetization results clearly do, their errors
bars being maximal in the critical region.
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