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Inverse freezing in mean-field models of fragile glasses
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A disordered spin model suitable for studying inverse freezing in fragile glass-forming systems is intro-
duced. The model is a microscopic realization of the “random first-order” scenario in which the glass transition
can be either continuous or discontinuous in thermodynamic sense. The phase diagram exhibits a first-order
transition line between two fluid phases terminating at a critical point. When the interacting degrees of freedom
are entropically favored, an inverse static glass transition and a double inverse dynamic freezing appear.
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Inverse melting and inverse freezing occur when a crys-
talline or amorphous solid reversibly transforms into a liquid
upon cooling. This unusual phase behavior was first pre-
dicted by Tammann in 1903, and is generally considered to
be rare because it does involve a counter-intuitive increase of
thermal disorder as the temperature is lowered.1 An example
of biological relevance is provided by elastin.2 In the past
few years “inverse temperature transitions” of this type have
attracted a renewed interest as they have been observed in a
variety of soft matter systems including polymers,3 colloids,4

and micelles.5 While the responsible physicochemical inter-
actions may depend on the system under study, it has been
recognized that a large enough degeneracy of the degrees of
freedom interacting at low temperature provides a simple
mechanism whereby inverse melting or inverse freezing may
generally occur.6

The idea is easily described by considering an ensemble
of polymers that have a low-temperature “folded” state in
which they are mutually weakly interacting, and a higher-
temperature “unfolded” state which is favored entropically
and in which they interact strongly with each other. As tem-
perature is increased, each polymer stretches out to reach the
other polymers; the resulting entangling thus may lead to a
glass transition. To obtain a minimal model of freezing by
heating, one can consider6 spins taking values 0 , ±1, and a
Hamiltonian consisting of a term �i�i

2 favoring the “folded”
states �i=0, and an interaction term �ijJij�i� j that is active
in the “unfolded” states, �i= ±1. The entropic favoring of the
latter is enhanced by making them r-fold degenerate. If the
interactions matrix J is taken from the Gaussian ensemble,
one then obtains a reentrant spin-glass phase.6–11

In this paper, the inverse freezing problem is addressed in
the context of mean-field models of structural glasses by us-
ing the above mechanism of entropy-driven reentrance. Sev-
eral reasons make such a problem interesting. The “random
first-order” scenario for the glass transition12 predicts that
upon cooling fragile glass-forming liquids undergo a purely
dynamic arrest before a thermodynamic singularity occurs at
a lower temperature �or higher density�. The dynamic arrest
is the relevant one from an experimental point of view and,
in order to compare observations with theoretical predic-
tions, one should consider the effect of degeneracy on the
dynamics. The point is important because a reentrant glass
transition has been recently predicted by mode-coupling
theory13 and found in colloids4 and micelles with attractive
interaction.5 The second and more general question that

arises concerns the interplay of the two �static and dynamic�
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glass transitions and its effect on glassy behavior14 when a
reentrance in the phase diagram takes place.

In order to answer the above questions, we consider a
disordered system of N spin-1 variables with Hamiltonian

H = − 2�
ij

Jij�i� j + D�
i

�i
2, �i = 0, ± 1, �1�

where J is a symmetric random orthogonal matrix �with Jii
=0�, and D is a crystal field playing a role similar to the
chemical potential: Increasing D will favor �i=0 states and
reduce the effect of frustration. The case with binary spin
variables ��i= ±1� corresponds to the standard random or-
thogonal model �ROM� studied by Marinari et al.,15 which is
known to be glassy at low temperature.15–17 It should be
emphasized that quenched disorder is not crucial as ROM
shares the same basic phenomenology with systems having
deterministic interactions.15,18

The free energy of the model �1� can be evaluated as in
the standard ROM by using the replica method and the
identity:15 exp�Tr JA�=exp�NTr G�A /N��, where A is a sym-
metric matrix of finite rank, the overbar is the average over
the quenched disorder which is defined by the Haar measure
on the orthogonal group, and

G�z� =
�1 + 4z2 − 1

2
−

1

2
ln

�1 + 4z2 + 1

2
. �2�

Averaging the replicated partition function gives

Zn � �
−�

�

	
a,b

d�abdQab exp�− �f�Q,��� , �3�

where a ,b=1, . . . ,n are replica indexes, and the Parisi order
parameter Qab= 
�a�b� includes the diagonal terms, which
correspond to the density of ±1 spins, Qaa=�. The free en-
ergy f�Q ,�� reads

− �f�Q,�� =
1

2
Tr G�4�Q� − Tr��Q� + ln Z0, �4�

where Z0 is the single-site partition function

Z0 = �
��a

exp��
a,b

�ab�a�b − �D�
a

�a
2� . �5�

In order to proceed one now needs to specify an ansatz for Q
and �, and then consider the zero-replica limit n→0.
The fluid-fluid transition. The simplest case is the replica
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symmetric ansatz: Qab= ��−q��ab+q, �ab= ��−���ab+�,
where � is the Kronecker symbol. In this approximation the
free energy reads

�fRS = −
1

2
G�4��� − q�� − 2�qG��4��� − q�� − �q + ��

−� Dz ln„1 + 2e�−�−�D cosh�z�2��… , �6�

where Dz�dze−z2/2 /�2	 and q, �, �, and � are self-
consistently determined by the saddle-point equations. At
sufficiently large temperature/crystal field, q=�=0, and one
recovers the annealed free energy

�fann = −
1

2
G�4��� + �D� − s0��� , �7�

where s0���=−�1−��log�1−��−� log �+� log 2 is the en-
tropy of a noninteracting spin-1 system, and the density �
=��� ,D� satisfies the implicit equation

�D = log
2�1 − ��

�
+ 2�G��4��� . �8�

Equation �8� exhibits multiple solutions. There is an unstable
phase �with negative susceptibility� and two paramagnetic
fluid phases �PM1 and PM2� between which a first-order tran-
sition occurs. The latter terminates at a critical point located
at Dc�2.644, Tc�0.5506 �see Fig. 1�. The critical point
does not appear in spin-1 REM �Ref. 19�, showing that the
two models are not equivalent in the large-D regime. Along
the first-order transition line two distinct phases having equal
free energy coexist, and in both it is possible to go continu-
ously around the critical point from one coexisting phase to
the other by appropriately varying D and T. This first-order
transition is a general feature of spin-1 and lattice-gas sys-
tems with disordered �Gaussian or orthogonal� interactions,
though it is sometimes missed. For D
2 the density of ±1

FIG. 1. �Color online� Phase diagram of ROM spin-1 in the
temperature-crystal field plane. The continuous �red� line is the dy-
namic freezing, while the dashed �green� line is the static glass
transition. The dotted �blue� line is the first-order transition between
the two paramagnetic �PM1 and PM2� phases. Spinodals are shown
as dotted �violet� light lines. The full dot is the critical point termi-
nating the coexistence line. The diamond symbol is the tricritical
point separating the continuous and discontinuous glass transition
�at lower temperature�.
spins decreases upon cooling. This behavior is somehow un-
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expected if compared to what happens in the Ghatak–
Sherrington model, i.e., Eq. �1� with Gaussian disorder. In
the latter, the density increases upon cooling and the critical
point is absent.

The static and dynamic glass transition. At low
temperature/crystal field, the annealed entropy,

sann = s0��� +
1

2
G�4��� − 2��G��4��� , �9�

becomes negative, suggesting that replica symmetry has to
be broken. Within the one-step replica-symmetry-breaking
ansatz,20 Q and � are block diagonal matrices, where the
blocks have size m�m. Inside the blocks Qab= ��−q��ab

+q, �ab= ��−���ab+�. Then the free energy becomes

�f1RSB =
1 − m

2m
G�4��� − q�� + �q�m − 1�

−
1

2m
G�4��� − q + qm�� + ��

−
1

m
ln� Dz„1 + 2e�−�−�D cosh�z�2��…m. �10�

Expanding near m=1 gives �f1RSB��fann− �m−1�V, that al-
lows location of the static and dynamic transition through the
effective potential V=−���f1RSB/�m��m=1 �Refs. 12 and 17�.
The two glass transition lines Ts�D� and Td�D� are shown in
Fig. 1. In the Ising spin limit, D→−�, we get Ts�0.26 and
Td�0.535, consistent with Refs. 15 and 17. Several interest-
ing features can be observed. �i� The temperature at which
the annealed entropy vanishes is very close to Ts�D� for any
value of D, meaning that the glassy phase of our model is
similar to that of spin-1 REM �Ref. 19�. �ii� There is a tri-
critical point at T*�0.036, D*�2.0 below which the nature
of the glass transition changes from second to first order in
the thermodynamic sense. No appreciable irreversibility ef-
fects are observed across the second-order glass-transition
line when D loops start from the PM1 phase, Fig. 2 �main
frame�, whereas there is latent heat and hysteresis across the
first-order glass-transition line �see Fig. 2 �inset��. �iii� The
dynamic freezing line penetrates the PM2 phase up to the
spinodal line �at D�2.1� �see Fig. 1�. For D�2.1 the system

FIG. 2. �Color online� Energy density e vs crystal field D at
fixed temperature T, in a slow crunching MC experiment. The lines
are the analytic results of the annealed approximation.
is dynamically unable to reach equilibrium at low tempera-
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ture even in the case in which the ground is trivial, that is for
2�D�2.1 �see Fig. 3�. �iv� Crunching the system from high
to low D at fixed temperature, TdTTs, leads to a purely
dynamic freezing with no underlying entropy crises. Monte
Carlo �MC� results shown in Figs. 2 and 3 are for a system of
size N=512 and a very slow annealing rate �107 MC sweeps
per unit variation of D and T, respectively�.

Inverse temperature glass transitions. To take into ac-
count inverse freezing phenomena, the interacting states, �i
= ±1, are now given an entropic advantage by a degeneracy
ratio r1 with respect to the noninteracting states, �i=0.
The opposite case in which r�1 will not be discussed here:
That would lead only to a reentrance of PM1 within the PM2
fluid phase, which, for our purpose, is less interesting. One
can easily see that including degeneracy in the system corre-
sponds to changing the crystal field in Eqs. �6�–�10� as fol-
lows: D→D−T log r �Ref. 6�. In fact, the dependence of the
effective potential on the degeneracy ratio enters only
through the density variable, �, which satisfies Eq. �8�. Hav-
ing the meaning of the different phases already clarified, we
need only to investigate how the phase boundaries in Fig. 1
are modified accordingly. The analysis of the effective poten-
tial shows that for small r the reentrancy effect is weak,
while for large enough values of r a rather interesting reen-
trant behavior appears. We discuss the results for the case r
=50, which corresponds to the phase diagram presented in
Fig. 4. First of all, we see that the two glass transition lines
never cross each other and that upon heating the inverse
static glass-transition occurring in the range 2�D�2.18 is
anticipated by inverse freezing. This is due to the penetration
of the dynamical arrest line in the PM2 fluid phase. At inter-
mediate crystal field, 2.18�D�2.37, there is inverse freez-
ing without a static glass transition. This prevents the appli-
cation of the Kauzmann paradox, since in this range of
crystal field the equilibrium phase at low temperature is the
PM2 fluid. Finally, at larger crystal field, 2.37�D�2.58,
there is a double inverse dynamical freezing �again with no
underlying static glass transition� that goes through the PM1
and PM2 fluid phases �i.e., on cooling one would observe the
sequence of transitions PM1-G-PM1-G-PM2�. In this region
of the phase diagram the packing density of ±1 spins de-
creases with the temperature, i.e., the glass state at lower

FIG. 3. �Color online� Energy density e vs temperature T at
fixed crystal field D, in a slow cooling MC experiment. The lines
are the analytic results of the annealed approximation.
temperature is less dense than the one at higher temperature.

180202
This behavior is reminiscent of that predicted by mode-
coupling theory13 and observed in experiments on attractive
colloids4 and micelles.5

Conclusions. To summarize, we introduced a generaliza-
tion of ROM �Ref. 15� allowing investigation of inverse
freezing phenomena in fragile glass-forming liquids through
a mechanism of entropy-driven phase reentrance.6 The model
is a microscopic realization of the “random first-order” sce-
nario for the structural glass transition.12 However, in our
case the glass transition can be either continuous or discon-
tinuous in the thermodynamic sense. This is due to the pres-
ence of a first-order transition between two fluid phases.
Similar results are obtained by using purely biquadratic in-
teractions, Jij�i

2� j
2, that would correspond to a lattice-gas

ROM ��i
2→ni=0,1�. Notice that our results have no coun-

terpart in the quantum version of ROM studied in Ref. 23.
Rather, they have some resemblance to those obtained in
Refs. 24 and 25, reproducing a number of experimental ob-
servations on the dipolar spin-glass LiHoxY1−xF4 in external
field.26 In fact, the present model can be considered as the
insulating limit of a generalization of the itinerant electron
model �see Ref. 27� with random orthogonal interactions.

At large enough degeneracy an inverse static glass transi-
tion and a double inverse dynamic freezing occur. The latter
reproduces qualitatively some features observed in recent ex-
periments on colloidal and copolymer-micellar systems with
short-range attraction.4,5 Nevertheless, the possibility of de-
scribing the glass-glass transition13,21,22 in the present setting
remains unclear �see, however, Refs. 28 and 29� and de-
serves further investigation. Let us finally mention that this
work can be extended by considering both bilinear and bi-
quadratic interactions, similar to what has been done in Ref.
10. One can also include a three-body interaction term to
mimic microemulsion �see, e.g., Refs. 30�. Depending on the
relative strength of these interactions and the nature of the
quenched �Gaussian versus orthogonal� disorder, an even
richer variety of phases is expected. That could lead to a
better understanding of the glassy behavior of complex liq-
uids and soft matter systems.

It is a pleasure to thank L. Cugliandolo, D. Dean, and
especially J. Kurchan for discussions and suggestions. Sup-
port of the EVERGROW project is acknowledged.

FIG. 4. �Color online� Phase diagram of ROM spin-1 for degen-
eracy ratio r=50. Spinodal lines are not shown here.
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