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Bose-glass to superfluid transition in the three-dimensional Bose-Hubbard model
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We present a Monte Carlo study of the Bose glass to superfluid transition in the three-dimensional Bose-
Hubbard model. Simulations are performed on the classical �3+1� dimensional link-current representation
using the geometrical worm algorithm. Finite-size scaling analysis �on lattices as large as 16�16�16�512
sites� of the superfluid stiffness and the compressibility is consistent with a value of the dynamical critical
exponent z=3, in agreement with existing scaling and renormalization group arguments that z=d. We find also
a value of �=0.70�12� for the correlation length exponent, satisfying the relation ��2/d. However, a detailed
study of the correlation functions, C�r ,��, at the quantum critical point are not consistent with this value of z.
We speculate that this discrepancy could be due to the fact that the correlation functions have not reached their
true asymptotic behavior because of the relatively small spatial extent of the lattices used in the present study.
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I. INTRODUCTION

Quantum phase transitions as they occur in models com-
prised of bosons have been the focus of considerable interest
lately. Most notably, experiments by Greiner et al.1 have ob-
served the transition between a Mott insulating �MI� phase
and a superfluid �SF� phase in an optical lattice loaded with
87Rb atoms. The observed phase transition between the su-
perfluid and the insulating phase is thought to share the uni-
versal properties of a variety of physical systems, including
4He in porous substrates,2 Josephson-junction arrays3 as well
as thin superconducting films.4–6 While disorder can be ne-
glected in the experiments by Greiner et al.,1 it clearly plays
a central role in several of the experiments just mentioned.
As outlined in the seminal paper by Fisher et al.7 the statics
as well as the dynamics of the quantum phase transitions
occurring in the Bose-Hubbard model are strongly influenced
by disorder and a new insulating glassy phase, the Bose-
glass phase, should occur. The transition of interest in this
case is directly between the superfluid �SF� and the Bose
glass �BG�. Recent experiments showing that this disordered
transition can also be studied using optical lattices8–11 has
therefore created considerable excitement, though complica-
tions remain �for a recent review, see Ref. 12�. Previous the-
oretical studies13–18 have mainly focused on the transition as
it occurs in one or two dimensions and very recent theoreti-
cal works,19,20 addressing directly the experimental situation
relevant for optical lattices, have also mainly analyzed this
case. In light of recent work done by groups at Florence,
Orsay and Hannover,9–11 we consider in the present study the
transition as it occurs in three dimensions in the presence of
short-range interactions. In particular we determine the dy-
namical critical exponent, z, characterizing this transition in
d=3.

One hallmark of the Mott insulating phase is that it is
incompressible. In contrast to this, both the superfluid and
the Bose-glass phase are compressible and have a finite non-
zero compressibility, ��0. Close to the quantum critical
point between the Bose glass and the superfluid scaling
arguments,7 based on generalized Josephson relations, then
show that
1098-0121/2006/73�17�/174523�9� 174523
� � ���d−z�, �1�

where � describes the distance to the critical point in terms of
the control parameter. Since both the BG and SF phases are
compressible it then seems natural to expect the compress-
ibility to be finite also at the critical point and one must then
conclude that

z = d . �2�

It can in fact be shown that assuming the compressibility
either diverges or tends to zero at the BG-SF critical point
leads to implausible behavior. In Ref. 7 the relation z=d was
therefore argued to hold not only below the upper critical
dimension but for any dimension d�1. This result implies
that there is not an upper critical dimension for this transition
in any conventional sense. In d=1 analytical work13 strongly
supports the conclusion that z=d=1 and numerical
work15,16,21 in d=2 also find z=d=2. Long-range interactions
are likely to yield a different z,7 but we shall not be con-
cerned with that case here. Based on Dorogovtsev’s22

double-� expansion, an alternative scenario has been
proposed23,24 in which the critical exponents jump discon-
tinuously to their mean field values at the critical dimension
dc=4. In this scenario, for d	dc two stable fixed points are
present: the Gaussian fixed point is stable at weak disorder
with the random fixed point remaining stable at strong dis-
order. Below the critical dimension, d
dc, only the random
fixed point is stable. It should be noted that in order to obtain
sensible answers from the double-� expansion an ultraviolet
frequency cutoff �� must be introduced23—a procedure
which seems difficult to justify. This was later remedied
upon24 still within the framework of the double-� expansion.
It is also possible to question the validity of any �-expansion
approach on the grounds that the existence of an upper criti-
cal dimension for the disordered transition is implicitly as-
sumed. One might then ask if bounds on the upper critical
dimensions exist. Indeed, using the exact inequality25

� � 2/d , �3�

valid for stable fixed points in the presence of correlated

disorder, one immediately sees that the requirement that
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�=1/2 at the upper critical dimension, dc, yields dc�4.
Since the existence of an upper critical dimension is debat-
able it is then natural to instead focus on the lower-critical
dimension, which is well established. Indeed, it is also pos-
sible to develop an expansion away from the lower-critical
dimension �dl=1�.26,27 Using this approach the dynamical
critical exponent is exactly z=d and the correlation length
exponent � can be calculated to second order in �d−1 yield-
ing good agreement with experimental and numerical results
in d=2. The onset of mean field behavior, if any, is therefore
at best unconventional in this model and still a matter of
debate. In particular, it would be valuable to know if the
relation z=d continues to hold in dimensions higher than d
=2.

In the present work, we present a Monte Carlo study of
the three-dimensional Bose-glass to superfluid transition at
strong disorder. Our focus is reliable estimates of the dy-
namical critical exponent z in order to test the relation z=d
=3. As outlined above, much of the numerical work to date
has focused on the one- and two-dimensional cases, which
are less demanding computationally. However, recently a
very efficient geometric worm algorithm21,28 has been devel-
oped for the study of bosonic phase transitions making sig-
nificantly larger system sizes available. Even though the geo-
metrical worm algorithm we use has proven to be very
efficient for dealing with large lattices in two dimensions
�also in the presence of disorder�, we were only able to study
a relatively limited number of system sizes in d=3 that were
large enough to avoid corrections to scaling but small
enough to properly equilibrate with a feasible amount of
computational effort. In the present study therefore, we focus
exclusively on the three-dimensional case. We find estimates
for the exponents z, �, and , consistent with scaling picture
of Fisher et al. and the RG scheme of Herbut.26,27 Our esti-
mate of � is also consistent with the exact bounds for � stated
above, and is insensitive to details of the disorder averaging
procedure, in contrast with some recent debate over the va-
lidity of this bound.29–31 We leave for future study the case of
d=4 that would be of considerable interest for the approach
to mean field suggested by Weichman and collaborators.23,24

It has been suggested that in the vicinity of commensurate
values of the chemical potential disorder is weakly
irrelevant.29,32–34 In this case a direct MI-SF transition could
occur even in the presence of weak disorder. However, recent
high precision numerical work35 reached the opposite con-
clusion for d=2, although very large system sizes were
needed in order to show this. Since we are mainly interested
in the BG-SF transition, we minimize any crossover effects
by performing all of our calculations at a value of the chemi-
cal potential where in the absence of any disorder the system
is in the superfluid phase for any nonzero hopping and there
is no MI-SF transition.7 The BG-SF transition we observe is
therefore induced by the disorder and corresponds in the RG
sense to a random fixed point.

The paper is outlined as follows: the Bose-Hubbard model
is introduced below in further detail, including the mapping
to a �d+1� dimensional classical model on which we perform
our study. Section III A outlines the scaling theories neces-
sary to extract the critical exponents. Section III B details the

numerical techniques and discusses the difficulties we en-
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countered in properly equilibrating our simulations. Finally,
we present our results in Sec. IV.

II. MODEL

We begin with the Bose-Hubbard Hamiltonian, including
on-site disorder in the chemical potential,7

HBH = �
r
�U

2
n̂r�n̂r − 1� − �rn̂r� −

t

2 �
�r,r�	

��̂r
†�̂r� + H.c.� .

�4�

Here �̂r
† and �̂r are boson creation and annihilation opera-

tors at site r, and n̂r=�̂r
†�̂r is the number operator. The

on-site repulsive interaction U localizes the bosons and com-
petes with the delocalizing effects of the tunneling coeffi-
cient t. The random chemical potential �r is distributed uni-
formly on ��−� ,�+��. As noted by Damski et al.,20 the
introduction of a random potential in an optical lattice will
also generate randomness in the hopping �tunneling� term, t.
However, this type of disorder can be ignored.20 The phase
diagram7 for the pure model consists of a superfluid phase at
high t /U which is unstable to a series of Mott-insulating
regimes centered at commensurate densities at low t /U. In
the presence of disorder, the Bose-glass phase stabilizes be-
tween the insulating and superfluid phases.

Following standard methods,15,36 by integrating out am-
plitude fluctuations of the Bose field to second order, we
transform the Bose-Hubbard Hamiltonian into an effective
classical Hamiltonian in �d+1� dimensions well suited for
Monte Carlo study:

H =
1

K
�
�r,��

�1

2
J�r,��

2 − �rJ�r,��
� � . �5�

The integer currents J�r,�� are defined on the bonds of the
lattice and obey a divergenceless constraint �J�r,��=0. The
resulting current loops are interpreted in this context as
world lines of bosons15,36 and represent fluctuations from an
average, nonzero density. The coupling K acts as an effective
classical temperature and drives the phase transition: at low
K the repulsive short range interaction U dominates and the
system is insulating, while at high K the hopping t dominates
and the system is superfluid. In this transformation amplitude
fluctuations of the boson fields are integrated out to second
order. However, these fluctuations are not expected to affect
the universal details of the transition.

The advantage of the formulation of the Bose-Hubbard
model in terms of the link currents, Eq. �5�, is that an ex-
tremely efficient worm algorithm21 is available for this
model. This worm algorithm can also be directed28 even in
the presence of disorder. However, the memory overhead
associated with using a directed algorithm is prohibitive for
the present study due to the presence of disorder and the high
spatial dimension. We have therefore exclusively used the

21
more standard formulation of the algorithm.
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III. METHOD

A. Scaling

The BG-SF transition is a continuous quantum phase tran-
sition, and is characterized by two diverging length scales: a
spatial ��� and a temporal ���� correlation length, related by
the dynamical critical exponent z,

�� � �z � ��−��z, �6�

with �= �K−Kc� /Kc. These form the basis of the scaling
theory used to analyze our data.

The two observables of primary interest are the super-
fluid stiffness � and the compressibility �. The superfluid
stiffness � �proportional to the superfluid density� is defined
in terms of the change in free energy associated with a twist
in the spatial boundary conditions. As for the compressibility,
the critical behavior of � can be derived as a generalization
of the Josephson scaling relations for the classical transi-
tion,7,15,36 and scales with the correlation length as

� � �−�d+z−2�. �7�

The compressibility can similarly be found as a response
to a twist applied to the temporal boundary conditions, and is
found to scale as7,15,36

� � �−�d−z�, �8�

leading to the relation z=d previously mentioned.
The first step in the study of the critical properties of the

Bose-Hubbard model is a precise determination of the
location of the critical point through finite-size scaling
analysis. The presence of two correlation lengths implies that
finite-size scaling functions will have two arguments,
f�L /� ,L� /���. Hence

� = �−�d+z−2�f�L/�,L�/��� , �9�

or, by appropriately scaling the arguments and requiring that
the stiffness remain finite at the critical point for a system of
finite size,

� =
1

Ld+z−2 �̄�L1/��,L�/L
z� . �10�

This complicates the scaling analysis as we must work in a
two-dimensional space. The first approach is to work at lat-
tice sizes whose temporal sizes scale with the exponent z;
that is to work at a fixed aspect ratio,

� = L�/L
z. �11�

The quantity

Ld+z−2��L1/��, � =
L�

Lz� �12�

should then be a universal function of � at Kc. We can hold
the aspect ratio constant by working with systems of dimen-
sion Ld��Lz. If an initial estimate for the dynamical critical
exponent z is available, the critical point can be located by
plotting Ld+z−2��L1/�� ,�� versus K for several different linear
system sizes L. If the correct value of z is used, these curves

will all intersect at the critical point. This unfortunately re-
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quires that the initial estimate for the value of z be made
before simulations are run.

Alternatively, with an estimate of Kc, the first argument of
Eq. �12� can be held constant. Curves of �Ld+z−2 plotted for
different L against the ratio L� /Lz should then collapse for
the correct value of z.37,38 We use both approaches, with the
hope that a consistent picture emerges.

Once Kc has been located by the above method we can
proceed to study the behavior of the compressibility at the
critical point. If indeed z is equal to d, as described in the
introduction, the compressibility should be roughly constant
as K varies through Kc, and should not show any dependence
on L. In particular � should neither diverge nor go to zero
at Kc.

We also consider the particle-particle correlation function
C�r ,��, which is expected7 to decay asymptotically as

C�r,� = 0� � r−yr, C�r = 0,�� � �−y� �13�

with exponents given by

yr = d + z − 2 +  ,

y� = �d + z − 2 + �/z . �14�

In addition to defining the exponent , with reliable esti-
mates of the correlation functions this would in principle
provide for an independent calculation of the dynamical
critical exponent z. Fisher et al.7 also derive bounds for ,

2 − �d + z� 
  � 2 − d . �15�

The lower bound arises from the requirement that the corre-
lation functions decay, and the upper bound is argued from
the scaling of the density of states in the Bose-glass and
superfluid phases. These can be simply stated as bounds on
the exponents yr and y�,

0 
 y� � 1, 0 
 yr � z . �16�

The final exponent we calculate is the correlation length
exponent �. Taking the derivative of �10� with respect to K
we see that

Ld+z−2 d�

dK
= L1/��̄��L1/��,L�/L

z� . �17�

Plotting this derivative against L at Kc should yield a power
law with exponent 1 /�. The crossing data �Ld+z−2 calculated
for different system sizes with a fixed aspect ratio, �, should
also collapse to a single curve when plotted against L1/��.

B. Numerical method

Both the superfluid stiffness and the compressibility
can be calculated in terms of the link-current winding
numbers15,36 n�=L�

−1�r,�Jr,�
� in each direction �=x ,y ,z ,�

�here Lx,y,z=L�. The superfluid stiffness is related to a twist in
the spatial boundary conditions and so can be calculated in

terms of the spatial winding numbers,
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� =
1

Ld−2L�


�n�=x,y,z
2 	�av. �18�

We denote thermal averages by �O	 and disorder averages by

O�av. Similarly, the compressibility is associated with a
twist in the temporal boundary conditions and is defined in
terms of the temporal winding numbers:

� =
L�

Ld 
�n�
2	 − �n�	��n�	��av. �19�

Since this expression contains the disorder average of the
square of a thermal average, the systematic error is reduced
by calculating this average on two independent lattices � and
� with the same disorder realization.39,40

We are also interested in the derivative of � with respect
to the coupling. This can be calculated thermodynamically
from the stiffness and total energy E,

d�

dK
=

1

K2 
��E	 − ��	��E	��av. �20�

This was found to produce better estimates than numerically
differentiating � in the two-dimensional case.41

Finally, since the construction of each worm is essentially
equivalent to propagating a boson through the lattice, it is
possible to calculate the particle-particle correlation function
directly from the behavior of the algorithm. Details can be
found in Ref. 28.

As always, the system must be run for t0 Monte Carlo
sweeps at each disorder realization to ensure that equilibrium
has been reached before beginning to sample the generated
configurations. To confirm this, two simulations are carried
out simultaneously on lattices with the same disorder realiza-
tion but different initial configurations �we set all of the cur-
rents in each direction to a different integer constant for �
and ��. These initial configurations are far from equilibrium.
It is useful to define “Hamming distances” between different
current configurations in order to measure the relaxation time
of the algorithm �this is done in the spirit of Ref. 36, though
the definitions used here are slightly different�. We define the
Hamming distance between the two lattices � and � after
performing a total of t Monte Carlo sweeps on their initial
configurations,

H�,�
�=x,��t� =

1

LdL�
�
�r,��


J�,�r,��
� �t� − J�,�r,��

� �t��2. �21�

Similarly, we define the Hamming distance between the con-
figuration of lattice � at the sweep t0 where we begin to
sample the generated configurations �denoted �0� and the
configuration of � after a further ts= t− t0 sweeps

H�,�0

�=x,��ts� =
1

LdL�
�
�r,��


J�,�r,��
� �t0 + ts� − J�,�r,��

� �t0��2.

In the present study, t0 is chosen prior to running the simu-
lations and is held constant.

For the sake of simplicity, we define a Monte Carlo sweep
to be the construction of a single worm; while not ideal for

comparing its characteristics to other algorithms, this is suf-
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ficient for our discussion here. Since the initial configuration
of � and � are different, H�,�

� �t� will be large at the begin-
ning of the simulation �t small�. Conversely, since shortly
after t0 the configuration of � will not have changed substan-
tially, H�,�0

� �ts� will be small. If t0 has been chosen larger
than the relaxation time of the algorithm, then for sufficiently
large values of t and ts the configurations of �0, �, and � will
be independent, equilibrated states, and thus the two dis-
tances should converge. The inset of Fig. 1 shows this ap-
proach to equilibrium on an 8�8�8�64 lattice with t0
=3�107 at our estimate of Kc. The distances converge after
t�105, indicating that the relaxation time for this system is
approximately 30 000 sweeps.

A further complication in the calculation of the disorder
averages was encountered due to the discrete nature of the
winding numbers which are used to calculate � and �. Since
most disorder realizations have a small but finite superfluid
stiffness at Kc, many independent configurations of n� must
be generated for each disorder realization to achieve a reli-
able estimate. Figure 1 shows the distribution of ��L4	 as a
function of the number of sweeps ts performed after equili-
bration on each realization of the disorder. For ts� tr, there
are many realizations for which no configuration is generated
with a finite winding number. Only after running for much
longer at each realization are the true features of the distri-
bution resolved. Under-sampling these realizations runs the
risk of underestimating the disorder average. This issue is
discussed at further length in Ref. 40.

The computational demands of equilibration grow quickly

FIG. 1. �Color online� Main panel: histograms of ��L4	 for a set
of 1000 disorder realizations on a system of size 8�8�8�64 at
our estimate of Kc=0.190�1�. Curves show the evolution of the
distribution P���L4	� as a function of the number of Monte Carlo
sweeps ts performed after equilibration on each disorder realization.
The peak in the distributions at ��L4	=0 persists for many times the
relaxation time, as measured by the convergence of the Hamming
distances, while the broader peak near ��L4	=0.025 grows. Inset:
Hamming distances calculated on the same set of disorder realiza-
tions. H�,� is plotted against the total number of sweeps performed,
t. H�,�0

is plotted against the number of sweeps performed after
equilibration, ts. Open symbols are calculated in terms of spatial
currents. Solid symbols are calculated in terms of temporal currents.
with system size. Typical systems we studied, of linear size
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L=10 to L=14, required up to 3�105 sweeps to relax and up
to a further 1�108 sweeps for the distributions of ��L4	 to
equilibrate. For L=16, nearly 1�106 sweeps were required
to relax and we were unable to run simulations for suffi-
ciently long to see the distributions equilibrate. Some results
for L=16 are shown below as they demonstrate consistent
scaling. Figure 2 shows the equilibrated distributions of
��L4	 for two lattice sizes, L=8 and 12. They show the broad
tail which necessitates running on at least 103 disorder real-
izations. Moreover, at least for the system sizes we were able
to study, the distributions do not narrow as L increases.
Hence, the system is likely not self-averaging at the critical
point.42

IV. RESULTS

We begin by a discussion of our results for the scaling of
the stiffness �. All our results are for the three-dimensional
case, hence, the scaling relation Eq. �12� states that
Lz+1��L1/�� ,�� should display a crossing at the critical point.
As already mentioned, we focus on the value of the chemical
potential �r distributed randomly between ��−� ,�+��
with �= 1

2 and �= 1
2 .

We begin with the ansatz z=d=3, using lattices of size
L�L�L��Lz=3. In Fig. 3 we show plots of �L4 versus K
for linear system sizes ranging from L=8 to 16. A clean
crossing is observed at Kc=0.190�1� for three values of the
aspect ratio, �=1/8 �main panel�, �=1/32, and �=1/64 �in-
sets�. As can be seen from Fig. 3, our results for systems of
size L=8 do not scale as well as larger system sizes. This
effect is more pronounced for L
8 �not shown�. This is
most likely due to corrections to scaling which for these
small system sizes cannot be neglected. We also note that an
improvement in the scaling behavior of L=8 with the aspect

FIG. 2. �Color online� Distributions of ��L4	 for L=8 and 12 at
Kc, plotted on linear �main panel� and logarithmic �inset� axes. The
average of each distributions is close to 
��L4	�av=0.08, which is
significantly higher than the typical values of the distributions, in-
dicating that the broad tail of the distribution must be well sampled
to obtain an accurate estimate of the true average.
ratio is visible in Fig. 3. This is presumably due to the ap-
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proach towards the optimal value for �, given by the relation
�� /L�z��� /L�.

40

In order to test how sensitive we are to the value of z we
also tried z=2, the value for the dynamical critical exponent
quite well established in two dimensions. Our results for
this value of z are shown in Fig. 4 for lattices of dimension
L3��Lz=2. For this value of z our results show significant
drift in the crossing for different system sizes and different
aspect ratios as can be clearly seen in Fig. 4. The apparent
crossing between two system sizes are only slightly higher
than the clear crossing seen using z=3 in Fig. 3 but only two
system sizes can be made to cross at a given K. From the
results in Fig. 4 we conclude that z�2.

FIG. 3. �Color online� The main panel shows �Ld+z−2=�L4 plot-
ted versus K for lattices of size L�= 1

8L3 assuming d=z=3. The lines
are guides to the eye. The crossing gives an estimate of the critical
point Kc=0.190�1� and is consistent with z � 3. The two insets
show equivalent results with two different aspect ratios �=1/32
and �=1/64.

FIG. 4. �Color online� Search for a crossing in �Ld+z−2 for z
=2 using lattices of size L3��Lz=2, �see also Fig. 3�. Results are
shown for two different aspect ratios �=1/8 ,1 /16. The crossings
show significant drift between different lattice sizes and between

the two aspect ratios shown. Consequently, z�2.
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As explained in Sec. III A we can now hold constant the
first argument of the scaling function �12� by working at our
estimate of Kc. Assuming that our estimate of Kc=0.190�1�
obtained with z=3 is correct we can now check these esti-
mates self-consistently by plotting �Ld+z−2=4 versus L� /Lz=3

for a range of L at Kc=0.190�1�. For a detailed explanation
of the procedure we refer to Ref. 37. Our results are shown in
Fig. 5. The curves show �Ld+z−2=4 plotted for systems of
linear size L=8, 10, and 12 as a function of the aspect ratio
�=L� /Lz=3. All the curves for different L and L� collapse
onto a single curve for z=3. This result is a rather strong
confirmation that the assumption z=3 indeed is correct. If
one studies the curves in detail a very slight vertical drift
with increasing L is noticeable. This drift is likely the result
of a small deviation, within our error bars, of the actual criti-
cal temperature from our estimate of Kc=0.190�1�. It would
have been quite interesting to study systems of linear size
L	12 or systems with an aspect ratio largely exceeding
L� /Lz�1, however, given our value of the dynamical critical
exponent of z=3 this is computationally too demanding.

It would be useful to provide an estimate of the error bar
associated with our estimate of z=3. While we can safely
rule out integer values of z other than z=3, a more rigorous
statement of the error is impossible with the methods we
have used. While one might be tempted to derive an estimate
from the range of values which produce a reasonable col-
lapse in Fig. 5 �roughly 10 percent�, due the uncertainty as-
sociated with Kc and the potential dimensional crossover ef-
fects at low �, this estimate is ad-hoc at best.

We now discuss our results for the compressibility, �. In
Fig. 6 the compressibility is shown for a range of K around
the estimated critical point Kc=0.190�1� for several different
system sizes, using the same lattice sizes as for in Fig. 3. As
expected if d=z, the compressibility shows no dependence

FIG. 5. �Color online� �L4 versus �=L� /Lz for system sizes L
=8,10,12 assuming z=3 at K=0.19. Lattices of size L3�L� were
used. The inflection points and curvature show a very good collapse
indicating that the dynamical critical exponent is likely z=3. The
slight vertical drift with increasing L likely indicates that we are
slightly off the true Kc=0.190�1�, within the bounds of our
errorbars.
on the linear size of the system and is approximately con-
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stant through the transition. Furthermore, at Kc the compress-
ibility neither diverges nor does it tend to zero. This is again
a strong confirmation that z=d=3. One should note that the
results in Fig. 6 are only really useful for determining z if the
critical point, Kc is known �since one generally would expect
� to be independent of L far away from the critical point
where ��L�. In the absence of any knowledge of Kc, �
would have to be calculated for the entire range of physically
relevant K. It is therefore interesting to compare the results
shown in Fig. 6 with the attempt of locating the critical point
assuming z=2 shown in Fig. 4. The latter results show
curves intersecting pairwise around K�0.2 with the intersec-
tions moving downwards with L. If indeed the dynamical
critical exponent was z=2 and not z=3 as we show here,
then it would seem very unlikely that the compressibility
shown in Fig. 6, just below this range of K�0.2, could be so
featureless. One would in that case have expected it to be-
have as �����d−z�=�, resulting in the finite-size scaling form
�= �1/Ld−z=1��̄�L /� ,L� /Lz�. Since the results in Fig. 6 are
independent of L they therefore clearly exclude z=2.

We now turn to our results for the correlation length ex-
ponent �. Figure 7 shows in the main panel a plot of the
derivative of the stiffness �times L4� for the system sizes we
studied. This quantity is calculated during the simulation
without the use of any numerical derivatives. As explained in
Sec. III A we expect this derivative to behave as �L1/� at Kc.
The results for K=0.188 clearly deviate from a power-law
consistent with this value of K being below Kc. From the
results shown in Fig. 3 we know that K=0.191 is likely
above Kc, while K=0.190 is likely very close to Kc. Hence
we fit the results for K=0.190 and K=0.191 to a power law,
L4d� /dK=cL1/�, finding an exponent of 1.11 and 1.69, re-
spectively �shown as the solid lines in Fig. 7�. This allows us
to bracket the estimate of � to the interval 0.59–0.91. The
rather broad range of this interval is due to the fact that the
relatively large value of z makes this way of determining �
extremely sensitive to a precise determination of Kc. We
therefore combine this estimate with a standard scaling plot

4 1/�

FIG. 6. �Color online� The compressibility, � shown versus K
near Kc=0.190�1�. Results are shown for L=8, 10, 12, and 14 with
�=1/8. Note the absence of features at Kc and the lack of depen-
dence on system size, indicating again that z=d=3.
of �L versus �L shown in the inset of Fig. 7. The best
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scaling plot is obtained with �=0.70 and Kc=0.1902 �well
within the error bars of our estimate for Kc�. Combining
these two estimates of � we conclude �=0.70�12�. This value
of � satisfies the “quantum” Harris criterion, ��2/d, which
should hold for all disorder-driven transitions25 and could be
consistent with this inequality being satisfied as an equality.
It is in very good agreement with the value of �=0.69 ob-
tained by Herbut27 in an expansion in powers of �d−1 away
from the lower critical dimension dl=1.

It has been suggested29–31 that the inequality ��2/d can
be violated and that in fact � can be less than 2/d. At the
center of this debate is the way the average over the disorder
is performed. If the disorder is chosen from a random distri-
bution without any constraints, called the canonical en-
semble of disorder, one might ask if equivalent results are
obtained if constraints are imposed on the random distribu-
tion, the so-called microcanonical ensemble of disorder. For
instance, for the model considered here one could constrain
the random chemical potential to have exactly the same av-
erage for each generated sample. The proof25 of the “quan-
tum” Harris criterion relies on the physically more relevant
canonical ensemble of disorder being used. Subsequent
work43–47 have shown that even though the two ensembles in
principle yield the same results in the thermodynamic limit,
their finite-size properties can in some cases be different. All
our results have been obtained using the canonical ensemble
of disorder, in that at each site a potential was drawn from
the uniform distribution 
0,1�. Hence, for a given sample the
average chemical potential is not exactly 1/2. In light of the
above discussion we have therefore performed additional
simulations directly at Kc but this time imposing the con-

FIG. 7. �Color online� The derivative of the stiffness, L4d� /dK,
as calculated directly during the simulation, plotted against the lin-
ear system size L. Data is shown for a range of couplings near Kc.
The solid lines indicate power-law fits to the data at K=0.190, with
exponent 1.11 and K=0.191 with an exponent of 1.69. Data is also
shown for simulations run in the microcanonical ensemble of dis-
order at K=0.190 �see text�. The dashed line indicates a power-law
fit to the microcanonical data with an exponent indistinguishable
from the fit to the canonical data. The inset shows the best collapse
of the scaling curves �L4 plotted against �L1/�, with Kc=0.1902 and
�=0.70. Combining these results we find �=0.70�12�.
straint that the average chemical potential must be exactly

174523
1/2 for every disorder realization. Our results for this micro-
canonical ensemble of disorder are also shown in Fig. 7 and
are indistinguishable from our results obtained with the ca-
nonical ensemble. One should note that the uniform disorder
distribution we employ is likely less sensitive to the differ-
ence between the canonical and microcanonical ensemble of
disorder than a bimodal distribution. Hence we conclude that
our procedure for calculating � is valid.

We finally discuss our results for the correlation functions
which are shown in Fig. 8 for a range of different system
sizes calculated at Kc. To determine the power law decay of
the correlation functions we used lattices of size L3��Lz

with �=1/8 and z=3. All the temporal correlation functions
can be fitted with the same exponent y�=1.06�7�. We note
that this value for y� would appear to satisfy the equality
y��1 as an equality. Following Sec. III A we assume that
y�= �d+z−2+� /z and using the above determined value for
z=3 we then infer

 � − 1. �22�

This would then satisfy Eq. �15� as an equality. Our results
for the temporal correlation functions have been determined
out to large lattice sizes L�=512 and appear quite stable. We
are therefore relatively confident that these results are trust-
worthy.

Our results for the spatial correlation functions C�r ,�
=0� appear less clear. The value we obtain for yr=4.4�4� is
clearly not consistent with our other estimates for z, since the
ratio yr /y�z then yields z=4.15. If one assumes that this is
the correct value for z it again follows that �−1. We
strongly suspect that this value of y is due to the relatively

FIG. 8. �Color online� Spatial and temporal dependence of the
particle-particle correlation function, C�r ,�=0� and C�r=0,��, cal-
culated at K=0.19 and �=1/8 for L=8 to 16. Solid lines are a fit to
C�r ,�=0�=A
r−yr + �L−r�−yr� and C�r=0,��=A
�−y� + �L�−��−y��.
Each correlation function was fitted with the same power, but a
unique coefficient. Fitted values are yr=4.4�4� and y�=1.06�7�.
Also shown are curves calculated for a system of size 203�40��
=1/200� at K=0.1905. This correlation function shows a clear ex-
ponential dependence in the spatial direction, though the temporal
dependence is consistent with the same power law decay as for
systems of larger aspect ratio.
r

-7



PETER HITCHCOCK AND ERIK S. SØRENSEN PHYSICAL REVIEW B 73, 174523 �2006�
small spatial extent �L�16� of the lattices used. For such
small lattice sizes the correlation functions have likely not
reached their asymptotic behavior. We have varied the
strength of the disorder, and found the same critical behavior
at �=0.6 and �=1.0. One might attempt to reach larger lat-
tice sizes for the spatial correlation functions by decreasing
the aspect ratio dramatically. We have attempted this by per-
forming calculations for a lattice of size 203�40 at Kc �also
shown in Fig. 8�, corresponding to an aspect ratio of �
=1/200. In this case the spatial correlation functions show
clear evidence for an exponential decay probably due to a
dimensional crossover induced by the extremely small aspect
ratio. In fact, it would seem to be more reasonable to in-
crease � to a more optimal aspect ratio determined by the
requirement that �� /L�z��� /L�. Due to the large value of z,
this has proven impossible for the present study.

V. CONCLUSION

In the present paper we have shown strong numerical evi-
dence that the dynamical critical exponent z at the BG-SF
critical point is equal to the spatial dimension for the three-
dimensional site-disordered Bose-Hubbard model. The rela-
tion z=d therefore continues to hold in d=3. Results for the

scaling of the stiffness versus K, as well as at Kc=0.190�1�

W. Krauth, N. Trivedi, and D. Ceperley, Phys. Rev. Lett. 67,
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versus L�, are consistent with z=d=3. The compressibility is
almost constant and independent of system size through the
critical point consistent with this value for z. In addition we
have obtained values for the critical exponents �=0.70�12�
and �−1, with the cautionary note that a reliable determi-
nation of  is impeded by the very small spatial extent of the
lattices available. In light of the recent work by Bernardet et
al.,31 it would have been very interesting to analyze each
disorder realization separately, in order to determine a char-
acteristic Ki for each sample. The scaling analysis should
then be redone using Ki. Unfortunately, we were not able to
perform such an analysis for this work.

In general, we expect that these critical exponents should
be relevant to experiments conducted in optical lattices, if
the critical behavior can be clearly observed. We have not
included the effects of the inhomogenous trapping potential,
as has been considered48 in the Mott insulator to superfluid
case. A study of these effects would clearly be relevant to the
experimental effort.
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